
Applied Mathematical Modelling 59 (2018) 662–679 

Contents lists available at ScienceDirect 

Applied Mathematical Modelling 

journal homepage: www.elsevier.com/locate/apm 

A directional global sparse model for single image rain 

removal 

Liang-Jian Deng 

∗, Ting-Zhu Huang , Xi-Le Zhao , Tai-Xiang Jiang 

School of Mathematical Sciences/Research Center for Image and Vision Computing, University of Electronic Science and Technology of 

China, Chengdu, Sichuan 611731, PR China 

a r t i c l e i n f o 

Article history: 

Received 11 August 2017 

Revised 21 January 2018 

Accepted 14 February 2018 

Available online 8 March 2018 

Keywords: 

Single image rain removal 

Directional sparse model 

Alternating direction method of multipliers 

a b s t r a c t 

Rain removal from a single image is an important issue in the fields of outdoor vision. 

Rain, a kind of bad weather that is often seen, usually causes complex local intensity 

changes in images and has negative impact on vision performance. Many existing rain re- 

moval approaches have been proposed recently, such as some dictionary learning-based 

methods and layer decomposition-based methods. Although these methods can improve 

the visibility of rain images, they fail to consider the intrinsic directional and structural 

information of rain streaks, thus usually leave undesired rain streaks or change the back- 

ground intensity of rain-free region significantly. In the paper, we propose a simple but ef- 

ficient method to remove rain streaks from a single rainy image. The proposed method for- 

mulates a global sparse model that involves three sparse terms by considering the intrinsic 

directional and structural knowledge of rain streaks, as well as the property of image back- 

ground information. We employ alternating direction method of multipliers (ADMM) to 

solve the proposed convex model which guarantees the global optimal solution. Results on 

a variety of synthetic and real rainy images demonstrate that the proposed method outper- 

forms two recent state-of-the-art rain removal methods. Moreover, the proposed method 

needs no training and requires much less computation significantly. 

© 2018 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

1. Introduction 

Many outdoor vision problems are caused by bad weather, in which the local (or global) intensities and color contrast of

outdoor images are often degraded so that human can not see the clear and visible scenes. In general, the severe weather

can be classified into two categories [1,2] , one is generated by microscopic particles such as haze, smoke and fog, the other

is caused by large particles including rain, hail and snow. The two categories of severe weather usually lead to different

impacts on outdoors images. For instance, the bad weather caused by microscopic particles generally results in the globally

information loss of image intensities, e.g., haze [3] , while the severe weather caused by large particles often affects the local

image intensities and distributes randomly in the image, e.g., rain [2,4] . 

There are many rain removal approaches in the last few decades from different perspectives of modeling. These methods

generally fall into two categories. One is video based methods that realize the rain streaks removal by utilizing the rich

properties of multiple relative images, the other is single image based methods that remove the rain streaks only using one
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Fig. 1. The flow chart of the proposed method. The intensity range of the real rainy image is [0, 255], here we add 102 to the intensity of rain streaks ̂  s 

for better visibility. Note that for this 464 × 886 × 3 color image, the proposed method only takes about 1.9 s on our computer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

input rainy image. Comparing with video rain removal, single image rain removal is more applicable when there is only one

rainy image available. Obviously, it is also more challenging. In this paper, we focus on how to remove rain streaks from a

single rainy image. 

For video based methods, there are very rich literatures about this type of methods [1,5–15] , since the redundant tempo-

ral information in videos would greatly help detect rain streaks and recover desired de-rain images by using the similarity

between image sequences. Garg and Nayar [1] introduce a correlation model and a physics-based motion blur model to

detect and remove the dynamics of rain in videos. Once the rain streaks are detected, the pixel values of the corresponding

rain locations are obtained by averaging their rain-free temporal neighboring pixels. Garg and Nayar [5] propose a novel

approach to control a video camera’s parameters when taking a rainy image. In their paper, they reveal the truth that rain

visibility significantly depends on the exposure time and the depth of field. Based on this truth, they design an approach

which automatically adjusts parameters when capturing the video, aiming to reduce the rain streaks effectively. On the basis

of their works [1,5] , Garg and Nayar [6] further reveals the relation between vision and rain, then develops a more efficient

method for video rain removal. Moreover, Zhang et al. [7] utilize a temporal prior which assumes rain streaks do not appear

everywhere in the video, and a chromatic changes prior that rain streaks are almost the same across RGB channels. 

For single image rain removal, only less works have been proposed as a comparison with video based methods [2,4,16–

23] . The single image rain removal is actually more difficult than video cases due to the only available input image. Recently,

Luo et al. [2] assume that a rainy image is consisted of a rain layer and a background layer, and develop a dictionary learning

method based on a nonlinear screen blend model for single image rain removal. This method sparsely approximates the

patches of two layers by highly discriminative sparse coding and obtains accurate layer decomposition. Different from Luo

et al. , Li et al. [4] take a linear superimposition of the desired background layer and the rain streak layer into consideration.

Their approach can be formulated as an energy minimization model, in which the corresponding patch-based priors of rain

layer and background layer are learned by Gaussian mixture models. The method can describe different orientations and

scales of the rain streaks, and obtains state-of-the-art results on several examples. Although these single image rain removal

methods can get excellent results visually and quantitatively, there still exist significant rain streaks for some examples,

in the meanwhile the true scene of background sometimes appears to be over-smoothed. In general, existing rain streak

removal approaches consider various properties and priors but the directional property of rain streaks, which is helpful for

the separation of rain streaks and the desired background. Motivated by unidirectional total variation (UTV) [24] that is

used for removing the stripe noise of remote sensing images, here we will consider utilizing the UTV to characterize the

important directional property. 

Recently, deep learning based methods have become a new trend in image/video rain removal, see e.g., [25–28] . Tools

of deep learning are very interesting, and they are able to get state-of-the-art performance for rain removal. Deep learning

uses a training phase where the training of the net is crucial and is the most time demanding phase. With the development

of deep learning, we believe that it can obtain better performance in the future, not only in the fields of image processing

but also in the other computer vision tasks. 

In this paper, to remove rain streaks of a single image, we enforce three sparse priors on rain streaks and the desired

rain-free image, which are from some statistical analysis (see Fig. 2 ), including two directional sparse priors. The first sparse

prior is imposed on rain streaks that can be viewed as sparse components (partly sparse when rain is heavy). Moreover,



664 L.-J. Deng et al. / Applied Mathematical Modelling 59 (2018) 662–679 

Fig. 2. Motivation of the proposed framework. (a-1)–(a-3) represent the pixel intensity along one row of rainy image (horizontal direction), true image 

and rain streaks, respectively. (b-1)–(b-3) are the rainy image, true image and rain streaks, respectively. In addition, (c-1)–(c-3), respectively stand for the 

intensity distribution along the vertical direction in the gradient domain. Note that, (c-1)–(c-3) are obtained by the statistical operating on 38 images of 

UCID dataset that will be introduced in the section of results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

we enforce a sparse prior of the variation along the vertical direction ( y -direction) of rainy image (see the direction defined

in Fig. 1 ), since rain streaks generally come down from top to bottom. For the rain streaks far away from the vertical

direction, we take a rotational strategy to easily deal with it. Furthermore, the sparse prior of the variation of rain-free

image along the horizontal direction ( x -direction) is utilized to constrain the rain-free image. Combining the three priors,

the final convex minimization model is formed and then solved by ADMM method efficiently. In the meanwhile, the global

optimal of the proposed method is guaranteed. Results on several synthetic and real images demonstrate that the proposed

method outperforms recent state-of-the-art rain removal methods, i.e. , [2,4] . 

Advantages of the proposed method: 

• The proposed method is to found a concise and efficient optimization model that utilizes three simple sparse priors

to describe the latent and intrinsic properties of rain streaks. Experimental results on several examples show that the

proposed method performs better than two recent state-of-the-art methods not only on removing rain streaks, but also

on preserving the content of background. Furthermore, the proposed directional model is quite novel since many existing

state-of-the-art methods fail to consider the key directional property of rain streaks in their models. 
• Since the proposed model is convex and we employ ADMM to solve the model, therefore, the global optimal of the

proposed method is guaranteed. 
• The proposed method only involves three cheap soft-thresholding operators and few times of fast Fourier transformation

(FFT) for one iteration of ADMM, thus requires significantly less computation than the two compared state-of-the-art

rain removal methods (our computation complexity O( n · log n )). 

The organization of this paper is as follows. In Section 2 , the related work will be introduced briefly. In Section 3 , we

detailedly describe the proposed method that includes the proposed minimization model and the corresponding algorithm.

In Section 4 , we mainly compare the proposed method with two state-of-the-art single image rain removal methods, and

discuss the results under different conditions. Finally, we will draw conclusions in Section 5 . 
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Fig. 3. The similarity of derain problem and destriping problem. (a) Rainy image; (b) The corresponding rain streaks of (a); (c) The remote sensing image 

with stripe noise; (d) The stripe noise of (c). Note that the rain streaks (b) and stripe noise (d) both show significant directional and structural property. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Related work 

In general, the rain model can be described as follows 

R = T + S , (1)

where R ∈ R 

M×N is the observed rainy image, T ∈ R 

M×N is the unknown rain-free image and S ∈ R 

M×N represents the rain

streaks. 

For the sake of simplicity, we rewrite Eq. (1) as follows 

r = t + s , (2)

where r ∈ R 

MN×1 , t ∈ R 

MN×1 and s ∈ R 

MN×1 lexicographically represent the vector versions of R, T and S , respectively. 

The rain model (2) is actually an additive model which is exactly the same with the additive image noise model, and

the rain streaks s can be viewed as the noise as well. To illustrate the motivation of our work, here we exhibit the related

work from two aspects. (1) As we known, total variation (TV) model [29] is a quite powerful tool for additive noise removal.

Therefore, how to use TV-based model to remove the additive noise (or rain streaks) is a key issue. (2) In addition, in

the application of destriping of remote sensing images, the stripe noise also has the same formulation as (2) . Besides, rain

streaks and stripe noise all keep the similar directional property (see Fig. 3 ). These two points motivate us to present the

following excellent work on remote sensing image destriping via unidirectional TV (UTV) model [24] . 

2.1. UTV for the destriping of remote sensing images 

Similarly, the stripe noise model of remote sensing images can be formulated from the variational point as follows 

I (x, y ) = I u (x, y ) + I s (x, y ) , (3)

where I ( x, y ) is the known observed image with stripe noise, I u ( x, y ) and I s ( x, y ) represent the unknown true stripe-free

image and stripe noise at the location ( x, y ), respectively. Since most stripe noise can be assumed as constant over a given

scan line, which indicates that the stripe noise has the directional property, Bouali and Ladjal [24] constructed a directional

model for the destriping problem. For instance, from Fig. 3 (d), it is clear that the stripe noise contains directional and

structural information along the vertical direction. In other words, the following relation holds for the stripe noise: ∣∣∣∣∂ I s (x, y ) 

∂y 

∣∣∣∣ ≤
∣∣∣∣∂ I s (x, y ) 

∂x 

∣∣∣∣, (4)

Nonlinear approaches have been applied to many image applications, e.g., image denoising [30–32] , image super-

resolution [33,34] , etc. Thereinto, the TV model has shown a powerful ability for image denoising. This model was first

proposed by Rudin et al. [29] and extended to various of image applications. It minimizes the following energy functional,

E( I u ) = 

∫ 
�

‖ I u − I ‖ + λT V ( I u ) , (5)

where λ is a positive regularization parameter to balance the two terms, and the TV ( I u ) represents the total variation of the

estimated solution I u , see the following expression, 

T V ( I u ) = 

∫ 
�

| ∇ I u | = 

∫ 
�

∣∣∣∣∂ I u ∂x 

∣∣∣∣ + 

∣∣∣∣∂ I u ∂y 

∣∣∣∣d xd y. (6)
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In particular, the ROF model has excellent ability to preserve discontinuous information, such as image edges. The prop-

erty is quite crucial to removing the artifacts of remote sensing images and simultaneously keeping the high-frequency

image details. By the relation (4) , we have ∫ 
�

∣∣∣∣∂ I s (x, y ) 

∂y 

∣∣∣∣d xd y ≤
∫ 
�

∣∣∣∣∂ I s (x, y ) 

∂x 

∣∣∣∣d xd y, (7) 

which indicates that: 

T V y ( I s ) ≤ T V x ( I s ) , (8) 

where TV x and TV y represent the horizontal and vertical variations, respectively. To remove the stripe noise of remote sens-

ing images, the authors in [24] proposed the following minimization energy functional that involves two unidirectional

variations, 

min 

I u 
E( I u ) = T V y ( I u − I ) + ̃

 λT V x ( I u ) , (9)

where ˜ λ is a positive regularization parameter, and it is also rewritten as follows 

min 

I u 
E( I u ) = 

∫ 
�

∣∣∣∣∂( I u − I ) 

∂y 

∣∣∣∣ + 

∣∣∣∣∂ I u ∂x 

∣∣∣∣d xd y. (10) 

For the solution of variational model (10) , authors in [24] gave an iterative scheme based on Euler–Lagrange equation and

gradient descent method. Here, we only focus on the variational model. More details of the algorithm can be found from the

reference [24] . In summary, the success of the unidirectional destriping model (10) indicates the following two key points,

one is that the directional (vertical and horizontal) information separated into the fidelity term and the regularization term

is significantly helpful for destriping, the other is both fidelity and regularization terms should use an edge-preserving norm,

e.g., TV norm and � 1 norm, to avoid blurring artifacts [24] . 

2.2. From UTV to the motivation of image rain streaks removal 

As stated before, the natural image rain removal is similar to the destriping of remote sensing images. For instance, from

Fig. 3 , the rain streaks and the stripe noise of remote sensing images both contain directional information (rain streaks and

stripe noise both comes from top to bottom) and structural information (the intensity within rain streaks and stripe noise

remain almost constant). This motivates us to adopt the UTV based model to characterize the directional property of rain

streaks for natural image rain removal problem. 

In particular, the rain streaks and the stripe noise also have some significant differences. (1) The stripe noise of remote

sensing images generally distributes through the whole image, while the rain streaks only cover a local region. (2) The stripe

noise of remote sensing images is generally only along the vertical direction or the horizontal direction, which makes the

destriping problem easier. However, the rain streaks usually are not along the exact vertical direction, which indicates that

there commonly exists a small angle between the direction of rain streaks and the vertical direction. (3) The intensities of

remote sensing images normally exceed the range of [0, 255], e.g., it can become 1024 for 10 bit remote sensing data, while

the intensities of natural rainy images generally fall into the range of [0, 255]. In spite of these difference, we can still utilize

the directional and structural properties of rain streaks and extend UTV model to the rain streaks removal task. 

Moreover, many existing image rain streaks removal approaches for the additive rain model fail to consider the direc-

tional and structural information. It may result in the leaving of rain streaks or the loss of background image details. In

our work, we focus on the intrinsic directional and structural property of rain streaks. We incorporate the ideology of UTV

model to finally formulate the directional image de-rain model. We will detailedly present the proposed model for image

rain removal in the next section. 

3. The proposed method 

Recall the rain model (1) , we will give the proposed model by extending the UTV model and considering some other

latent priors which are motivated by some statistical analysis in Fig. 2 . The proposed convex model whose global optimal

is guaranteed mainly contains three simple sparse regularizers, including two directional sparse priors on rain streaks and

background image respectively and a generally sparse prior on rain streaks. 

3.1. The proposed optimization model 

( 1) The sparsity of rain streaks: In the problem of rain streaks removal, we actually can approximately consider the rain

streaks being sparse when the rain is not heavy. Naturally, using � 0 norm of vectors to describe the sparsity is an ideal way,

since the � 0 norm indicates the number of nonzero elements. However, due to the non-convexity of � 0 norm, we settle for

using � norm to depict the sparsity. One advantage of adopting � norm is its convexity that can promise the global optimal
1 1 
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in some optimal algorithms, e.g., ADMM. In addition, the undesired effects on the rain-free regions can be avoided when

enforcing � 1 norm term of rain streaks. Thus � 1 norm is directly employed as one of the regularizers here, see as follows 

Reg 

(1) (s ) = || s || 1 . (11)

( 2) The sparsity of rain streaks along the vertical direction: In the real scenes of rainfall, the rain streaks generally come

down from top to bottom, that is to say along the vertical direction of the rainy image ( i.e. , the y -direction). Because of the

smoothness within the rain streaks, the difference between adjacent pixels is generally quite small and can be approximately

viewed as zero. Thus we also consider the sparse prior for the variation along the vertical direction of the rainy image. In

particular, the rain streaks sometimes do not fall off strictly along the vertical direction, e.g., there exists an angle between

the vertical direction and the real rain falling direction, but the sparsity of the variation along the vertical direction still

holds if the angle is small. Actually, detecting the real direction fo falling rain is a very difficult task. Thus for the large

angle case we may utilize rotation strategy to deal with it easily (see details in Section 3.3 ). 

The final regularizer for the variation within the rain streaks is assumed as follows 

Reg 

(2) (s ) = ||∇ y s || 1 , (12)

where ∇ y s stands for the vector form of ∇ y S , and ∇ y is the difference operator in terms of the vertical direction. Actually,

this term can be viewed as a transformation of the first regularization term of UTV model (9) . 

( 3) The sparsity of rain-free image along the horizontal direction: Inspired by the work of unidirectional Total Variation

(UTV) [24] , to obtain a robust rain removal, the variational information across rain streak direction is used for determining

the discontinuity of rain streaks. Here, the across-rain streak direction is simply viewed as horizontal direction. Moreover,

due to the relation of t = r − s , thus the final regularizer about the rain-free image across the rain streak direction is given

as follows 

Reg 

(3) (s ) = ||∇ x (r − s ) || 1 , (13)

where ∇ x (r − s ) represents the vector form of ∇ x (R − S ) , ∇ x is the difference operator in terms of the horizontal direction.

Similarly, this term can also be viewed as the transformation of the second regularization term of UTV model (9) . 

( 4) Nonnegative constraint: In natural image de-rain problem, the rain streaks s are nonnegative and generally have the

brightest intensity in a rainy image. Thus for the rainy image r and the rain streaks s , the following constraint holds: 

r ≥ s ≥ 0 . (14)

After analyzing the properties of rain streaks and giving the corresponding sparse regularizers, we may found the naive

sparse model strictly along the horizontal (x-) and vertical (y-) direction for rain removal problem. However, sometimes

the direction of rain streaks is far away from the vertical direction ( i.e. , 90 °), and the mentioned regularizers seem to be

unreasonable. Therefore, here we employ a rotation operator D θ with the rotation angle θ for the three regularizers, i.e. ,

||D θ s || 1 , ||∇ y (D θ s ) || 1 and ||∇ x (D θ ( r − s )) || 1 . 
Therefore, the final minimization model for solving the rain removal problem is summarized as follows 

min s λ1 ||∇ x (D θ ( r − s )) || 1 + λ2 ||D θ s || 1 + ||∇ y (D θ s ) || 1 , 
s.t. , r ≥ s ≥ 0 , 

(15)

where λ1 and λ2 are two positive regularization parameters. In particular, the proposed convex model (15) is similar to

the model in [35] which is utilized for the destriping problems of remote sensing images. However, the latter one employs

� 0 -norm regularizer to generate a non-convex model which fails to guarantee the global optimal. 

3.2. The algorithm for the proposed model 

Since the proposed � 1 -norm model (15) is not differentiable, thus we make variable substitutions and solve the following

equivalent problem: 

min λ1 || u || 1 + λ2 || v || 1 + || w || 1 
s.t. , u = ∇ x (D θ ( r − s )) , v = D θ s , w = ∇ y (D θ s ) , 

(16)

where the nonnegative constraint in model (15) is simply implemented via a projection strategy (see details from (26) ). 

For convenience, we denote the D θ ( r − s ) , D θ r and D θ s as r D θ − s D θ , r D θ and s D θ , respectively. Thus the augmented

Lagrangian function of problem (16) is given as follows 

L ( u , v , w , s , p 1 , p 2 , p 3 ) 

= λ1 || u || 1 + 〈 p 1 , ∇ x ( r D θ − s D θ ) − u 〉 + 

β1 

2 
||∇ x ( r D θ − s D θ ) − u || 2 2 + λ2 || v || 1 + 〈 p 2 , s D θ − v 〉 

+ 

β2 

2 
|| s D θ − v || 2 2 + || w || 1 + 〈 p 3 , ∇ y s D θ − w 〉 + 

β3 

2 
||∇ y s D θ − w || 2 2 , 

(17)

where β1 , β2 and β3 are regularization parameters, and p 1 , p 2 and p 3 represent three Lagrange multipliers. ADMM is a

quite popular approach for solving � 1 problem [36] , here we use it to solve the problem (17) that can be decomposed into

four simple subproblems. Note that, the four subproblems all have closed-form solutions according to the ADMM scheme. 
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Fig. 4. The flowchart of our rotation strategy. 

Fig. 5. Visual results and the corresponding SSIM of different compared methods. Our method almost removes all rain streaks while “15’ICCV” and 

“16’CVPR” leave significant rain streaks (see green boxes). Moreover, our method preserves more details of background image, while “16’CVPR”smoothens 

the details (see red boxes). Readers are recommended to zoom in all figures for better visibility. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
(a) The u -subproblem is given as follows 

ˆ u = arg min 

u 
λ1 || u || 1 + 〈 p 1 , ∇ x ( r D θ − s D θ ) − u 〉 + 

β1 

2 

||∇ x ( r D θ − s D θ ) − u || 2 2 , 

= arg min 

u 
λ1 || u || 1 + 

β1 

2 

||∇ x ( r D θ − s D θ ) − u + 

p 1 

β1 

|| 2 2 , (18) 

which can be solved accurately by soft-thresholding strategy [37] that is described as follows 

u 

k +1 = Shrinkage 

(
∇ x ( r D θ − s k D θ ) + 

p 

k 
1 

β1 

, 
λ1 

β1 

)
, (19) 

where Shrinkage (a, b) = sign (a ) max (| a | − b, 0) and 

sign ( a ) = 

⎧ ⎨ ⎩ 

1 , a > 0 , 

0 , a = 0 , 

−1 , a < 0 . 

(b) The v -subproblem is given by minimizing the following function 

ˆ v = arg min 

v 
λ2 || v || 1 + 〈 p 2 , s D θ − v 〉 + 

β2 

2 

|| s D θ − v || 2 2 

= arg min 

v 
λ2 || v || 1 + 

β2 

2 

|| s D θ − v + 

p 2 

β2 

|| 2 2 , (20) 
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Fig. 6. Visual results on synthetic images (rain’s orientation): “bamboo” (90 °), “panda” (85 °), “tree” (95 °), “roof” (90 °), “building” (99 °) and “river” (50 °). 
The method “15’ICCV” can not remove rain streaks completely. “16’CVPR” removes rain streaks well, but over-smooth background details significantly. The 

proposed method not only removes rain streaks better, but also preserves the details of backgr ound images well. Quantitative results can be found in 

Table 1 . 

 

 

 

 

where the closed-form solution of subproblem (20) can be obtained by soft-thresholding strategy that is mentioned

in the u -subproblem. Its solution has the following form: 

v k +1 = shrink 

(
s k D θ + 

p 

k 
2 

β2 

, 
λ2 

β2 

)
. (21)

(c) Similarly, the w -subproblem is shown as follows 

ˆ w = arg min 

w 

|| w || 1 + 〈 p 3 , ∇ y s D θ − w 〉 + 

β3 

2 

||∇ y s D θ − w || 2 2 , 

= arg min 

w 

|| w || 1 + 

β3 

2 

||∇ y s D θ − w + 

p 3 

β3 

|| 2 2 , 

(22)

and the closed-form solution of subproblem (22) is given as follows 

w 

k +1 = shrink 

(
∇ y s 

k 
D θ + 

p 

k 
3 , 

1 

)
. (23)
β3 β3 
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(d) The s D θ -subproblem has the following form, 

ˆ s D θ = arg min 

s D θ

〈 p 1 , ∇ x ( r D θ − s D θ ) − u 〉 + 〈 p 2 , s D θ − v 〉 + 〈 p 3 , ∇ y s D θ − w 〉 

+ 

β1 

2 

||∇ x ( r D θ − s D θ ) − u || 2 2 + 

β2 

2 

|| s D θ − v || 2 2 + 

β3 

2 

||∇ y s D θ − w || 2 2 

= arg min 

s D θ

β1 

2 

||∇ x ( r D θ − s D θ ) − u + 

p 1 

β1 

|| 2 2 + 

β2 

2 

|| s D θ − v + 

p 2 

β2 

|| 2 2 

+ 

β3 

2 

||∇ y s D θ − w + 

p 3 

β3 

|| 2 2 . (24) 

Since the quadratic s D θ -subproblem (24) is differentiable, the closed-form solution can be computed easily by the

following formula: 

(β1 ∇ 

T 
x ∇ x + β2 I + β3 ∇ 

T 
y ∇ y ) ̃ s k +1 

D θ = ∇ 

T 
y (β3 w 

k +1 − p 

k 
3 ) + ∇ 

T 
x (β1 ∇ x r D θ − β1 u 

k +1 + p 

k 
1 ) 

+ β2 v 
k +1 − p 

k 
2 , (25) 

where I is an identity matrix, and Eq. (25) can be solved efficiently by fast Fourier transform (FFT). Due to the non-

negative constraint (14) , the resulting ˜ s k + 1 D θ
is projected by the following formula: 

s k +1 
D θ = min ( r D θ , max ( ̃ s k + 1 D θ , 0 )) . (26) 

(e) According to ADMM method, we finally update the Lagrange multipliers p 1 , p 2 and p 3 by the following schemes: 

p 

k +1 
1 

= p 

k 
1 + β1 

(∇ x ( r D θ − s k +1 
D θ ) − u 

k +1 
)
, 

p 

k +1 
2 

= p 

k 
2 + β2 

(
s k +1 
D θ − v k +1 

)
, 

p 

k +1 
3 

= p 

k 
3 + β3 

(∇ y s 
k +1 
D θ − w 

k +1 
)
. 

(27) 

The steps (a) –(e) represent one iteration of ADMM which decomposes the difficult minimization problem (15) into four

simpler subproblems ( i.e. , u -, v -, w - and s D θ -subproblems). In particular, the four subproblems all have closed-form solutions

that promise the fast speed and the accuracy of the algorithm. Thereinto, the u -, v - and w -subproblems are all solved by the

soft-thresholding method, and s D θ -subproblem is computed by the efficient FFT. We summarize the following Algorithm 1

Algorithm 1 The summarized algorithm for the proposed rain removal model (15) . 

Input: Rain image r , λ1 , λ2 , β1 , β2 , β3 and pre-defined θ
Output: De-rain image t 

Initialize: p 

0 
1 

= p 

0 
2 

= p 

0 
3 

= 0 , s 0 = 0 

While: || r D θ − s k D θ
|| / || r D θ − s k −1 

D θ
|| > tol ~and ~k < M iter 

1) Solve u 

k +1 , v k +1 , w 

k +1 by Eqs. (19), (21) and (23) 

2) Solve s k +1 
D θ

using FFT by Eq. (26) 

3) Update the Lagrange multipliers p 

k +1 
1 

, p 

k +1 
2 

and 

p 

k +1 
3 

by Eq. (27) 

EndWhile. 

4) Compute the resulting de-rain image by: 

t D θ = r D θ − s D θ
5) Rotate back t D θ to obtain the final de-rain image: t 

for the proposed rain removal model (15) . 

In Algorithm 1 , λ1 , λ2 , β1 , β2 and β3 are some parameters involved in the proposed method. tol and M iter represent a

positive tolerance value and the maximum number of iterations, respectively. Actually, these parameters are not sensitive to

different images, which will be exhibited detailedly in the section of results. Moreover, the ADMM-based Algorithm 1 for

the separable convex model (15) guarantees the global optimal (see [38] ). 

3.3. Discussion on the strategy of rotation 

Our original de-rain model is formulated by the directional priors that include the horizontal and vertical directions.

However, rain streaks are not always along the vertical direction, and they generally have an angle with the vertical direc-

tion. Therefore, in the final model (15) , we employ a rotational operator D θ for the issue of rotation. Actually, even though

the direction of rain streaks is not along the vertical direction, the proposed method can still work for the rain removal

problem and obtain competitive results. However, to get better results, we divide the model into two categories, one is that

rain streaks are approximately along the vertical direction, and the other is that rain streaks are obviously far away from

the vertical direction. 
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Fig. 7. Comparison on rain streaks for the example “bamboo”. (a) True rain streaks; (b)–(d) Estimated rain streaks by “15’ICCV”, “16’CVPR” and the proposed 

method. Here we add intensity value 51 to rain streaks for better visibility (intensity range [0, 255]). 

Table 1 

Quantitative comparisons of Fig. 6 (Bold: the best one). 

Rain type Heavy Light 

Background (T) Streak (S) Time (s) Background (T) Streak (S) Time (s) 

Image Method PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE 

bamboo 15’ICCV 27.74 0.8289 10.460 27.73 0.4227 10.472 69.88 28.81 0.9110 9.251 28.80 0.3903 9.256 78.10 

16’CVPR 30.52 0.8950 7.593 30.64 0.6706 7.488 960.86 30.44 0.9223 7.661 30.49 0.4984 7.620 973.74 

Proposed 30.95 0.9176 7.227 30.96 0.6989 7.221 0.873 32.90 0.9476 5.773 32.90 0.6603 5.775 0.64 

panda 15’ICCV 27.84 0.8931 10.339 27.78 0.4541 10.410 58.23 28.02 0.9406 10.118 28.01 0.3583 10.134 44.27 

16’CVPR 30.57 0.9128 7.555 30.66 0.6244 7.475 709.90 30.79 0.9396 7.366 30.82 0.4899 7.337 632.32 

Proposed 30.96 0.9324 7.219 30.91 0.6607 7.264 0.649 33.33 0.9568 5.495 33.32 0.6539 5.501 0.45 

tree 15’ICCV 31.00 0.9081 7.186 30.84 0.5526 7.317 67.89 32.27 0.9554 6.213 32.25 0.4916 6.223 76.54 

16’CVPR 30.87 0.8829 7.294 30.94 0.6227 7.237 1032.60 29.91 0.8851 8.153 29.96 0.4250 8.105 1131.30 

Proposed 32.41 0.9358 6.112 32.31 0.6957 6.183 0.771 35.55 0.9673 4.258 35.42 0.7296 4.319 0.38 

roof 15’ICCV 29.96 0.9478 8.103 29.95 0.5658 8.113 80.36 28.84 0.9332 9.212 28.81 0.4685 9.243 93.65 

16’CVPR 32.77 0.9638 5.861 32.83 0.5914 5.819 1511.22 30.91 0.9329 7.257 30.98 0.5158 7.198 1406.20 

Proposed 36.46 0.9741 3.834 36.49 0.7889 3.820 0.921 35.32 0.9681 4.373 35.24 0.7348 4.408 0.952 

building 15’ICCV 26.66 0.8782 11.844 26.66 0.4335 11.845 114.70 26.35 0.9273 12.267 26.36 0.3465 12.252 110.47 

16’CVPR 30.95 0.8849 7.228 31.15 0.6547 7.076 1072.1 30.30 0.8910 7.786 30.40 0.4582 7.694 1292.50 

Proposed 31.29 0.9354 6.945 31.29 0.6298 6.953 1.236 34.41 0.9635 4.848 34.43 0.7076 4.840 0.97 

river 15’ICCV 31.56 0.8618 6.737 30.97 0.4073 7.213 99.67 33.61 0.9152 5.310 33.01 0.5203 5.700 98.33 

16’CVPR 35.62 0.9320 4.222 34.74 0.6568 4.674 902.42 36.29 0.9370 3.905 35.75 0.7078 4.155 862.40 

Proposed 33.66 0.9103 5.290 34.59 0.7053 4.751 1.175 34.69 0.9166 4.915 34.02 0.7315 4.371 0.573 

 

 

 

 

 

 

 

 

 

 

• The directions of rain streaks are generally within 90 °± 15 °1 . Empirically, it is not necessary to rotate the rainy image

for this case, because the proposed framework can still obtain state-of-the-art results, such as the first five examples in

Fig. 6 . 
• When the directions of rain streaks are far away from the range of 90 °± 15 °2 , the rainy image needs to be rotated such

that the rain streaks are roughly along the vertical direction. A flowchart of the strategy of rotation is introduced in

Fig. 4 . The rain streaks only need to be roughly in the vertical direction, which is actually easy to achieve 3 . 

4. Results 

In this section, we compare the proposed method with two recent state-of-the-art rain removal approaches. One uses a

dictionary learning based algorithm for single image rain removal [2] (denoted as “15’ICCV”) 4 , the other employs a mini-

mization model with the learned rain layer prior for single image rain removal [4] (denoted as “16’CVPR”) 5 . Our experiments

are implemented in MATLAB(R2016a) on a desktop of 16Gb RAM and Intel(R) Core(TM) CPU i5-4590: @3.30 GHz. Readers

can find the Matlab code (p-code) to test the performance of our method 

6 . 

Since humans are more sensitive to the changes of luminance, we first convert RGB rainy images to YUV space which

is very popular in image/video processing, and then only conduct our algorithm on the luminance channel (Y) to remove
1 The vertical direction is viewed as 90 °
2 In most of cases, the directions of rain streaks fall into the range 90 °± 15 °, except that when heavy wind coming. Therefore, our method works well 

for most of real rainy cases. 
3 The rotation can be easily implemented by the command of “imrotate” in MATLAB. 
4 Code available on the site: http://www.math.nus.edu.sg/ ∼matjh/research/research.htm 

5 The authors provide the corresponding de-rain code. 
6 http://www.escience.cn/people/dengliangjian/codes.html . Upon acceptance of this paper we will make the Matlab source code available to provide more 

details of the implementation. 
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Fig. 8. Visual results on real images. Our method preserves more image details and removes rain streaks better. 

Table 2 

Average quantitative performance (with corresponding standard deviation) of different methods on 38 test images of UCID dataset with different sim- 

ulated streak types (Bold: the best one). 

Background (T) Streak (S) Time (s) 

Rain type Method PSNR SSIM RMSE PSNR SSIM RMSE 

den = 0.04 15’ICCV 26.01 ± 1.23 0.8289 ± 0.0524 12.882 ± 1.755 26.38 ± 1.02 0.3576 ± 0.0703 12.315 ± 1.460 114.95 

len = 10 16’CVPR 30.01 ± 1.67 0.8958 ± 0.0358 8.202 ± 1.556 30.31 ± 1.39 0.6416 ± 0.0932 7.874 ± 1.228 1386.38 

theta = [85, 95] Proposed 30.44 ± 0.89 0.8991 ± 0.0217 7.707 ± 0.796 30.67 ± 0.78 0.6805 ± 0.0586 7.490 ± 0.657 1.32 

den = [0.02, 0.1] 15’ICCV 25.73 ± 1.44 0.7620 ± 0.0771 13.357 ± 2.088 25.85 ± 1.47 0.3486 ± 0.0747 13.178 ± 2.128 78.73 

len = 10 16’CVPR 29.13 ± 1.71 0.8738 ± 0.0426 9.072 ± 1.687 29.14 ± 1.73 0.6347 ± 0.1035 9.062 ± 1.706 1489.45 

theta = 85 Proposed 29.32 ± 1.89 0.8857 ± 0.0274 8.917 ± 1.851 29.32 ± 1.90 0.6731 ± 0.0739 8.916 ± 1.860 1.41 

den = 0.04 15’ICCV 28.94 ± 1.88 0.9020 ± 0.0378 9.318 ± 1.991 29.47 ± 1.90 0.5853 ± 0.0745 8.767 ± 1.903 73.24 

len = [10, 60] 16’CVPR 32.09 ± 1.81 0.9298 ± 0.0273 6.472 ± 1.366 32.64 ± 1.62 0.6925 ± 0.0808 6.051 ± 1.154 1452.37 

theta = 85 Proposed 32.55 ± 0.88 0.9428 ± 0.0212 6.038 ± 0.624 33.16 ± 0.82 0.6229 ± 0.0640 5.626 ± 0.545 1.09 

 

 

 

 

 

 

 

 

 

 

rain streaks. For fair comparisons, the two compared methods are also implemented on the luminance channel. In addition,

two kinds of data, i.e. , synthetic data and real data, are utilized for the experiments. For the synthetic data, we use root-

mean-square error (RMSE), peak signal-noise ration (PSNR) and structural similarity (SSIM) 7 [39] on illuminance channel to

estimate the performance of different methods. RMSE is defined as follows 

RMSE = 

√ 

1 

N 

N ∑ 

i =1 

(h i −̂ h i ) 2 , (28) 

where h, ̂  h are the vector-form of ground-truth image and the estimated de-rain image, respectively. N represents the total

number of image pixels. 

For the parameters in the proposed Algorithm 1 , we empirically set λ1 = 0 . 95 , λ2 = 0 . 08 , β1 = β2 = β3 = 200 , tol =
10 −3 , and M iter = 400 for synthetic data and only change β1 = β2 = β3 = 100 for real data. Note that, if tuning parameters

finely for different images may get better results, however, we unify parameters here to exhibit the stability of the proposed

method. For the parameters of “15’ICCV” and “16’CVPR”, we keep the default settings of the provided code. 

Rain streaks generation: The rain model (1) is an additive one which is a popular type used in many works, e.g., [4,16] .

For the simulation of rain streaks, the literature [16] mentions that the rain streaks are usually generated by Photoshop 

8 , 9 .

Referring to this literature, the rain streaks are generated by the following steps: (1) Add salt & pepper noise to a zero
7 https://ece.uwaterloo.ca/ ∼z70wang/research/ssim/ 
8 http://pho-toshoptutorials.ws/photoshop-tutorials/photo-effects/rain.html 
9 https://www.photoshopessentials.com/photo-effects/rain/l 
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Fig. 9. (a) The PSNR performance on each image (38 images from UCID dataset), and the number of best performance (NBP) is 28, 10, 0 for the proposed 

method, 16CVPR and 15ICCV, respectively; (b) The SSIM performance on each image, and NBP is 31, 7, 0 , respectively; (c) The RMSE performance on each 

image, and NBP is 28, 10, 0 , respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 

this article.) 

Table 3 

Average quantitative performance on a new dataset that synthesizes the rainy 

images by the photorealistic rendering techniques [40] (Bold: the best one). 

Method PSNR SSIM RMSE Time (s) 

15’ICCV 30.10 ± 2.72 0.8671 ± 0.0647 8.310 ± 2.404 108.81 

16’CVPR 32.15 ± 1.62 0.9152 ± 0.0264 6.400 ± 1.202 1646.30 

Proposed 33.18 ± 3.58 0.9365 ± 0.0267 6.033 ± 2.497 1.22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

matrix with the same size as the ground-truth image. The added noise is with random density den 10 . The bigger den is,

the heavier the synthetic rain will be. (2) Convolute a motion blur kernel with the added noise in (1) to generate the rain

streaks. The motion blur kernel is with two parameters, i.e., len and theta 11 which respectively control the magnitude and

the direction of the generated rain streaks. (3) Add the rain streaks to the ground-truth image to obtain the final simulated

rainy image. 

4.1. Results on synthetic data 

The visual and quantitative results for the synthetic image “Sydney” are presented in Fig. 5 , from which, we can see that

the proposed method almost removes all rain streaks (see green boxes) and preserves the details of background image well

(see red boxes). Nevertheless, the method “15’ICCV” fails to remove rain streaks completely and obtains unsatisfying SSIM.

Although the results of “16’CVPR” indicate that the method “16’CVPR” performs better than the method “15’ICCV”, it still

can not outperform the proposed method, both visually and quantitatively. Note that the experimental image in Fig. 5 is

obtained from Li et al. ’s paper [4] . 

We also list visual results for more synthetic images in Fig. 6 . The rain streaks in these synthetic images are with dif-

ferent orientations, e.g., 90 °, 85 ° and 50 °, etc. From this figure, we know that the method “15’ICCV” remains rain streaks

significantly (see boxes in the figure). Although “16’CVPR” removes rain streaks well, it may over-smooth background im-

ages. The proposed method not only removes rain streaks completely, but also preserves more details of background images.

In particular, the rain streaks of image “bamboo” estimated by different com pared methods are presented in Fig. 7 . From

the figure, it is clear that our method gets more consistent rain streaks than “15’ICCV” and “16’CVPR” comparing with the

ground-truth rain streaks Fig. 7 (a). Moreover, our method also obtains more excellent quantitative results, i.e. , PSNR, SSIM

and RMSE, both for background images and the corresponding rain streaks (see Table 1 ). In Table 1 , we present quantitative

results for two cases, i.e. , heavy rain case and light rain case, and Fig. 6 exhibits the visual results for the case where rain

streaks are heavy. 

Especially, our model is based on the assumption that rain streaks generally come down from top to bottom ( i.e. , almost

along the vertical direction of rainy images). When rain streaks are not along the vertical direction obviously (see the sixth

example in Fig. 6 ), we should rotate the rainy image to make rain streaks to be approximately along the vertical direction,

and then apply the proposed model to the rotated rainy image, see the discussion on rotation in Section 3.3 . Since the image

rotation has to involve pixels interpolation, our quantitative performance after image rotation is worse than the method

“16’CVPR”, but the visual quality of our method still outperforms other methods (see boxes for better visibility). 
10 Matlab command: imnoise(‘img’, ‘salt&pepper’, den ) where ‘img’ is the input image. 
11 Matlab command: fspecial(‘motion’, len, theta ). 
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Fig. 10. The visual comparisons on a new dataset that synthesizes the rainy images by the photorealistic rendering techniques [40] . To save space, here 

we only exhibit two of all 12 results. 

Fig. 11. PSNR, SSIM and RMSE of background image and rain streaks obtained by discarding one of the 3 sparse terms ( i.e. , the average performance on 

the 38 images of UCID dataset). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

Furthermore, we also employ the “UCID” dataset 12 to evaluate the performance of the three compared methods.

Table 2 shows the average quantitative performance of 38 images from UCID dataset 13 , including average PSNR, SSIM, RMSE

and the corresponding standard derivations. The compared methods are respectively implemented on background image and

rain streaks when adding different rain streaks. From Table 2 , the proposed method outperforms other two state-of-the-art

methods on different rainy images. It not only obtains the best PSNR, SSIM and RMSE, but also generates the smallest

standard derivations for almost all examples, which indicates that our method is more stable than “15’ICCV” and “16’CVPR”.

4.2. Results on real data 

We also employ some real rainy images to test the performance of different methods. In Fig. 8 , the first and third exam-

ples are from the literatures of “16’CVPR” and “15’ICCV”, respectively, and the second example is obtained from internet. 

Fig. 8 presents visual results of the three compared methods on real images. Once again, the proposed method shows

the best ability of removing rain streaks, in the meanwhile, it also retains the details of background images better than the

other two compared methods. 
12 http://homepages.lboro.ac.uk/cõgs/datasets/ucid/ucid.html 
13 Here, we only select the first 38 images of UCID dataset for evaluation, since too many images will result in significant computation increasing due to 

the low speed of “15’ICCV” and “16’CVPR”. 
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Fig. 12. The visual results on the effect of three terms. 

Fig. 13. First row: PSNR curves as functions of the parameters λ1 , λ2 and β1 ; Second row: SSIM curves as functions of the parameters λ1 , λ2 and β1 . Note 

that, due to setting β1 = β2 = β3 in the experiments, thus the last column also reflects the relation β2 v.s. PSNR, SSIM, and β3 v.s. PSNR, SSIM. 

 

 

 

 

 

 

 

 

 

Similar to the results on synthetic data, the defects of “15’ICCV” and “16’CVPR” still exist. The method “15’ICCV” leaves

too many rain streaks in the background images. Furthermore, the method “16’CVPR” removes rain streaks well, however, it

will significantly over-smooth the details of background images (see boxes in Fig. 8 ). 

4.3. Computation 

Our algorithm is a quite efficient method for image rain removal problem. In Algorithm 1 , the four subproblems all have

closed-form solutions which can be computed directly or by the efficient FFT algorithm. The computation complexity of

our algorithm is about O( n · log n ) where n = MN. From Tables 1 and 2 , we know that the proposed method outperforms

the other two compared methods significantly from the aspect of computation time. For instance, for the “panda” image

in Fig. 6 (size 229 × 305 × 3), the proposed method only costs about 0.45 second while “15’ICCV” and “16’CVPR” take about

44 s and 632 s, respectively. Note that, the code of “16’CVPR” utilizes a strategy of downsampling to reduce computation,

however, here we do not take this strategy and use full-size image for experiments, which results in more computation time

but gets better quantitative performance. 
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Fig. 14. Average quantitative performance of our model and TV-based model (with different λ3 ) on the 38 images from UCID dataset. Note that our model 

performs slightly better than TV-based model when λ3 is relatively large, while TV-based model performs approximately as well as our model does when 

λ3 tends to be small. 

Fig. 15. The convergence curve of the proposed algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4. More discussions 

The performance of each image (38 images) in UCID dataset : In the synthetic experiments, 38 images from UCID

dataset are utilized to evaluate the ability of rain streaks removal of all compared methods 14 . In Fig. 9 , we present PSNR,

SSIM and RMSE of each image for the three compared methods. According to this figure, our method performs best for

almost all images. The number of best performance (NBP) for PSNR are 28, 10, 0 for the proposed method, “16’CVPR” and

“15’ICCV”, respectively, which means that the proposed method reaches the best PSNR on 28 test images within total 38

images and the method “16’CVPR” gets the best PSNR on 10 test images. Similarly, the NBP for SSIM and RMSE are 31, 7,

0 and 28, 10, 0, respectively. It is clear that our method gets the largest NBP. In particular, from Fig. 9 , we know that the

blue points of our method oscillate smoothly, which also demonstrates that the proposed method is more stable (see the

standard derivations in Table 2 ). 

The performance on a new dataset (12 images) : Here, we also show more comparisons on a new dataset 15 that synthe-

sizes the rainy images by the photorealistic rendering techniques proposed by Grag and Nayar [40] . From Fig. 10 and Table

3 , it is easy to know that the proposed method obtains the better results once again than the other two state-of-the-art rain

removal methods, which demonstrates the removing capability of the given method for different rain streaks. Note that, for

this dataset, we only need to change βi , i = 1 , 2 , 3 , 4 to 70, and in the meanwhile keep other parameters unchanged. 

The effect of different terms in our model : The proposed model (15) involves three sparse terms which can depict the

directional latent and intrinsic properties of rainy images. To reveal the effect of the three terms, we give some experimental

analysis to learn which term contributes to rain removal to the most extent. Fig. 11 shows the rain removal results, in
14 For convenience, the 38 rainy images employed for comparisons are the same with the third case of Table 2 . 
15 http://yu-li.github.io/paper/li _ cvpr16 _ rain.zip 
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Fig. 16. Two examples of taking the dehaze method as the post-processing. 

Fig. 17. (a) A toy example with simulated horizontal (yellow circle) and vertical (green circle) lines; (b) The recovered results by the proposed method, 

which shows that our model does not affect the horizontal lines, but removes the vertical lines effectively. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

terms of PSNR, SSIM and RMSE, on 38 images of UCID dataset after discarding the sparse term Reg (1) , Reg (2) and Reg (3) ,

respectively. From the figure, the proposed model that combines all three terms performs best (see yellow bars in Fig. 11 ),

while other models that discard one sparse term all get worse quantitative results. In particular, the second sparse term

Reg (2) affects the results to the most extent (see purple bars), while the first term Reg (1) and the third term Reg (3) affect

the final quantitative results almost equivalently, see blue and green bars in Fig. 11 . Note that, after discarding the first term

Reg (1) , the model actually changes to the UTV model. In addition, Fig. 12 shows the visual results about the effect of three

terms. 

The issue of parameters : The proposed method mainly involves five parameters, i.e., λ1 , λ2 , β1 , β2 and β3 . Since we

set the same β1 , β2 and β3 in our experiments, here we only discuss the selection of λ1 , λ2 and β1 . Fig. 13 presents the

quantitative results of one image selected from the 38 test images with varying λ1 , λ2 and β1 
16 . From the results, it is

clear that the PSNR values of background images are almost consistent with those of rain streaks with varying parameters.

Moreover, although the SSIM values of background images are generally higher than those of rain streaks, the variation

trend of SSIM values are almost the same, which indicates the consistency of the influence of parameters. 

Specifically, the best parameter selection of our method for the related image in Fig. 13 is about λ1 = 1 . 2 , λ2 = 0 . 01

and β1 = β2 = β3 = 120 , while in this paper we set λ1 = 0 . 95 , λ2 = 0 . 08 and β1 = β2 = β3 = 200 for all experiments.

Since although tuning parameters finely for different images may get better results, we tend to unify the parameters

of all experiments to exhibit the stability of the proposed method. Therefore, here we select λ1 = 0 . 95 , λ2 = 0 . 08 and

β1 = β2 = β3 = 200 , which can get relatively good results for most of test images. In addition, although the smaller λ2

may result in higher PSNR and SSIM, the visual results stay poor performance. Empirically, here we set λ2 as 0.08. 
16 When one parameter varies, the other parameters are fixed to the default setting λ1 = 0 . 95 , λ2 = 0 . 08 and β1 = β2 = β3 = 200 . 
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The proposed model v.s. TV-based model : The proposed model (15) is similar to the anisotropic TV-based model if we

add one sparse term λ3 ||∇ y (D θ ( r − s )) || 1 . Thus it is necessary to illustrate the difference between the TV-based model and

the proposed model. Fig. 14 presents the average quantitative performance of our model and TV-based model on the 38

test images. We can see that the proposed model performs slightly better than TV-based model when λ3 is relatively large,

in the meanwhile, when λ3 tends to be small, the TV-based model performs almost as well as the proposed model does.

In summary, TV-based model leads to one more parameter λ3 but can not get better results than our directional model,

therefore, our model is a better choice than TV-based model for image rain streaks removal task. 

The convergence curve : To illustrate the convergence property of the given algorithm, in Fig. 15 , we show the curve

between the iteration number and the relative error that is defined as 
‖ t k +1 −t k ) ‖ 2 

‖ t k +1 ‖ 2 where t k +1 and t k are the last and the

previous outcome, respectively. From this figure, it is easy to see that the given algorithm can converge with the iteration

number increasing. 

Applying the dehaze procedure to the derain outcome : For the case of heavy rain, the obtained de-rain images some-

times contain the high intensity appearance which makes the results holding undesired contrast. Like the previous strate-

gies, see for instance [4] , we utilize the dehaze method [41] as the post-processing to get the enhanced de-rain output. Two

examples are shown in Fig. 16 , in which we apply the dehaze strategy to the first two de-rain images addressed by our

approach in Fig. 8 . It demonstrates the effectiveness of the dehaze strategy for the de-rain image. 

The capability of removing horizontal and vertical line structures : In Fig. 17 , we simulate a toy example to exhibit the

rain removal property of the given model. In this figure, the added horizontal (yellow circle) and vertical (green circle) lines

in the rainy image can be viewed as a part of the rain-free image. Here we use these added lines to test the capability of

the proposed method for the removal of the horizontal and vertical structures. Fig. 17 (b) shows that the proposed method

does not affect the horizontal lines, but removes the vertical lines. In summary, the given model sometimes removes the

vertical structures of rain-free image wrongly, which can be viewed as a drawback of this method. However, these vertical

and independent line structures do not usually appear in a natural image. Thus in general our method will not affect the

image quality seriously. 

5. Conclusion 

We have proposed a simple but efficient method based on a unidirectional global sparse model for rain streaks removal

problem. For the proposed convex model involving three sparse priors, we designed a ADMM-based algorithm which guar-

antees the global optimal to solve it. Results on synthetic and real data demonstrated that the proposed method not only

removed rain streaks well, but also preserved more details of background images. It outperformed two recent state-of-

the-art rain removal methods for almost all examples, both visually and quantitatively. Moreover, the computation of the

proposed method was much less than the two compared methods, because the computational complexity of our method is

only O( n · log n ). 

However, our method also has certain limitations. In the case where rain streaks are far away from the vertical direction,

rainy images must be rotated by a user’s estimation to make the rain streaks to be roughly in the vertical direction. In

addition, the proposed method may remove the vertical lines of the background image, despite that generally there are few

vertical lines in the rainy image. Moreover, in the case of heavy rain, which normally incorporates haze and rain streaks,

our method can not remove them simultaneously to recover a clear de-haze and de-rain image. In the future, we intend

to incorporate an orientation estimation technique into the proposed method to automatically remove rain streaks far away

from the vertical direction. Furthermore, we will incorporate de-haze and de-rain processes into a uniform model for the

case of heavy rain. 
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