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ADAPTIVE HYPERSPECTRAL MIXED NOISE REMOVAL

Tai-Xiang Jiang†,∗, Lina Zhuang∗, Ting-Zhu Huang†, José M. Bioucas-Dias∗

†School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, P. R. China
∗Instituto de Telecomunicaçõoes, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

ABSTRACT

This paper proposes a new denoising method for hyperspec-
tral images (HSIs) corrupted by mixtures (in a statistical
sense) of stripe noise, Gaussian noise, and impulsive noise.
The proposed method has three distinctive features: 1) it ex-
ploits the intrinsic characteristics of HSIs, namely, low-rank
and selfsimilarity; 2) the observation noise is assumed to
be additive and modeled by a mixture of Gaussian (MoG)
densities; 3) the inference is performed with an expecta-
tion maximization (EM) algorithm, which, in addition to the
clean HSI, also estimates the mixture parameters (posterior
probability of each mode and variances). Comparisons of
the proposed method with state-of-the-art algorithms provide
experimental evidence of the effectiveness of the proposed
denoising algorithm.

Index Terms— Denoising, mixed noise, hyperspectral
images, low-rank, selfsimilarity, mixture of Gaussians, ex-
pectation maximization.

1. INTRODUCTION
Hyperspectral remote sensing images are often unavoidably
corrupted by several types of noises, including Gaussian
noise, impulse noise, deadlines, and stripes [1]. Large re-
search efforts have been devoted to HSI denoising. Among
them, two critical points have been taken into consideration.
One is that of preserving the structure of the clean HSIs while
denoising. Another one is an appropriate modeling strategy
for the noise.

As for HSI structure, HSIs are strongly correlated in
the spectral-spatial domain, implying that they are low-
rank, piecewise smooth, and selfsimilar. Low-rank has
been exploited by representing the spectral vectors in low-
dimensional subspaces [1–4], low-rank matrix recovery
(LRMR) [5], noise adjusted iterative low-rank matrix ap-
proximation (NAILRMA) [6], and nonconvex low-rank ma-
trix approximation (NonLRMA) [7]. Piecewise smoothness

This research was supported by the National Natural Science Founda-
tion of China (61772003). The research leading to these results has re-
ceived funding from the European Union’s Seventh Framework Programme
(FP7-PEOPLE-2013-ITN) under grant agreement n607290 SpaRTaN. This
work was partially supported by the Fundaçáo para a Ciência e Tec-
nologia, Portuguese Ministry of Science and Higher Education, projects
UID/EEA/50008/2013 and ERANETMED/0001/2014.

in the spatial domain has been exploited, for example, via
total-variation regurarization (see, e.g., [8], [4]).

Meanwhile, image selfsimilarity underlies the state of the
art in gray-level image denoising. This form of prior, or regu-
larizer, has been fully exploited in nonlocal means [9], BM3D
[10] and LRCF [11]. Zhuang et al. proposed a series of meth-
ods (FastHyDe [2], RHyDe [3] and GLF [12]), which tact-
fully exploit HSI low-rank and selfsimilarity. In short, these
methods start by identifying the subspace where the spec-
tral vectors live, and then formulate the denoising problem
with respect to the representation coefficients in the subspace,
which are also selfsimilar.

Although FastHyDe [2] and GLF [12] achieved unexcep-
tionable results for the task of Gaussian noise and Poisson
noise removal, they are not robust to the mixed noise. To
cope with this issue, RHyDe [3] took account of the dead
pixels by decomposing the noise into a Gaussian term plus
a sparse term and imposing mixed `2,1 regularization on the
latter term. LRMR [5], NAILRMA [6], NonLRMA [7], and
LRTV [8] also adopt sparsity inducing regularization term,
but contrarily to RHyDe, formulate the inference in the origi-
nal HSI domain. As mentioned before, in many real applica-
tions, the noise often exhibits very complex statistical distri-
butions. This motivates us to consider a more flexible model-
ing strategy to tackle such complex noise cases.

Contribution We model the noise as an additive term
with a MoG density, which is a universal approximation to
any continuous distribution and hence capable of modeling a
wider range of noise distributions. To automatically estimate
the parameters involved in different noise distributions, we
design an expectation maximization (EM) algorithm. Similar
to [2, 3, 12], our method takes full advantage of the spectral
low dimension and spatial self-similarity of the HSIs.

The outline of this paper is given as follows. Section 2.1
formulates the problem of HSI denoising. Section 2.2 gives
the problem formulation and the proposed EM algorithm. Ex-
perimental results including comparisons are reported in Sec-
tion 3. Finally, we draw some conclusions in Section 4.

2. MAIN RESULTS
Let Y ∈ Rb×n denote a HSI with spatial resolution n =
w × h (spatial width × spatial height) and b spectral bands.
The noise is assumed to be additive. Therefore, we may write

4035978-1-5386-7150-4/18/$31.00 ©2018 IEEE IGARSS 2018



Y = X + N, (1)

where, Y, X and N ∈ Rb×n are, respectively, the observed
HSI, the clean HSI, and the noise.

Since, with good approximation, we are assuming that the
spectral vectors (columns of X) live in a subspace, we may
write [1, 2] Y = EZ + N, (2)

where E ∈ Rb×s, with b � s, and Z ∈ Rs×n. Matrix
E, assumed to be semi-unitary (i.e., ETE = I), spans the
subspace. The subspace is estimated with, for example, the
HySime algorithm [13]. Matrix Z contains the representation
coefficients of X with respect to E.

2.1. Problem Formulation
Using Bayes rule, the posteriori probability distribution of Z
conditioned to Y is given by

p(Z|Y) =
p(Y|Z)p(Z)

p(Y)
, (3)

where p(Y|Z) is the probability of Y given Z (the likelihood
function) and p(Z) is a priori probability density function of
Z. The maximum a posteriori (MAP) estimate of Z is

Ẑ ∈ argmax
Z

ln p(Y|Z) + ln p(Z). (4)

In this paper, we consider that the noise is a MoG mixture
with only two modes: the first mode models i.i.d. zero-mean
white Gaussian noise with variance σ2

i,1 for the i-th band.
The second term models stripe and impulsive noise in the i-
th band and it is assumed to follow a Gaussian distribution
with zero-mean and a very large variance σ2

i,2 (σ2
i,2 � σi,k).

Hence,

p(yij |xij) =
2∑

k=1

αkN (yij − xij , σ2
i,k), (5)

where yij := [Y]ij , xij := [EZ]ij , αk ≥ 0 is the probability
of mode k ∈ {1, 2}, and N (y − µ, σ2) denotes a Gaussian
density with mean µ and variance σ2 computed at y.

Assuming that Z and N are independent, it follows
p(Y|Z) =

∏
i

∏
j

p(yij |xij). Then, the MAP problem (4)

turns out to be

Θ̂ ∈ argmax
Θ


b∏

i=1

n∏
j=1

(
2∑

k=1

αkN (yij − xij , σ2
k)

)
p(Z)

 ,

(6)
where Θ := {Z, αk, σ

2
i,k} (i = 1, ..., b and k = 1, 2).

2.2. Proposed EM algorithm
Problem (6) is nonconvex and we use the EM algorithm
[14] to compute a local optima. To apply the EM algo-
rithm, as usual in mixtures, we introduce the latent vari-
ables uijk (playing the role of missing data), for ijk ∈
{1, . . . , b} × {1, . . . , n} × {1, 2}, which selects the active
mode at band i and pixel j.

Let Θ(t) := {Z(t), α
(t)
k , (σ2

i,k)
(t)} (i = 1, ..., b and k =

1, 2) denote the set of parameters at the t-th iteration of the
EM algorithm. Then, the E-step and the M-step amounts to
compute (see [14] for details)

E-Step

ωt
ij,k = E[uij,k|Y,Θ(t)] =

αt
1N
(
yij − x(t)ij , (σ

2
i,k)

(t)
)

2∑
k=1

αt
kN

(
yij − x(t)ij , (σ

2
i,k)

(t)
)

(7)M-step Construct the so-called Q function:

Q
(
Θ,Θ(t)

)
=

b∑
i=1

n∑
j=1

2∑
k=1

ωt
ij,k

(
−1

2
log(2πσ2

i,k)

− (yij − xij)2

2σ2
i,k

+ logαi,k

)
+ log p(Z).

(8)

Then, optimizeQ
(
Θ,Θ(t)

)
with respect to Θ. The optimiza-

tion w.r.t. αi,k, σi,k, for k = 1, 2 and i = 1, ..., b, yields

αi,k =

∑
j ω

t
ij,k∑

j,p ω
t
ij,p

, σ2
i,k =

∑
j ω

t
ij,k(yij − xij)2∑

ij,p ω
t
ij,k

. (9)

We remark that α2 = 1 − α1. The optimization w.r.t. Z is
(recall that xij = [EZ]ij)

min
Z

b∑
i=1

n∑
j=1

2∑
k=1

ωt
ij,k

(
(yij − xij)2

2σ2
i,k

)
− log p(Z). (10)

Optimization (10) may be compactly written as

min
Z

2∑
k=1

1

2
‖Mk � (Y −EZ)‖2F + log p(Z), (11)

where [Mk]i,j :=
√
ωt
ij,k/σ

2
i,k, ‖X‖2F :=

√
trace(XX>),

and � stands for elementwise multiplication. Considering
that σi,2 � σi,1, optimization (11) is well approximated by

min
Z

1

2
‖M1 � (Y −EZ)‖2F + λφ(Z), (12)

where λφ(Z) := − log p(Z) and λ > 0 acts as a regular-
ization parameter. We note that (12) is a convex problem,
provided that φ is convex.

We use SALSA [15] to solve (12). To set the stage for
SALSA, we start by reformulating (12) as the equivalent con-
strained optimization

min
Z

1

2
‖Mk � (Y −V1)‖2F + λφ(V2)

s.t.V1 = EZ, V2 = Z.
(13)

The augmented Lagrangian function for (13) is

L(Z,V1,V2,D1,D2) =
1

2
‖M1 � (Y −V1)‖2F + λφ(V2)

+
µ

2
‖EZ−V1 −D1‖2F +

µ

2
‖Z−V2 −D2‖2F , (14)

where D1,D2 are scaled Lagrangian multipliers and µ > 0.
Then SALSA iteratively optimize (14) w.r.t Z,V1,V2 and
update D1,D2, leading to the following updates:
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Z(p+1) =
1

2

(
E>(V

(p)
1 + D

(p)
1 ) + D

(p)
2 + V2(p)

)
,

V1
(p+1) =(EZ(p+1) −D

(p)
1 + M1 �M1 �Y)

� (M1 �M1 ⊕ µ)

V2
p+1 =argmin

V2

µ

2
‖Z(p+1) −V2 −D

(p)
2 ‖2F + λφ(V2)

D1
(p+1) =D

(p)
1 − (EZ(p+1) −V

(p+1)
1 )

D2
(p+1) =D

(p)
2 − (Z(p+1) −V

(p+1)
2 ).

(15)
To solve the V2 subproblem, we resort to the plug-and-play
(PnP) prior framework [16]. As in [2] we use BM3D, which
is a very fast state-of-the-art denoiser conceived to enforce
self-similarity.

Pre-processing The EM algorithm is initialized with
Θ(0) = {Z(0), α

(0)
k , (σ2

i,k)
(0)}, where Z(0) = ET Ỹ and Ỹ is

obtained by bandwise pre-filtering the noisy HSI with a 3× 3

median filter, α(0)
k and (σ2

k)
(0) given by (9),

ω
(0)
ij,1 =

{
1, if |x̃ij − yij | < 3σ̂i,1,

0, otherwise,
, ω

(0)
ij,2 = 1−ω(0)

ij,1, (16)

with X̃ = EZ(0), x̃ij := [X̃]ij , and σ̂i,1 given by the sample
variance of the vector Ỹ(i, :)− X̃(i, :).
Algorithm 1 EM algorithm for HSIs denoising
Input: Y ∈ Rb×n

Pre-processing: Ỹ = med(Y); E = HySime(Ỹ); set
ω
(0)
ij,k, α(0)

k , (σ2
i,k)

(0) using (16) and (9).
1: repeat
2: (E-step): Update ω(t)

ij,k via (7)
3: (M-step):
4: Update α(t)

i,k and (σ2
i,k)

(t) via (9)
5: Update Z(t) by running a number of SALSA
6: iterations (15)
7: X(t) = EZ(t)

8: until converge;
Output: The denoised HSI X

Algorithm 1 shows the pseudocode for the proposed HSI
denoising method.

3. EVALUATION WITH SIMULATED DATA
To compare the proposed method with the state-of-the-art de-
noising algorithms, we conduct experiments using a subimage
of Washington DC Mall dataset1 (of size n = 256× 256, b =
191) and Pavia city center dataset2 (of size n = 610×339, b =
87). The bands of the clean images were normalized to [0, 1].
These subimages of high quality are considered as the clean
HSIs. Two noisy datasets were generated as follows.

Case 1 Synthetic data with Gaussian noise, impulsive
noise, and stripe noise. Gaussian noise is i.i.d. and has zero-
mean and σ2 = 0.12. The impulsive noise (salt and pepper)

1https://engineering.purdue.edu/∼biehl/MultiSpec/hyperspectral.html
2http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral Remote

Sensing Scenes

is added to all bands of the HSI. The impulsive noise affects
10% of the pixels. The stripe noise is made of vertical tripes
affecting 10% bands and, for each band, 20% of the pixels.
The width of the stripes varies from one line to three lines.

Case 2 Synthetic data with Gaussian noise and stripe
noise. The Gaussian noise is bandwise i.i.d. with zero-mean
and variance σ2

i , for i = 1, . . . , b, sampled from a Uniform
distribution U(0, 0.1). The stripe noise with different shapes
(vertical lines, oblique lines, curves) affect 30% bands of the
bands and, for each band, about 10% of the pixels.

Clean image Noisy image Weights Proposed

LRMR[5] NonLRMA [7] NAILRMA[6] RHyDe[3]

Fig. 1. Denoising results produced by different algorithms for band
183 of Washington DC Mall. 1st row from left to right: clean image,
noisy image, weights corresponding to the sparse noise including
stripes, and denoising result by the proposed method. 2nd row: de-
noising results for different algorithms.

Clean image Noisy image Weithts Proposed

LRMR[5] NonLRMA [7] NAILRMA[6] RHyDe[3]

Fig. 2. Denoising results for band 81 of Pavia city center. 1st row
from left to right: clean image, noisy image, weights corresponding
to the sparse noise including stripes, and the denoising result by the
proposed method. 2nd row: denoising results from different algo-
rithms.

The state-of-the-art hyperspectral denoising methods
LRMR[5], NonLRMA [7], NAILRMA [6], and RHyDe [3]
are uses for comparison. The mean values of peak signal-
to-noise (PSNR) index and the structural similarity (SSIM)
index of each band are calculated for quantitative assessment
and reported in Table 1. It can be seen from Table 1 that the
proposed method outperforms the state-of-the-art methods,
dealing with different types of mixed noise.

Figure 1-2 illustrate the denoising results and the obtained
weights corresponding to the sparse noise including stripes,
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Table 1. Quantitative comparisons
Data Index Noisy image LRMR[5] NonLRMA [7] NAILRMA[6] RHyDe[3] Proposed

Case 1 Washington DC Mall
MPSNR 13.49 31.74 22.89 24.97 26.21 33.24
MSSIM 0.2446 0.9089 0.7359 0.8157 0.8503 0.9566

running time (s) – 105.9 1044.7 142.2 51.6 351.4

Case 2 Pavia city center
MPSNR 23.08 30.12 16.35 30.53 27.61 33.63
MSSIM 0.4686 0.8564 0.0090 0.8774 0.7184 0.9372

running time (s) – 180.3 205.7 390.2 96.64 1303.8

for the DC Mall data with noise case 1 and the Pavia city cen-
ter data with noise case 2, respectively. In either situation, the
noisy image is seriously degraded for the mixed noise. The
results recovered by LRMR and NAILRMA achieve compar-
atively high MPSNR but are visually undesirable. NonLRMA
yields a distortion of pixel intensities for case 1 and fails for
case 2. Meanwhile, the stripes affect the estimation of sub-
space by RhyDe, which uses the singular value decompo-
sition. The proposed method removes almost all the noise
and preserves geometric features and details. The estimated
weights for the sparse noise including stripes accurately ac-
cord with the noise’s location. It is notable in Figure 3 that
for the noise case 2 the proposed method well estimated the
bandwisely different variances of the Gaussian noise.

0

0.05

0.1

0.15

0 10 20 30 40 50 60 70 80

Fig. 3. The values of simulated σi and estimated σi,1 with respect
to band numbers, for noise case 1.

4. CONCLUSION
This paper introduces a new HSI denoising tailored to mix-
tures of Gaussian noise, impulsive noise, and stipe noise. On
one hand, the proposed method simultaneously exploits two
intrinsic characteristics of HSIs, i.e, the high correlation along
the spectral mode and the nonlocal similarity along the spa-
tial modes. On the other hand, a MoG is used to model the
mixed noise and the distribution of different types of noise
is estimated including their locations. In this sense, the pro-
posed denoiser automatically adapts to the noise statistics. A
limited comparison of the proposed method with the state-of-
the-art algorithms is conducted. The results on the simulated
data show the superiority of the proposed method for complex
noise.
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