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a b s t r a c t 

In this paper, we propose a novel tensor completion model using framelet regularization 

and low-rank matrix factorization. An effective block successive upper-bound minimization 

(BSUM) algorithm is designed to solve the proposed optimization model. The convergence 

of our algorithm is theoretically guaranteed, and under some mild conditions, our algo- 

rithm converges to the coordinate-wise minimizers. Extensive experiments are conducted 

on the synthetic data and real data, and the results demonstrate the effectiveness and the 

efficiency of the proposed method. 
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1. Introduction 

The tensor is a multidimensional array which is an important data format. Higher-order low-rank tensors play an in-

creasingly significant role in a wide range of real-world applications [1,4,5,17–26,37,39,44,49] . Among them, many can be

formulated as a missing value estimation problem (namely completion problem), e.g., color image inpainting [1,22] , MRI

data recovery [39] , video inpainting [5,23] , video rain streak removal [17] , high-order web link analysis [21] , personalized

web search [37] , seismic data reconstruction [24] and hyperspectral data recovery [25,26,44,49] . How to characterize the

inner relationship between the known elements and unknown ones is the core problem [28] . 

The low-rank tensor completion problem can be regarded as an extension of the low-rank matrix completion (LRMC)

problem. There are lots of works have been done in LRMC, e.g. [30,31] , which aim at exactly recovering a low-rank matrix

from an incomplete observation. These matrix completion methods minimize the matrix rank and their mathematical model

can be uniformly summarized as 

min 

Y 
rank (Y ) 

s.t. P �(Y ) = F , 
(1)

where Y ∈ R 

I 1 ×I 2 is the underlying matrix, F is the observed data, the set � implies the location corresponding to the ob-

served entries, P �(·) is the projection operator extracting entries in � (see details of the projection operator in Section 2.3 ).

However, as directly optimizing problem (1) is NP-hard, many methods instead minimize the nuclear norm or low-rank

matrix factorization to efficiently enhance the low-rankness of the underlying results. In addition, once the nuclear norm or
∗ Corresponding authors. 
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the low-rank matrix factorization is selected, this minimization problem can be efficiently solved by fixed point continuation

with approximate singular value decomposition (FPCA) [29] , accelerated proximal gradient algorithm for nuclear norm reg-

ularized linear least squares problems (APGL) [38] , low-rank matrix fitting algorithm (LMaFit) [41] , and alternating direction

multipliers method (ADMM) [36,46] . 

Comparing with the matrix format, a tensor usually contains more essentially structural information. For instance, a video

with multi-frames can represent the correlation along the time [42] ; a hyperspectral image (HSI), consisting of multiple

images of a real scene captured by sensors over various discrete bands, is able to facilitate a fine delivery of more faithful

knowledge under real scenes [43] . Although these data can be analyzed by matrix methods after unfolding or flattening,

such matricization usually fails to exploit the essential tensor structure. 

It seems natural to directly extend LRMC methods to the low-rank tensor completion problem (LRTC) as 

min 

Y 
rank (Y) 

s.t. P �(Y) = F, 
(2) 

where Y ∈ R 

I 1 , ... ,I N is the underlying tensor, F is the observed data, and P �(·) is the projection operator. Unfortunately, when

it comes to the rank of a tensor, the numerical algebra of tensors is fraught with hardness results [12] . On the one hand,

there is not an exact (or unique) definition for tensor rank and the most popular rank definitions are CANDECOMP/PARAFAC

rank (CP-rank) and n -rank [20] . On the other hand, both of the minimization problems corresponding to CP-rank and n -rank

are NP-hard. To tackle this difficulty, Liu et al. [28] proposed the first definition of the nuclear norm of the tensor, extending

the matrix case to the tensor case, 

min 

Y 
‖ 

Y ‖ ∗
s.t. P �(Y) = F, 

(3) 

where ‖Y‖ ∗ := 

∑ N 
n =1 αn ‖ Y (n ) ‖ ∗, Y (n ) ∈ R 

I n ×
∏ 

m � = n I m is the mode- n unfolding of a tensor Y and αn , n = 1 , . . . , N, is positive

weight satisfying 
∑ N 

n =1 αn = 1 . It can be efficiently solved by fast low-rank tensor completion (FaLRTC) [28] and the Douglas–

Rachford splitting method [11] . Based on this definition, Ji et al. further proposed a non-convex apporach [15] . However,

these methods involved the singular value decomposition (SVD) of Y ( n ) , which is time-consuming. To cope with this issue,

Xu et al. [45] adopted low-rank matrix factorization, 

min 

Y, X , A 

N ∑ 

n =1 

αn 

2 

‖ Y (n ) − A n X n ‖ 

2 
F 

s.t. P �(Y) = F, 

(4) 

where A = (A 1 , . . . , A N ) and X = (X 1 , . . . , X N ) . Their method, Low-rank T ensor Completion by Parallel M atrix F ac torization

(TMac), obtained better results with less running time than FaLRTC [45] . 

In general, introducing additional information, or say prior knowledge, may be helpful for the tensor completion problem

which is an ill-posed inverse problem [8,48] . In addition to the afore-discussed low-rankness, the piece-wise smoothness can

be taken into consideration to further enhance the potential capacity of the LRTC methods. For instance, a linear hyperspec-

tral mixing model can be written as 

Y = WH ( or Y (3) = A 3 X 3 ) , (5) 

where Y (or Y (3) ) indicates the mode-3 unfolding of the hyperspectral image, and W (or A 3 ) and H (or X 3 ) are respec-

tively the standard spectral library and the abundance matrix in hyperspectral unmixing [13,14,47] . As the matter distribution

is locally continuous in nature, the abundance maps possess the piecewise smooth prior. Enlightened by this, Zhao et al.

[49] successfully introduced the Total Variation (TV) regularization into sparse hyperspectral unmixing. To better solve the

ill-conditioned problem (4) , Ji et al. [16] further generalized [49] by adding a TV regularization to X 3 as follows 

min 

Y, X , A 

N ∑ 

n =1 

αn 

2 

‖ Y (n ) − A n X n ‖ 

2 
F + μTV (X 3 ) 

s.t. P �(Y) = F . 

(6) 

However, Ji et al. did not discuss the reason of the outperformance of their model further in [16] . To comprehend their

model more intuitively, we rewrite the mixing model (5) in a tensor format 

Y = X 3 ×3 A 3 , (7) 

where × 3 indicates the mode-3 (matrix) multiplication (see details in Section 2.1 ), unfold 3 (Y) = Y = Y (3) in (5) ,

unfold 3 (X 3 ) = H = X 3 in (5) and each horizontal slice of X 3 is the fractional abundances map of one kind of end-member in

hyperspectral unmixing. It’s easy to prove that (7) is mathematically equivalent to (5) . Furthermore, in (7) every horizontal

slice of Y, which is an image (a frame of a video or a band of a hyperspectral image), is a linear combination of horizon-

tal slices of X 3 . So that, it’s easy to understand that the horizontal slices of X 3 are the underlying factor images [50] , and

maintain the priors which the original images possess. Figuring out this, the potential capacity of the model (6) thus still

has room to be further enhanced. 
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Fig. 1. The results recovered by TMac [45] , TV based method [16] , and the proposed method. Each row represents a slice of the recovered synthetic data 

respectively. From left to right: the original data, the observed data (80% entries and a 10 × 10 × 50 cube in the center missing), the recovered result by 

TMac, TV based method and the proposed method, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is well known that the TV regularizer causes the staircase artifacts [7,10,27,33,51] , so that the details and geometric

features of the factor images will not be well preserved in (6) . However, the details and geometric features are important in

real-world applications. Meanwhile, the framelet is a generation of the orthogonal basis which relaxes the requirements of

the orthogonality and linear independence. Its redundancy leads to a capability of preserving geometric features and details

[3] . Motivated by this, we introduce the framelet regularization into the tensor completion problem, 

min 

Y, X , A 

N ∑ 

n =1 

αn 

2 

‖ Y (n ) − A n X n ‖ 

2 
F + λ‖ WX 

T 
3 ‖ 1 , 1 

s.t. P �(Y) = F, 

(8)

where λ is a positive regularization parameter, W indicates the framelet transform matrix, and WX 

T 
3 

is the coefficients of

the factor images in the framelet transform domain. The difference between our model and the model of Xu et al. (TMac)

[45] is our consideration of the piece-wise smooth prior of the factor matrix. Then, the difference between our model and

the model of Ji et al. (TV based method) [16] lies on not only the superior of the framelet regularizer to the total variation

regularizer but also a deeper insight of the factor prior. 

In Fig. 1 , we display the recovered results for synthetic data by TMac [45] , TV based method [16] and our framelet based

method. It is clear from the Fig. 1 that the estimated results by our framelet based method are visually the best among

those by TMac and TV based method. 

Apart from the superiority of framelet over TV, the outstanding performance of our method also lies in the following

two aspects. On the one hand, if traditional regularization techniques are directly applied to the original image squeeze

and the correlation between different frames or bands would be unavoidably destroyed. We regularize the coefficients of

the factor matrix in the framelet domain so that the piece-wise smoothness of the factor matrix is boosted while the

correlation between different frames of bands is simultaneously well preserved. Thus, our model is more robust in contrast

with the traditional variational techniques. On the other hand, in our model, the low-rank factorization fidelity term is used

to capture the global information and the framelet regularization term is used to capture the local information. Therefore,

our method, utilizing both the local and global information, is reasonably expected to yield better results. 

The main contribution of this paper mainly consists of two folds. First, on the foundation of a better comprehension of

the factor prior, we propose a new tensor completion model, utilizing both the global and local information. Second, an

effective and efficient algorithm is proposed to efficiently solve our model. Our algorithm fits the framework of the BSUM

[34] . Thus, the convergence of the proposed algorithms is theoretically guaranteed. Moreover, numerical experiments are

conducted and the experimental results demonstrate the effectiveness and robustness of the proposed method. 

The outline of this paper is given as follows. Some preliminary knowledge of the tensor, framelet and some operators is

exhibited in Section 2 . Section 3 , gives the formulation of our model as well as the BSUM-based solver. Experimental results

are reported In Section 4 . Finally, we draw some conclusions in Section 5 . 
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Table 1 

Tensor Notations. 

Notations Explanations 

X , X , x , x tensor, matrix, vector, scalar. 

x (: i 2 i 3 ���i N ) fiber of tensor X defined by fixing every index but one. 

X (:: i 3 ���i N ) slice of a tensor defined by fixing all but two indices. 

〈X , Y〉 inner product of two same-sized tensors X and Y . 

‖ X ‖ F Frobenius norm of tensor X . 

X ( n ) , unfold n (X ) mode-n unfolding of a tensor X ∈ R I 1 ×I 2 ×···×I N denoted as X (n ) ∈ R I n ×
∏ 

i � = n I i . 

( r 1 , r 2 , ���, r N ) n-rank , where r n = rank (X (n ) ) , n = 1 , 2 , · · · , N. 

Y = (X ×n A ) n-mode (matrix) multiplication of a tensor X ∈ R I 1 ,I 2 , ··· ,I n , ··· ,I N with a matrix A ∈ R J×I n . 

 

 

 

 

 

 

2. Preliminary 

2.1. Tensor basics 

Following [20] , we use low-case letters for vectors, e.g., a , upper-case letters for matrices, e.g., A , and calligraphic letters

for tensors, e.g., A . An N -mode tensor is defined as X ∈ R 

I 1 ×I 2 ×···×I N , and x i 1 i 2 ···i N is its ( i 1 , i 2 , ���, i N )-th component. 

Fibers are defined by fixing every index but one. Third-order tensors have column, row, and tube fibers, denoted by x : jk ,

x i : k , and x ij : , respectively. When extracted from the tensor, fibers are always assumed to be oriented as column vectors. 

Slices are two-dimensional sections of a tensor, defined by fixing all but two indices. The horizontal, lateral, and frontal

slides of a third-order tensor X , denoted by X i :: , X : j : , and X :: k , respectively. Alternatively, the k th frontal slice of a third-

order tensor, X :: k , may be denoted more compactly as X k . 

The inner product of two same-sized tensors X and Y is defined as 

〈X , Y〉 := 

∑ 

i 1 ,i 2 , ··· ,i N 
x i 1 i 2 ···i N · y i 1 i 2 ···i N . 

The corresponding norm ( Frobenius norm ) is then defined as ‖ X ‖ F := 

√ 〈X , X 〉 . 
The mode-n unfolding of a tensor X is denoted as X (n ) ∈ R 

I n ×�i � = n I i , where the tensor element ( i 1 , i 2 , ���, i N ) maps to

the matrix element ( i n , j ) satisfying 

j = 1 + 

N ∑ 

k =1 ,k � = n 
(i k − 1) J k with J k = 

k −1 ∏ 

m =1 ,m � = n 
I m 

. (9) 

The inverse operator of unfolding is denoted as “fold”, i.e., X = fold n (X (n ) ) . 

The n-rank , which we adopt in our work, is defined as an array 

n -rank (X ) = ( rank (X (1) ) , rank (X (2) ) , · · · , rank (X (N) )) . 

The tensor X is low-rank, if X ( n ) is low-rank for all n . 

The n-mode (matrix) product of a tensor X ∈ R 

I 1 ,I 2 , ··· ,I n , ··· ,I N with a matrix A ∈ R 

J×I n is denoted by X ×n A and is of size

I 1 × I 2 × · · · × I n −1 × J × I n +1 × · · · × I N . Elementwise, we have 

(X ×n A ) i 1 ···i n −1 ji n +1 ···i N = 

I n ∑ 

i n =1 

x i 1 i 2 ···i n ···i N · a ji n . (10) 

Each mode- n fiber is multiplied by the matrix A . This idea can also be expressed in terms of unfolded tensors 

Y = (X ×n A ) ⇔ Y (n ) = A · unfold n (X ) . 

The notations are listed in Table 1 . Please refer to [20] for a more extensive overview. 

2.2. Framelet 

A countable set X ⊂ L 2 (R ) is called a tight frame of L 2 (R ) if 

f = 

∑ 

g∈ X 
〈 f, g〉 g, ∀ f ∈ L 2 (R ) . 

This is equivalent to 

‖ f‖ 

2 
L 2 (R ) 

= 

∑ 

g∈ X 
|〈 f, g〉| 2 , ∀ f ∈ L 2 (R ) , 
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where 〈 · , · 〉 is the inner product in L 2 (R ) , and ‖ · ‖ L 2 (R ) = 〈·, ·〉 1 2 . Then X is called a tight frame of L 2 (R ) . For given � :=
{ ψ 1 , ψ 2 , · · · , ψ r } ⊂ L 2 (R ) , the affine (or wavelet) system is defined by the collection of the dilations and the shifts of � as 

X (�) := { ψ l, j,k : 1 ≤ l ≤ r; j, k ∈ Z } , 

where ψ l, j,k := 2 j/ 2 ψ l (2 j · - k ) . When X ( �) forms a tight frame of L 2 (R ) , it is called a tight wavelet frame, and ψ l , l =
1 , 2 , · · · , r are called the (tight) framelets. 

To construct wavelet tight frames, one starts from a compactly supported refinable function (a scaling function) ψ ∈
L 2 (R ) with a refinement mask (low-pass filter) ξ0 ∈ L 2 (Z ) satisfying a refinement equation 

ψ(x ) = 

∑ 

l∈ Z 
ξ0 (l) ψ(2 x − l) . 

Then, for the given compactly supported refinable function, a tight framelet system can be constructed by finding an ap-

propriate set of framelets � = { φ1 , φ2 , · · · , φr } ⊂ L 2 (R ) . Let { xi 1 , ξ2 , · · · , ξr } ⊂ L 2 (Z ) be a set of framelet masks (high-pass

filters), then the framelets are defined as 

φ j = 

∑ 

l∈ Z 
ξ j (l) ψ(2 x − l) , j = 1 , 2 , · · · , r. 

Thus, the construction of framelet � amounts to design the filters ξ 1 , ξ 2 , ���, ξ r . 

The unitary extension principle (UEP) in [35] gives the condition for X ( �) to form as a tight frame system, i.e., the filers

ξ 1 , ξ 2 , ���, ξ r satisfy 

ζξ0 
(ω) ζξ0 

(ω)(ω + γπ) + 

r ∑ 

j=1 

ζξ j 
(ω) ζξ j 

(ω)(ω + γπ) = σ (γ ) , γ = 0 , 1 , 

for almost all ω ∈ R . Here, ζξ (ω) = 

∑ 

l ξ (l) e ilω and σ ( γ ) is a delta function. 

In particular, one can construct tight framelet systems from B-splines. Here, we give one example which will be used in

our numerical experiments. It is derived from piece-wise linear B-spline whose refinement mask is h 0 = 

1 
4 [1 , 2 , 1] . The two

corresponding high-pass filters are 

h 1 = 

√ 

2 

4 

[1 , 0 , −1] , h 2 = 

1 

4 

[ −1 , 2 , −1] . 

In the numerical scheme of image processing, the framelet transform (decomposition operator) can be represented by a

matrix W . The processes of generating such matrices have been detailed in many literatures such as [2] . We omit them here

for readability. 

For a given filter h = { h ( j) } J 
j= −J 

, let the matrix S ( h ) be convolution operator with filter h under Neumann (symmetric)

boundary condition 

S (h ) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

h (0) · · · h (−J) · · · 0 

. . . 
. . . 

. . . 
. . . 

. . . 

h (J) 
. . . 

. . . 
. . . h (−J) 

. . . 
. . . 

. . . 
. . . 

. . . 
0 · · · h (J) · · · h (0) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

+ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

h (1) h (2) · · · h (J) 0 

h (2) 
. . . 

. . . 
. . . h (− j) 

. . . 
. . . 

. . . 
. . . 

. . . 

h (J) 
. . . 

. . . 
. . . h (−2) 

0 h (−J) · · · h (−2) h (−1) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. 

In our numerical experiments in Section 4 , we use a multi-level tight frame system corresponding to the tight framelet

decomposition without down sampling. To introduce it, we recall that for a given filter h = { h ( j) } J 
j= −J 

, the filters h ( l ) at level

l corresponding to the decomposition without down sampling is 

h (l) = { h (−J) , 0 , · · · , 0 ︸ ︷︷ ︸ 
2 l−1 −1 

, h (−J + 1) , 0 , · · · , 0 , h (−1) , 0 , · · · , 0 ︸ ︷︷ ︸ 
2 l−1 −1 

, h (0) , 

0 , · · · , 0 ︸ ︷︷ ︸ 
2 l−1 −1 

, h (1) , 0 , · · · , 0 , h ( j − 1) , 0 , · · · , 0 ︸ ︷︷ ︸ 
2 l−1 −1 

, h ( j) } . 
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Given the low- and high-pass filter { h i } r i =0 , let H 

(l) 
i 

≡ S (h (l) 
i 

) . Then the multi-level decomposition operator up to level L

(without down sampling) is given by 

W = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

∏ L −1 
l=0 H 

(L −l) 
0 

H 

(L ) 
1 

∏ L −1 
l=1 H 

(L −l) 
0 

. . . 

H 

(L ) 
r 

∏ L −1 
l=1 H 

(L −l) 
0 

. . . 

H 

(1) 
1 
. . . 

H 

(1) 
r 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. 

Then the decomposition of a discrete image (vector form) f ∈ R 

mn , can be written as W f . Besides, the UEP asserts that

W 

T W = I , where W 

T is the inverse framelet transform. 

2.3. Operators 

The Proximal Operator of a given convex function f ( x ) is defined as 

prox f (y ) := arg min 

x 
f (x ) + 

ρ

2 

‖ x − y ‖ 

2 , (11) 

where ρ is a positive constant. Friendly, the problem min x { f ( x )} is equivalent to min x,y { f (x ) + 

ρ
2 ‖ x − y ‖ 2 } . Thus one can

obtain the minimization of { f ( x )} by iteratively solving prox f ( x 
k ), where x k is the latest update of x . The proximal operator is

very attractive in that the objective function (11) is strongly convex with respect to x so long as f ( x ) is convex. 

Let � be an index set, then the Projection Operator P �(Y) denotes the tensor copying the entries from Y in the set �

and letting the remaining entries be zeros, i.e., 

(P �(Y)) i 1 , ··· ,i N := 

{
y i 1 , ··· ,i N , (i 1 , · · · , i N ) ∈ �, 

0 , otherwise . 

The matrix nonnegative Soft-thresholding Operator S v (·) is defined as 

S v (X ) = X̄ with x̄ i, j = 

{
x i, j − v , x i, j > v , 
0 , otherwise . 

3. Proposed model and algorithm 

3.1. Proposed model 

The objective function of our model is: 

f (X , A , Y) = 

N ∑ 

n =1 

αn 

2 

‖ Y (n ) − A n X n ‖ 

2 
F + λ‖ WX 

T 
3 ‖ 1 , 1 . (12)

There are two significantly important parts of the proposed model. One is the low-rank matrix factorization fidelity term,∑ N 
n =1 

αn 
2 ‖ Y (n ) − A n X n ‖ 2 F 

. Suppose the n -rank of Y is a given prior ( r 1 , r 2 , r 3 ) and r n < I n (n = 1 , 2 , 3) , thus, A n ∈ R 

I n ×r n and

X n ∈ R 

r n ×
∏ 

m � = n I m is the low-rank matrix factorization of Y ( n ) (n = 1 , 2 , 3) . This fidelity term is to enhance the low-rankness

of the underlying tensor Y in each mode. Furthermore, this low-rankness term is to capture the global information, since

sometimes the values of the missing elements depend on the entries which are far away [28] . 

The other one is the regularization term, ‖ WX 

T 
3 ‖ 1 , 1 , derived from the factor framelet prior. Specifically, the i -th row of

X 3 is the i -th vectorized factor image, which maintains the piece-wise smoothness. As discussed in Section 1 , the framelet

regularization is selected to both enhance this property and preserve geometric features and details. 

According to the rule of unfolding, the factor images X 3 has a good structure, 

X 3 = 

[
x 31 , x 32 , · · · , x 3 i , · · · , x 3 r n 

]T ∈ R 

r n ×I 1 I 2 , 

where x 3 i ∈ R 

I 1 I 2 ( i = 1 , 2 , · · · , r n ) is the i -th vectorized factor image. As mentioned in Section 2.2 , for a vectorized discrete

image f ∈ R 

mn , its coefficients in the framelet domain is calculated by W f . Thus, the framelet decomposition of the i th factor

image is Wx 3 i , and we have W 

T Wx 3 i = x 3 i . Moreover, benefit from the good structure of X 3 , the coefficients of all the factor

images can be concisely calculated by WX 

T 
3 
, and it is not difficult to obtain that W 

T WX 

T 
3 

= X 

T 
3 
, from the unitary extension

principle [35] . Additionally, this regularization term is to utilize the local information. 
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In a brief summary, both the global information and local information, i.e., low-rankness and piece-wise smoothness,

are taken into consideration in the proposed model. The low-rank matrix factorization and framelet regularization would

respectively be proved efficient to boost these two priors, i.e. low-rankness and piecewise smoothness, in our numerical

experiments. In the next subsection, we would present the numerical scheme for solving the proposed model. 

3.2. Proposed algorithm 

In this subsection, we present the numerical scheme for solving the minimization problem in (8) . It is easy to obtain

that the objective function (12) is not jointly convex for (X , A , Y) , but is convex with respect to X, A , Y independently. In

order to solve the non-convex problem effectively, we adopt the BSUM method. 

Utilizing the proximal operator, we perform the update as: 

h (Z , Z 

k ) = f (Z) + 

ρ

2 

‖Z − Z 

k ‖ 

2 
F , (13)

where Z = (X , A , Y) and Z 

k = (X 

k , A 

k , Y 

k ) . Let 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

h 1 (X , Z 

k 
1 ) = f (X , A 

k , Y 

k ) + 

ρ

2 

‖ X − X 

k ‖ 

2 
F , 

h 2 (A , Z 

k 
2 ) = f (X 

k +1 , A , Y 

k ) + 

ρ

2 

‖ A − A 

k ‖ 

2 
F , 

h 3 (Y, Z 

k 
3 ) = f (X 

k +1 , A 

k +1 , Y) + 

ρ

2 

‖Y − Y 

k ‖ 

2 
F , 

and Z 

k 
1 

= (X 

k , A 

k , Y 

k ) , Z 

k 
2 

= (X 

k +1 , A 

k , Y 

k ) , Z 

k 
3 

= (X 

k +1 , A 

k +1 , Y 

k ) . Then, problem (13) can be rewritten as follows 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

X 

k +1 = argmin 

X 

h 1 (X , Z 

k 
1 ) , 

A 

k +1 = argmin 

A 

h 2 (A , Z 

k 
2 ) , 

Y 

k +1 = argmin 

P �(Y)= F 
h 3 (Y, Z 

k 
3 ) . 

(14)

Note that X -, Y- and A -sub-problem can be solved alternately. Therein, since X = (X 1 , X 2 , X 3 ) , the X -sub-problem in our

model can be decomposed into three independent problems, i.e. X 1 - X 2 - and X 3 -sub-problem. It goes the same for A -sub-

problem, where A = (A 1 , A 2 , A 3 ) . Then all the sub-problems in (14) except X 3 -sub-problem have close-formed solutions:

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

X 

k +1 
n = ((A 

k 
n ) 

T A 

k 
n + ρI 1 ) 

† ((A 

k 
n ) 

T Y 

k 
(n ) + ρX 

k 
n ) , n = 1 , 2 , 

A 

k +1 
n = (Y 

k 
(n ) X 

k +1 
n 

T + ρA 

k 
n )(X 

k +1 
n X 

k +1 
n 

T + ρI 2 ) 
† , n = 1 , 2 , 3 , 

Y 

k +1 = P �c ( 
3 ∑ 

n =1 

αn fold n ( 
A 

k +1 
n X 

k +1 
n + ρY 

k 
(n ) 

1 + ρ
)) + F, n = 1 , 2 , 3 , 

(15)

where A † denotes the Moore–Penrose pseudo-inverse of A . The complexity of computing Y is O (r 1 I 1 s 3 + r 1 I 2 s 2 + r 1 I 3 s 3 ) ,

where s n = 

∏ 3 
m =1 ,m � = n I m 

. The cost of computing A n is O (I n r 
2 
n + I n r n s n + r 2 n s n ) operations for n = 1 , 2 , 3 , while he complexity

of computing X n is O (I n r 
2 
n + I n r n s n + r 2 n s n ) operations for n = 2 , 3 . 

The X 3 -sub-problem, which can be written as follows 

X 

k +1 
3 = arg min 

X 3 

α3 

2 

‖ Y 

k 
(3) − A 

k 
3 X 3 ‖ 

2 
F + λ‖ WX 

T 
3 ‖ 1 , 1 + 

ρ

2 

‖ X 3 − X 

k 
3 ‖ 

2 
F , 

can be easily solved by alternating direction method (ADM) [6,9,32,36,46,49] . 

Following, we solve X 3 -sub-problem. In order to separate the l 1 and l 2 components, we introduce an auxiliary variable

and rewrite it as the following equivalent constrained problem 

arg min 

X , Z 

μ

2 

‖ Y − AX ‖ 

2 
F + ‖ Z ‖ 1 , 1 + 

ρ

2 

‖ X − X 

k ‖ 

2 
F 

s.t. Z = WX 

T . 

(16)
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The augmented Lagrangian function of (16) is 

L β (X , Z , �) = 

μ

2 

‖ Y − AX ‖ 

2 
F + ‖ Z ‖ 1 , 1 + 

ρ

2 

‖ X − X 

k ‖ 

2 
F 

+ 〈 �, WX 

T − Z 〉 + 

β

2 

‖ WX 

T − Z‖ 

2 
F 

= 

μ

2 

‖ Y − AX ‖ 

2 
F + ‖ Z ‖ 1 , 1 + 

ρ

2 

‖ X − X 

k ‖ 

2 
F 

+ 

β

2 

‖ WX 

T − Z + 

�

β
‖ 

2 
F + const. , 

(17) 

where � is the Lagrange Multiplier. 

Then, let � = 

�
β

, the problem arg min X , Z , � L β (X , Z , �) in (17) can be updated through alternating direction as: ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

X 

p+1 = 

μA 

T Y + ρX 

k + β[ W 

T ( Z 

p − �p )] T 

μA 

T A + (β + ρ) I 
, 

Z 

p+1 = S 1 
β

[ 
W (X 

p+1 ) 
T + �

] 
, 

�p+1 = �p + W (X 

p+1 ) 
T − Z 

p+1 . 

(18) 

As for the X 3 -sub-problem, at each iteration, the complexities of computing X 3 , Z and � are all O (r 3 s 
2 
3 ) . 

The pseudocode of the proposed algorithm is given in Algorithm 1 . Specifically, the inputs are the observed data, which

Algorithm 1 BSUM based optimization algorithm for minimizing (8) . 

Input: The observed tensor, F; The set of index of observed entries, �; The given n -rank, r = (r 1 , r 2 , r 3 ) ; 

Output: The completed tensor Y; 

1: Initialization: A 

0 
n = rand (I n × r n ) , X 

0 
n = rand (r n ×

∏ k −1 
m =1 ,m � = n I m 

) , (n = 1 , 2 , 3) , Y = P �(F ) 

2: while not converged do 

3: Updating X 1 and X 2 via (15); 

4: while not converged do 

5: Updating X 3 , Z and � via (18); 

6: end while 

7: Updating A 1 , A 2 and A 3 via (15); 

8: Updating Y via (15); 

9: end while 

10: return Y; 

is the partially observed entries of the underlying tensor, the set of the index of the observed entries, which indicates the

location of observed entries, and the estimated rank of the underlying tensor. And the output of the proposed algorithm is

the reconstructed tensor, e.g., the complete hyperspectral image, video or MRI data. Additionally, in Algorithm 1 , the cost of

computing all the variables at each iteration is O (r 1 I 1 s 3 + r 1 I 2 s 2 + r 1 I 3 s 3 + I 3 r 
2 
3 + r 2 3 s 3 + 

∑ 2 
n =1 (I n r 

2 
n + I n r n s n + r 2 n s n ) + r 3 s 

2 
3 ) . 

3.3. Convergence analysis 

In the following, we study the convergence of the proposed algorithm. Recently, M. Razaviyayn et al. [34] proposed the

BSUM for the non-smooth optimization problem. It is an alternative inexact block coordinate descent method. Following, we

restated the convergence result in [34] for convenience. 

Lemma 1. Given the problem min f (x ) s.t. x ∈ X , where X is the feasible set. Assume u (x, x k −1 ) is an approximation of f ( x ) at

the (k − 1) -th iteration, which satisfied the following conditions: ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

u i (y i , y ) = f (y ) , ∀ y ∈ X , ∀ i ;
u i (x i , y ) ≥ f (y 1 , · · · , y i −1 , x i , y i +1 , · · · , y n ) , ∀ x i ∈ X i , ∀ y ∈ X , ∀ i ;
u 

′ 
i (x i , y ; d i ) | x i = y i = f 

′ 
(y ; d) , ∀ d = (0 , · · · , d i , · · · , 0) , s.t. y i + d i ∈ X i , ∀ i ;

u i (x i , y ) is continuous in (x i , y ) , ∀ i ;

(19) 

where u i ( x i , y ) is the sub-problem with respect to the i-th block and f 
′ 
(y ; d) is the direction derivative of f at the

point y in direction d. Suppose u i ( x i , y ) is quasi-convex in x i for i = 1 , · · · , n . Furthermore, assume that each sub-problem

arg min u i (x i , x 
k −1 ) , s.t. x ∈ X i has a unique solution for any point x k −1 ∈ X . Then, the iterates generated by the BSUM algo-

rithm converge to the set of coordinatewise minimum of f. In addition, if f ( · ) is regular at z, then z is a stationary point. 
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Next, we will show that the convergence of the proposed algorithm for the model (8) is guaranteed, as it fits the frame-

work of the BSUM method. 

Theorem 1. The iterates generated by (13) converge to the set of coordinatewise minimizers. 

Proof. It is easy to verify that h (Z , Z 

k ) is an approximation and a global upper bound of f (Z) at the k -th iteration, which

satisfies the following conditions: ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

h i (Z i , Z) = f (Z ) , ∀Z , i = 1 , 2 , 3 ;
h i ( Z̄ i , Z) ≥ f (Z 1 , · · · , Z̄ i , · · · , Z 3 ) , ∀ Z̄ i , ∀Z, i = 1 , 2 , 3 ;
h 

′ 
i ( Z̄ i , Z; d i ) | Z̄ i = Z i = f 

′ 
(Z; d) , ∀ d = (0 , · · · , d i , · · · , 0) , i = 1 , 2 , 3 ;

h i ( Z̄ i , Z) is continuous in ( Z̄ i , Z) , i = 1 , 2 , 3 ;

(20)

where Z = (X , A , Y) , and Z i is equal to X , A , Y for i = 1 , 2 , 3 , respectively. In addition, the sub-problem h i (i = 1 , 2 , 3) is

strictly convex with respect to X, A , and Y respectively and thus each sub-problem has a unique solution. Therefore, all

assumptions in Lemma 1 are satisfied. �

4. Numerical experiments 

In this section, the performance of the proposed method for the tensor completion is to be reported. Specifically, we will

test our method (denoted as “Framelet”) for the reconstruction of synthetic data, video data, hyperspectral image and MRI

data. To measure the reconstruction accuracies, we employ the peak signal-to-noise ratio (PSNR), the relative squared error

(RSE), and the structural similarity index (SSIM). PSNR and RSE are defined as 

PSNR = 10 log 10 

Ȳ 

2 
true 

1 
n 2 

‖Y − Y true ‖ 

2 
F 

, 

and 

RSE = 

‖Y − Y true ‖ F 

‖Y true ‖ F 

. 

where Y true , Ȳ true , and Y are the original tensor, the maximum pixel value of the original tensor, and the estimated tensor,

respectively. SSIM measures the structural similarity of two images, please see [40] for details. Better completion results

correspond to larger values in PSNR and SSIM and smaller values in RSE. All algorithms are implemented on the platform

of Windows 10 and Matlab (R2014a) with an Intel(R) Core(TM) i5-4590 CPU at 3.30 GHz and 8 GB RAM. 

We adopt the relative change (RelCha) of the two successive reconstructed tensors 

RelCha = 

‖Y 

k +1 − Y 

k ‖ F 

‖Y 

k ‖ F 

, 

as the stopping criterion of the proposed method. Here, the tolerance is set to be 10 −5 for the synthetic data and 10 −4 for

the real data. All parameters ( α, μ, β , ρ) used in our experiments are empirically selected from a candidate set: {0, 10 −4 ,

10 −3 , 10 −2 , 10 −1 , 1, 10 1 , 10 2 , 10 3 , 10 4 }. If not specified, the parameters are selected as: the weights αi = 1 / 3 (i = 1 , 2 , 3) , the

regularization parameter μ = 10 , the penalty parameter β = 10 0 0 and the proximal parameter ρ = 0 . 1 for all experiments. 

4.1. Synthetic data 

In this subsection, we evaluate our method on synthetic data of size 50 × 50 × 50, some frames of which can be viewed

in Fig. 1 in Section 1 . The n -rank of the simulated tensor is set as (20, 20, 14). The percentage of the randomly sampled ele-

ments varies from 10% to 40%. We reconstruct the synthetic tensor using three LRTC methods: TMac [45] , TV based method

[16] and our framelet based method. Following [16] , except the PSNR, RSE and SSIM of the whole tensor, we also exhibit

the average and the worst values of the PSNR, RSE and SSIM of the all frames to measure the quality of the reconstructed

tensors (denoted them as “Whole”, “Average”, and “Worst” in Table 2 , respectively). 

From Table 2 , it can be found that: 1) the larger the sampling rate, the better the results recovered by all methods; 2)

with varied sampling rates, our results show the best performance among all results; 3) even the worst frame recovered by

our method are still better than the ones by TMac and TV based methods. 

4.2. Video data 

In this subsection, we compare the performance of previously mentioned three methods (TMac [45] , TV based method

[16] and our framelet based method) on videos. We test 9 videos, named as “carphone”, “suzie”, “hall”, “coastguard”, “news”,

“salesman”, “highway”, “foreman”, and “claire”. 1 All videos are color with the YUV format. YUV is a color space typically used
1 http://trace.eas.asu.edu/yuv/ . 
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Table 2 

PSNR, RSE ( 10 −2 ) and SSIM comparison of the results recovered by TMac [45] , TV based method [16] and the Framelet based 

method for different sampling rates (SR). 

Index SR TMac TV Framelet 

Whole Average Worst Whole Average Worst Whole Average Worst 

PSNR 10% 16.318 18.974 11.143 21.370 23.0 0 0 18.152 23.514 25.572 19.036 

20% 27.056 31.468 21.668 33.308 37.060 28.630 38.022 40.425 33.291 

30% 32.169 36.386 27.274 28.219 45.587 32.837 43.232 48.052 36.237 

40% 51.486 64.967 41.678 57.557 59.427 50.885 60.266 61.245 56.969 

RSE 10% 92.2 79.9 156 51.6 46.8 70.2 40.3 35.8 63.2 

20% 26.8 21.7 46.6 13.0 10.8 20.9 7.58 6.56 12.2 

30% 14.9 12.2 24.6 7.41 5.57 13.0 4.16 3.13 8.77 

40% 1.61 0.751 4.65 0.800 7.06 1.61 0.585 0.551 0.803 

SSIM 10% 0.50103 0.56217 0.20860 0.76229 0.78671 0.58224 0.91625 0.93098 0.85531 

20% 0.94825 0.95333 0.90 0 05 0.98798 0.9880 0.96113 0.99332 0.99347 0.99080 

30% 0.98302 0.98500 0.96599 0.99717 0.99747 0.98828 0.99809 0.99816 0.99467 

40% 0.99948 0.99941 0.99416 0.99988 0.99986 0.99909 0.99993 0.99993 0.99987 

Table 3 

The whole PSNR, RSE ( 10 −2 ) and SSIM comparisons of TMac [45] , TV based method [16] and our framelet based method 

for video data with different sampling rates. 

video SR 10% 20% 30% 

Method PSNR RSE SSIM PSNR RSE SSIM PSNR RSE SSIM 

carphone TMac 12.541 50.2 0.41308 19.331 23.0 0.73523 34.113 4.19 0.94191 

TV 14.074 42.1 0.45843 30.586 6.29 0.88142 34.381 4.07 0.94494 

Framelet 14.772 38.9 0.51402 31.951 5.38 0.91328 34.824 3.86 0.9511 

suzie TMac 17.344 30.5 0.49540 22.837 16.2 0.79804 33.442 4.78 0.92967 

TV 21.030 20.0 0.59265 32.174 5.53 0.89762 34.668 4.15 0.93646 

Framelet 24.134 14.0 0.66559 32.585 5.28 0.90274 35.124 3.94 0.93979 

hall TMac 20.269 16.5 0.77694 32.270 4.13 0.91817 34.720 3.12 0.95994 

TV 22.936 12.1 0.80628 33.087 3.76 0.91879 34.759 3.10 0.96070 

Framelet 23.501 11.3 0.82554 33.773 3.48 0.92234 34.892 3.06 0.96203 

coastguard TMac 7.6936 85.0 0.03725 11.016 53.5 0.20093 17.026 26.8 0.48833 

TV 8.5586 76.9 0.06307 12.886 43.1 0.24497 24.682 11.1 0.75402 

Framelet 10.723 60.0 0.11708 15.991 30.2 0.28367 27.644 7.98 0.84089 

news TMac 11.200 73.9 0.18216 14.862 48.7 0.45001 20.693 24.8 0.74674 

TV 12.439 64.1 0.21153 17.808 34.7 0.53682 25.783 13.8 0.82495 

Framelet 14.965 47.9 0.34634 21.456 22.8 0.65449 31.205 7.38 0.90833 

salesman TMac 14.726 59.3 0.28229 19.926 32.6 0.71697 29.916 10.3 0.91208 

TV 16.762 46.9 0.34183 28.796 11.7 0.87136 34.381 6.22 0.94780 

Framelet 20.681 29.9 0.58184 33.121 7.14 0.93854 35.787 5.25 0.95937 

highway TMac 31.541 3.78 0.87220 33.813 2.91 0.920 0 0 34.410 2.72 0.92856 

TV 31.694 3.71 0.87526 33.800 2.91 0.92011 34.394 2.72 0.92870 

Framelet 31.819 3.66 0.87939 33.927 2.87 0.92392 34.430 2.71 0.92951 

foreman TMac 10.969 42.8 0.17088 18.924 17.1 0.71089 32.447 3.67 0.92349 

TV 12.826 34.6 0.24775 29.529 5.06 0.85824 32.549 3.57 0.92513 

Framelet 13.791 31.0 0.28729 29.770 4.92 0.86879 32.707 3.51 0.92802 

claire TMac 30.248 7.09 0.93392 38.915 2.61 0.98247 39.608 2.41 0.98263 

TV 33.730 4.75 0.95127 39.044 2.58 0.98316 39.601 2.42 0.98291 

Framelet 34.488 4.35 0.95754 39.347 2.49 0.98501 39.707 2.39 0.98351 

 

 

 

 

 

 

 

 

 

 

 

as part of a color image pipeline. Y stands for the luma component (the brightness) and U and V are the chrominance (color)

components. Being same as [16] , we only conduct the methods on the Y channel and the first 150 frames of all videos. All

test videos can be viewed as 3-mode tensors of size 144 × 176 × 150. We select the number of the largest 1% singular values

to approximate the n -rank and vary the sampling rate from 10% to 30%. 

Table 3 shows the whole PSNR, RSE and SSIM of the reconstructed tensors by different methods. From Table 3 we can

note that our framelet based method obtains highest quality results for all videos with different sampling rates. Addition-

ally, different videos indicate different difficulty levels for the reconstruction task, since the changes between frames are of

different intensities. By the way, our framelet based method performs significantly better to deal with some videos with

high difficulty level, e.g., the “coastguard” and “news”. The PSNR RSE and SSIM values of each frame of two representatively

reconstructed videos, “coastguard” and “news”, are plotted in Fig. 2 . Fig. 2 illustrates that almost all frames, recovered by

our framelet based method, obtain better quality in terms of the PSNR RSE and SSIM. Moreover, the average PSNR RSE and

SSIM of each frame of all the videos with different sam pling rate are the best by our method. Two representative results,
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Fig. 2. The PSNR, RSE and SSIM of all frames of the reconstructed video results by TMac, TV based method and our framelet based method, respectively. 

Fig. 3. The results recovered by TMac [45] , TV based method [16] and our framelet based method. The first two rows represent two frames of the recovered 

video data coastguard and the other two rows represent the news . From left to right: the original data, the observed data with 70% missing entries, the 

recovered results by TMac, TV regularized and our framelet based method, respectively. 
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Fig. 4. The results recovered by TMac [45] , TV based method [16] and our framelet based method. Each row represents a slice of the recovered hyper- 

spectral image. From left to right: the original data, the observed data with 95% missing entries, the recovered results by TMac, TV based method and our 

framelet based method, respectively. 

Fig. 5. The PSNR, RSE and SSIM of the recovered hyperspectral image by TMac [45] , TV based method [16] and our framelet based method for all bands, 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

recovered by TMac, TV based method, and our framelet based method, is illustrated in Fig. 3 . Considering geometric features

and details in Fig. 3 , it is obvious that our method visually outperforms TMac and TV based method. 

4.3. Hyperspectral image 

In this subsection, we use Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Cuprite data 2 to test the performance

of different com paring methods. The hyperspectral data used in the experiments correspond to 150 × 150 pixels subset with

130 spectral bands (see [13,14,49] for more details). The number of the largest 1% singular values is chosen to approximate

the rank of each mode, including two spatial modes and a spectral mode. In Fig. 4 , we display the recovered results by

TMac, TV based method, and our method. Fig. 4 shows that the reconstructed results by the proposed method are visually

the best, compared with the results of TMac and TV based method. The PSNR, RSE, and SSIM of each frame are shown in

Fig. 5 . In terms of the three indices of each frame, our method surpasses other two. 

4.4. MRI 

As we mentioned in Section 1 , the factor images, reshaped from row vectors of X 3 by lexicographical ordering, maintain

some priors that the original images possesses. However, for video data and hyperspectral data, we do not know the prior

of X 1 and X 2 , since the lateral and frontal slices of them could not be treated as images. Therefore, we only regularize tight

framelet coefficients of X 3 in the hyperspectral image and video reconstruction. Fortunately, slices of the MRI data form

different directions can be treated as images. Hence we can simultaneously impose the piecewise smooth prior to different

directions of the tensor. Similarly, we add the framelet regularizer to the factor matrix X 1 , X 2 and X 3 in (8) . In particular, it

is not difficult to solve the X 1 - and X 2 -sub-problem via (18) . 

Our experiments in this subsection are conducted on the cubical MRI data, 3 which is a 3-mode tensor with the size of

181 × 217 × 181. We compare our three-directional framelet based method (3D-Framelet) in comparison with TMac [45] , TV
2 http://aviris.jpl.nasa.gov/html/aviris.freedata.html . 
3 http://brainweb.bic.mni.mcgill.ca/brainweb/selection _ normal.html . 
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Fig. 6. An example of the recovered slices from three directions. From left to right: the original data, the observed data (90% entries missing), the recovered 

results by TMac [45] , TV based method [16] , our framelet based method and 3D-framelet based method, respectively. 

Fig. 7. The PSNR, RSE and SSIM of the reconstructed video results by TMac [45] , TV based method [16] , our framelet based method, and 3D-framelet based 

method for every frame. Each column represents the three numerical indices of every frame of a fixed direction, respectively. 
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based method [16] and our framelet based method. The n -rank is approximated by the numbers of the largest 1% singular

values of the unfolding matrixes of the MRI data. As mentioned before, we can treat every mode equally for MRI data, e.g.,

as shown in Fig. 6 . Therefore, in this subsection, we take the indices (PSNR, RSE, and SSIM) of slices from three directions,

namely the horizontal lateral and frontal slices, into consideration. In particular, 90% entries of the original data is randomly

removed in the example. 

Fig. 6 shows three example slices of the recovered MRI data observed from different directions. Clearly, the recov-

ered results obtained by the proposed methods are visually better than those obtained by TMac and TV based method.

Fig. 7 presents the PSNR, RSE and SSIM results of every frame, recovered by TMac, TV based method, framelet based method

and 3D-framelet based method, from three directions. It also can be found in Fig. 7 that all the frames recovered by the pro-

posed methods are better than that recovered by TMac and TV based method. More specifically, the results reconstructed by

our 3D-framelet based method are both visually and quantitatively better than the results recovered by our framelet based

method, which performs significantly better than TMac and TV based method. 

5. Conclusions 

In this paper, we proposed a new tensor completion model combining framelet and low-rank matrix factorization for

tensor completion with applications on the reconstruction of the video data, hyperspectral images, and MRI data. An effi-

cient BSUM based algorithm was developed to solve the proposed model. It was demonstrated that our numerical scheme

converged to the coordinatewise minimizers. Experimental results showed that: 1) our framelet based method, was more

effective than TMac and TV regularized method when dealing with video and hyperspectral image; 2) when it came to

the MRI data, our 3D-framelet based method visually and quantitatively obtained the best results, and our framelet based

method got the second-best results. 
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