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A B S T R A C T

Rain streak removal is an important issue of the outdoor vision system and has been investigated extensively.
In this paper, we propose a novel tensor optimization model for video rain streak removal by fully considering
the discriminatively intrinsic characteristics of the rain streaks and the clean video. In specific, the rain streaks
are group sparse and smooth along the rain streaks direction; the clean video is smooth along the perpendicular
direction of the rain streaks and the temporal direction. For the rain streaks, we use 𝓁2,1 norm to characterize
the group sparsity and the unidirectional total variation (UTV) to promote the smoothness along the rain streaks
direction. For the clean video, we use two UTV regularizers to enhance the smoothness along the perpendicular
direction of the rain streaks and the temporal direction. To solve the proposed model we develop an efficient
alternating direction method of multipliers (ADMM) algorithm. Experiments on synthetic and real data demonstrate
the superiority of the proposed method over state-of-the-art methods both quantitatively and qualitatively.

1. Introduction

Bad weather impairs the visibility of an image and introduces unde-
sirable interference that can severely hinder the follow-up processing
(e.g., object detection, recognition, and tracking [1–6]). This paper
mainly focuses on the rain streak removal problem [7–12].

A single rainy image is generally modeled as 𝐎 = 𝐁 + 𝐑 [8,13,14],
where 𝐎 ∈ R𝑚×𝑛, 𝐁 ∈ R𝑚×𝑛, and 𝐑 ∈ R𝑚×𝑛 are the observed rainy
image, the unknown clean image, and the rain streaks, respectively.
This model can be extended to the video case [15]:  =  +, where
 ∈ R𝑚×𝑛×𝑡,  ∈ R𝑚×𝑛×𝑡, and  ∈ R𝑚×𝑛×𝑡 are the observed rainy video,
the underlying clean video, and the rain streaks, respectively. The goal
of the rain streak removal is to estimate the clean image/video from
the rainy image/video. This typical inverse problem is often solved by
regularization methods which incorporate additional prior knowledge.

In general, rain streak removal methods can be categorized into
two classes: the single image rain streak removal methods and video
rain streak removal methods. Traditional model driven methods for the
single image rain streaks removal are usually designed by exploring
prior knowledge to tackle the ill-posed inverse problem. Kang et al. [8]
first decomposed an image into the low- and high-frequency parts and
separates the rain streaks from the high-frequency part by performing
dictionary learning and sparse coding. Sun et al. [16] proposed to ex-
plore the structural similarity of the image bases. Luo et al. [9] proposed
a dictionary learning based method, which sparsely approximates the
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patches of two layers by very high discriminative codes over a learned
dictionary. Based on Gaussian mixture models, Li et al. [14] used simple
patch-based priors for both the clean and rain streaks. Zhu et al. [17]
presented a joint bi-layer optimization model assisted by two clean
image priors and one rain streaks prior. In [18], the directional property
of rain streaks received attention. The recently emerged deep learning
technique is also successfully applied to the single image rain streak
removal task [19–27].

For the video rain streak removal, Garg et al. [28] firstly proposed
a video rain streak removal method with a comprehensive analysis of
the visual effects of rain streaks on an imaging system. Subsequently, a
series of methods have been suggested for the video rain streak removal.
Tripathi et al. [29] detected and removed rain streaks using spatio-
temporal properties. Chen [13] proposed and generalized a low-rank
model from matrix to tensor structure in order to capture the spatio-
temporally correlated rain streaks. Kim et al. [7] obtained an initial rain
map by exploring the temporal correlation and finally removed the de-
tected rain streaks by using a low-rank matrix completion. Very recently,
the rain streaks were modeled as a mixture of Gaussians distribution
in [30]. In [15], a novel tensor-based video rain streak removal method
was proposed by considering discriminative prior of the clean video and
the rain streaks. For the video rain streak removal, the deep learning
based methods also started to reveal their effectiveness [31,32]. The
existing video-based methods are comprehensively reviewed in [33].
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Fig. 1. (a) The rain image and (b) a random sparse image.

Fig. 2. From left to right: the singular values of unfolding matrices of the rainy video, the clean video, and the rain streaks.

In [15], Jiang et al. proposed the following model:

argmin
,

𝛼1‖∇𝑥‖1 + 𝛼2‖‖1 + 𝛼3‖∇𝑦‖1 + 𝛼4‖∇𝑡‖1 + 𝛼5‖‖∗,

s.t.  =  +, , ⩾ 0,
(1)

where ∇𝑥, ∇𝑦, and ∇𝑡 are the derivative operators along the rain streaks
direction, the perpendicular direction of the rain streaks, and temporal
direction, respectively. For simplicity, we assume the direction of the
rain streaks is the vertical direction. Thus, the perpendicular direction
of rain streaks is the horizontal direction.

However, the model in (1) has two drawbacks. One is that the
rain streaks are not only typically sparse but also exhibit structural
line patterns; see Fig. 1. Thus, it is better to utilize the group sparsity
regularizer to simultaneously enhance the sparsity and characterize
the line pattern. The other one is that the clean video does not
exhibit obvious low-rankness when the video has moving foreground
or dynamic background; see Fig. 2. Boosting the low-rankness may be

powerful [34–36], but it is not suitable for the rain streak removal
in some cases. Hence, there is room for improvement. The above
observations motivate us to introduce the group sparsity regularizer for
the rain streaks while discarding the low-rankness regularizer for the
clean video. The proposed tensor optimization model consists of the
group sparsity regularizer and the unidirectional total variation (UTV)
regularizer along the vertical direction for the rain streaks and the UTV
regularizers along the horizontal direction and temporal direction for
the clean video. In summary, the proposed model can be formulated as

argmin
,

𝛼1‖‖2,1 + 𝛼2‖∇𝑥‖1 + 𝛼3‖∇𝑦‖1 + 𝛼4‖∇𝑡‖1,

s.t.  =  +, , ≥ 0.
(2)

To solve the proposed model, we develop an efficient alternating direction
method of multipliers (ADMM) [37–40] algorithm. Experimental results
demonstrate the superiority of the proposed method qualitatively and
visually.
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The rest of this paper is organized as follows. In Section 2, the no-
tations and basic knowledge are introduced. In Section 3, the proposed
model and the proposed algorithm are presented. Experimental results
are reported in Section 4. Finally, Section 5 concludes this paper.

2. Tensor basics

Following [15,41–43], we use lower case letters (e.g., 𝑥) for scalars,
bold lower case letters (e.g., 𝐱) for vectors, bold upper case letters
(e.g., 𝐗) for matrices, and bold upper calligraphic letters (e.g., )
for tensors. An 𝑛-mode tensor is denoted as  ∈ R𝐼1×𝐼2×⋯×𝐼𝑛 . Its
(𝑖1, 𝑖2,… , 𝑖𝑛)th element is denoted as 𝑥𝑖1 ,𝑖2 ,…,𝑖𝑛 , where 1 ≤ 𝑖𝑘 ≤ 𝐼𝑘 and
1 ≤ 𝑘 ≤ 𝑛. The inner product of two same-sized tensors is defined as

⟨ ,⟩ ∶=
∑

𝑖1 ,𝑖2 ,…,𝑖𝑛

𝑥𝑖1 ,𝑖2 ,…,𝑖𝑛 × 𝑦𝑖1 ,𝑖2 ,…,𝑖𝑛 . (3)

Based on (3), the Frobenius norm of a tensor is defined as

‖‖𝐹 ∶= ⟨ ,⟩

1
2 = (

∑

𝑖1 ,𝑖2 ,…,𝑖𝑛

|𝑥𝑖1 ,𝑖2 ,…,𝑖𝑛 |
2)

1
2 . (4)

For an 𝑛-mode tensor  , we define derivative along the 𝑘th direction as
∇𝑘 ∈ R𝐼1×𝐼2×⋯×𝐼𝑛 in the cyclic boundary condition, where the elements
of ∇𝑘 obey that

(∇𝑘)𝑖1 ,𝑖2 ,…,𝑖𝑘 ,…,𝑖𝑛 = 𝑥𝑖1 ,𝑖2 ,…,𝑖𝑘 ,…,𝑖𝑛 − 𝑥𝑖1 ,𝑖2 ,…,𝑖𝑘−1,…,𝑖𝑛 .

When 𝑖𝑘 = 1, 𝑖𝑘 −1 is set to be 𝐼𝑘. The ‘‘𝚞𝚗𝚏𝚘𝚕𝚍’’ operation along the 𝑘th
mode on a tensor  is defined as

𝚞𝚗𝚏𝚘𝚕𝚍𝑘() = 𝐗(𝑘) ∈ R𝐼𝑘×(𝐼1 ...𝐼𝑘−1𝐼𝑘+1 ...𝐼𝑛). (5)

Its inverse operation ‘‘𝚏𝚘𝚕𝚍’’ is defined as

𝚏𝚘𝚕𝚍𝑘(𝐗(𝑘)) =  . (6)

Based on the unfolding rule (5) and folding rule (6), the tensor and
the matrix can be transformed to each other. It is easy to obtain that,
for any 1 ≤ 𝑘 ≤ 𝑛,

‖‖𝐹 = ‖𝐗(𝑘)‖𝐹 , ⟨ ,⟩ = ⟨𝐗(𝑘),𝐘(𝑘)⟩,

and

∇𝑘 = 𝚏𝚘𝚕𝚍𝑘(∇1𝚞𝚗𝚏𝚘𝚕𝚍𝑘()).

Given the index set 𝑔𝑖, 𝐱𝑔𝑖 is the subvector of 𝐱 indexed by 𝑔𝑖. For the
vector 𝐱, 𝓁2,1 norm is defined as:

‖𝐱‖2,1 =
𝑠
∑

𝑖=1
‖𝐱𝑔𝑖‖2,

which is always used to promote group sparsity [44]. For the matrix 𝐗,
𝓁2,1 norm is defined as

‖𝐗‖2,1 =
𝑠
∑

𝑖=1
‖𝐱𝑔𝑖‖2,

where 𝑔𝑖 is the 𝑖th column. We can extend 𝓁2,1 norm to the tensor case

‖‖2,1 = ‖𝚞𝚗𝚏𝚘𝚕𝚍1()‖2,1.

A more extensive overview of group sparsity can be found in [44].

3. The proposed method and algorithm

This section gives the proposed model and algorithm for the rain
streak removal.

3.1. The proposed model

Without loss of generality, we use , , and  to represent the rainy
video, the target clean video, and the rain streaks, respectively. We recall

the proposed model:

argmin
,

𝛼1‖‖2,1 + 𝛼2‖∇𝑥‖1 + 𝛼3‖∇𝑦‖1 + 𝛼4‖∇𝑡‖1,

s.t.  =  +, , ≥ 0,
(7)

where ∇𝑥, ∇𝑦, and ∇𝑡 are the derivative operators along the vertical
direction, the horizontal direction, and the temporal direction, respec-
tively. In the following, we will explain the terms in our model in details.

Group sparsity of the rain streaks: When the rain is not extremely
heavy, the rain component is sparser than the clean video, and the
rain component exhibits structural line patterns rather than distributes
randomly, as shown in Fig. 1. Therefore, we use the term ‖‖2,1
to characterize the group sparsity which enhances the sparsity and
preserves the line pattern, simultaneously. It is superior over the plain
the 𝓁1 regularizer that has been validated in [15].

The smoothness of the rain streaks along the vertical direction:
Generally, the rain streaks share similar directions. We assume that the
direction of the rain streaks is the vertical direction. The derivatives
of rain streaks and the clean video along the vertical direction are
different, i.e., the derivatives along the vertical direction of the rain
streaks are more sparse compared with those of the clean video; see
Fig. 3. Therefore, we use the 𝓁1 norm of ∇𝑥 to enhance the smoothness
along the vertical direction of the rain streaks.

The smoothness of the clean video along the horizontal direc-
tion: Natural images are piecewise smooth [45,46], which indicates that
the derivatives of frames in the video are not dense along vertical and
horizontal directions. The vertical rain streaks destroy the smoothness
along the horizontal direction. Compared with the derivatives of the rain
video, the derivatives of the clean video are sparse along the horizontal
direction. As a result, the derivatives along the horizontal direction of
rain video are dense, which is shown in Fig. 4. Therefore, we use the 𝓁1
norm of ∇𝑦 to enhance the smoothness along the horizontal direction
of the clean video.

The smoothness of the clean video along the temporal direction:
Since a video generally maintains at least 25 frames per second,
there would be the strong smoothness along temporal direction. The
derivatives of the clean video are sparse along the temporal direction.
However, because of the high velocity, the rain streaks do not share this
temporal continuity. As displayed in Fig. 5, the derivatives along the
temporal direction of the clean video are sparse while those of the rain
streaks are not sparse. Therefore, we use the 𝓁1 norm of ∇𝑡 to enhance
the smoothness along the temporal direction of the clean video.

Discussion of the low-rankness: In our model, we discard the low-
rankness regularizer which is considered in [15]. From Fig. 2, we can
observe the low-rankness of the clean video is not significant, because
of the moving objects and dynamical backgrounds. Meanwhile, the
rain streaks may be spatially low-rank due to their repeatability [18].
Therefore, we drop the low-rank regularization term in (1).

3.2. The proposed algorithm

The proposed model in (7) is a convex optimization problem which
can be solved by various convex optimization algorithms. We develop an
efficient ADMM algorithm to solve the proposed model. By introducing
the auxiliary variables  , ,  , and  ∈ R𝑚×𝑛×𝑡, we rewrite the proposed
model as the following equivalent constrained problem:

arg min
, , , ,

𝛼1‖‖2,1 + 𝛼2‖‖1 + 𝛼3‖‖1 + 𝛼4‖ ‖1,

s.t.  = ,

 = ∇𝑥,

 = ∇𝑦( −),

 = ∇𝑡( −),

 ⩾  ⩾ 0.

(8)
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Fig. 3. (a) The histogram of the absolute values of the derivatives along the vertical direction of the rain streaks. (b) The histogram of the absolute values of the derivatives along the
vertical direction of the clean video.

Fig. 4. (a) The histogram of the absolute values of the derivatives along the horizontal direction of the rain video. (b) The histogram of the absolute values of the derivatives along the
horizontal direction of the clean video.

Fig. 5. (a) The histogram of the absolute values of the derivatives along the temporal direction of the rain streaks. (b) The histogram of the absolute values of the derivatives along the
temporal direction of the clean video.

Then the augmented Lagrangian function of (8) is:

𝐿𝛽 (, , , ,  ,𝚲) =𝛼1‖‖2,1 + 𝛼2‖‖1 + 𝛼3‖‖1 + 𝛼4‖ ‖1

+ ⟨𝚲1, −⟩ +
𝛽
2
‖ −‖

2
𝐹

+ ⟨𝚲2, − ∇𝑥⟩ +
𝛽
2
‖ − ∇𝑥‖

2
𝐹

+ ⟨𝚲3, − ∇𝑦( −)⟩ +
𝛽
2
‖ − ∇𝑦( −)‖2𝐹

+ ⟨𝚲4,  − ∇𝑡( −)⟩ +
𝛽
2
‖ − ∇𝑡( −)‖2𝐹 ,

(9)

where 𝚲 = [𝚲1,𝚲2,𝚲3,𝚲4] is Lagrange multiplier and 𝛽 is a positive
penalty parameter. This joint minimization problem can be decomposed
into five subproblems which can be easily solved. By separating the

variables in (9) into two groups  and [ , ,  ,  ], the optimization
problem in (9) fits the framework of ADMM. Then, the variables of two
groups can be alternately updated. The solutions of the five subproblems
are introduced in the following.

 sub-problem: With the other variables fixed, the  sub-problem
is

argmin


𝛼1‖‖2,1 +
𝛽
2
‖ − +

𝚲𝟏
𝛽

‖

2
𝐹 , (10)

which is equivalent to

argmin


∑

𝑔𝑖

(𝛼1‖𝑔𝑖‖2 +
𝛽
2
‖𝑔𝑖 −𝑔𝑖‖

2
𝐹 ), 𝑔𝑖 = 𝑔𝑖 −

(𝚲𝟏)𝑔𝑖
𝛽

.
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Fig. 6. Rain streak removal results by different methods. From left to right: the rainy frames, the results by LRMC [7], DIP [15], and the proposed method, and the ground truth. From
top to bottom: the “carphone”, “container”, “coastguard”, “highway” “bridgefar” and “foreman” videos with the heavy synthetic rain streaks.

Thus  could be exactly updated via soft-shrinkage [44] as

 (𝑡+1)
𝑔𝑖

= max
(

‖(𝑡)
𝑔𝑖
‖2 −

𝛼1
𝛽
, 0
) (𝑡)

𝑔𝑖

‖(𝑡)
𝑔𝑖 ‖2

, (11)

where 𝑔𝑖 denotes the 𝑖th group of the variable  .

,  , and  sub-problems: With the other variables fixed, ,  ,
and  subproblems are

argmin


𝛼2‖‖1 +
𝛽
2
‖ − ∇𝑥 +

𝚲𝟐
𝛽

‖

2
𝐹 ,

argmin


𝛼3‖‖1 +
𝛽
2
‖ − ∇𝑦( −) +

𝚲𝟑
𝛽

‖

2
𝐹 ,

argmin


𝛼4‖ ‖1 +
𝛽
2
‖ − ∇𝑡( −) +

𝚲𝟒
𝛽

‖

2
𝐹 .

(12)

The elements of ,  , and  can be exactly updated by componentwise
soft thresholding as

 (𝑡+1) = soft 𝛼2
𝛽

(

∇𝑥(𝑡) −
𝚲(𝑡)
2
𝛽

)

, (13)

 (𝑡+1) = soft 𝛼3
𝛽

(

∇𝑦( −(𝑡)) −
𝚲(𝑡)
3
𝛽

)

, (14)

 (𝑡+1) = soft 𝛼4
𝛽

(

∇𝑡( −(𝑡)) −
𝚲(𝑡)
4
𝛽

)

, (15)

where

soft 𝛼
𝛽
(𝑦) = sign(𝑦) max(|𝑦| − 𝛼

𝛽
, 0).

-subproblem: The  sub-problem is a least squares problem:

argmin


𝛽
2
‖ − +

𝚲1
𝛽

‖

2
𝐹 +

𝛽
2
‖ − ∇𝑥 +

𝚲2
𝛽

‖

2
𝐹

+
𝛽
2
‖ − ∇𝑦( −) +

𝚲3
𝛽

‖

2
𝐹 +

𝛽
2
‖ − ∇𝑡( −) +

𝚲4
𝛽

‖

2
𝐹 .

The normal equation of the least square problem is

(𝛽 + 𝛽∇T
𝑥∇𝑥+𝛽∇T

𝑦∇𝑦 + 𝛽∇T
𝑡 ∇𝑡) = 𝛽 + 𝚲1 + ∇T

𝑥(𝛽 + 𝚲2)

+ ∇T
𝑦 (𝛽∇𝑥 − 𝛽 − 𝚲3) + ∇T

𝑡 (𝛽∇𝑡 − 𝛽 − 𝚲4).

100



Y.-T. Wang, X.-L. Zhao, T.-X. Jiang et al. Signal Processing: Image Communication 73 (2019) 96–108

Fig. 7. Rain streak removal results by different methods. From left to right: the rainy frames, the results by LRMC [7], DIP [15], and the proposed method, and the ground truth. From
top to bottom: the “carphone”, “container”, “coastguard”, “highway” “bridgefar” and “foreman” videos with the light synthetic rain streaks.

Thus, the  subproblem has the following closed-form solution:

(𝑡+1) = −1
(

 (1)
 (2)

)

, (16)

where  and −1 denote the fast Fourier transform (FFT) and its inverse
transform, respectively. Here

1 =𝛽 (𝑡+1) + 𝚲(𝑡)
1 + ∇T

𝑥(𝛽
(𝑡+1) + 𝚲(𝑡)

2 ) + ∇T
𝑦 (𝛽∇𝑥

− 𝛽 (𝑡+1) − 𝚲(𝑡)
3 ) + ∇T

𝑡 (𝛽∇𝑡 − 𝛽 (𝑡+1) − 𝚲(𝑡)
4 )

and

2 = 𝛽 + 𝛽∇T
𝑥∇𝑥 + 𝛽∇T

𝑦∇𝑦 + 𝛽∇T
𝑡 ∇𝑡.

The element of  smaller than 0 is mapped to 0. And the element
of  larger than the corresponding element of  is mapped to the
corresponding element of .

Multipliers updating: Finally, the Lagrange multipliers 𝚲 = [𝚲1,𝚲2,
𝚲3,𝚲4] are updated as:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝚲(𝑡+1)
1 = 𝚲(𝑡)

1 + 𝛽( (𝑡+1) −(𝑡+1)),

𝚲(𝑡+1)
2 = 𝚲(𝑡)

2 + 𝛽( (𝑡+1) − ∇𝑥(𝑡+1)),

𝚲(𝑡+1)
3 = 𝚲(𝑡)

3 + 𝛽( (𝑡+1) − ∇𝑦( −(𝑡+1))),

𝚲(𝑡+1)
4 = 𝚲(𝑡)

4 + 𝛽( (𝑡+1) − ∇𝑡( −(𝑡+1))).

(17)

The proposed algorithm is summarized in Algorithm 1 and the
Matlab demo of the proposed method is available online.1 Since the
proposed model is convex and the variables can be separated into
two groups, the convergence of the proposed algorithm is theoretically
guaranteed under the ADMM framework [47].

1 https://github.com/munaiyi719/A-Total-Variation-and-Group-Sparsity-
Based-Tensor-Optimization-Model-for-Video-Rain-Streak-Removal.
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Fig. 8. The PSNR values of the proposed method using different parameter settings.

Table 1
Quantitative comparisons of rain streak removal results by LRMC [7], DIP [15], and the
proposed method, on the selected 6 synthetic videos.

Rain type Heavy Light

Video Method PSNR SSIM Time (s) PSNR SSIM Time (s)

carphone

Rainy 28.151 0.751 – 36.641 0.926 –
LRMC 30.496 0.848 2230.193 36.490 0.978 1381.876
DIP 35.196 0.955 190.997 42.742 0.987 280.895
Proposed 38.486 0.971 230.311 43.021 0.991 343.444

container

Rainy 28.551 0.758 – 37.162 0.929 –
LRMC 31.338 0.877 1850.684 37.426 0.982 1240.786
DIP 39.093 0.970 184.324 51.061 0.998 259.875
Proposed 45.252 0.993 293.509 51.363 0.998 317.864

coastguard

Rainy 28.128 0.833 – 36.579 0.956 –
LRMC 34.955 0.960 2709.774 34.880 0.955 1980.656
DIP 34.338 0.963 203.535 40.070 0.985 285.622
Proposed 35.951 0.971 344.890 40.222 0.986 423.444

highway

Rainy 29.056 0.744 – 37.524 0.925 –
LRMC 33.388 0.890 1752.019 38.511 0.968 1308.776
DIP 39.469 0.968 238.900 43.564 0.985 297.554
Proposed 41.281 0.974 367.434 43.629 0.982 444.590

bridgefar

Rainy 28.945 0.713 – 37.264 0.910 –
LRMC 34.392 0.900 1678.564 41.852 0.974 1298.344
DIP 42.221 0.979 186.909 48.672 0.992 239.443
Proposed 45.743 0.983 333.867 49.921 0.994 397.441

foreman

Rainy 28.341 0.808 – 36.954 0.947 –
LRMC 30.101 0.855 2200.713 36.300 0.974 1460.754
DIP 34.650 0.965 190.546 41.122 0.988 254.388
Proposed 36.050 0.967 289.332 41.055 0.987 338.564

4. Experimental results

To validate the effectiveness of the proposed method, we compare
the proposed method with two state-of-the-art methods: rain streak
removal using temporal correlation and low-rank matrix completion
(LRMC) [7] and rain streak removal using discriminatively intrinsic
priors (DIP) [15].

Algorithm 1 The proposed algorithm for video rain streak removal
Input: The rainy video ;
1: Initialization: (0) = , (0) =  − (0);
2: while not converged do
3: Update  via (11);
4: Update  via (13),  via (14), and  via (15);
5: Update  via (16);
6: Update the multipliers via (17);
7: end while
Output: The estimation of rain streaks  and the clean video  = −.

Preprocessing: The color video is a four-mode tensor of size
𝑚 × 𝑛 × 3 × 𝑡. We convert the video from the RGB color space to YUV2

color space and only conduct the proposed method on Y channel of YUV
color space. Thus, the video is a three-mode tensor of size 𝑚 × 𝑛 × 𝑡.
To reduce the boundary effect, we add 5 elements of padding to each
dimension of a three-mode tensor under reflective boundary condition.
Thus, the size of resulting input tensor is (𝑚 + 10) × (𝑛 + 10) × (𝑡 + 10).

4.1. Synthetic data

For synthetic data, since the clean video is available, the peak signal
to noise ratio (PSNR) and structure similarity (SSIM) [48] are selected
to measure the performance of different methods. Six videos named
as “carphone”, “container”, “coastguard”, “bridgefar”, “highway” and
“foreman”3 are selected as testing videos. These videos can be viewed
as four-mode tensors of size 144 × 176 × 3 × 150.

Generation of rainy videos: The rainy videos are generated by the
following steps.

1. The salt and pepper noise is added to a zero tensor with the same
size as the clean video tensor.

2 https://en.wikipedia.org/wiki/YUV.
3 http://trace.eas.asu.edu/yuv/.
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Fig. 9. Rain streak removal results by different methods. From left to right: the rainy frames, the results by LRMC [7], DIP [15], and the proposed method, and the ground truth. From
top to bottom: the “highway2”and “waterfall” videos, respectively.

Table 2
Quantitative comparisons of rain streak removal results by the proposed method with one column, half of one column, quarter of
one column, and eighth of one column.
Rain type Heavy Light

Video Method PSNR SSIM Time (s) PSNR SSIM Time (s)

carphone

Rainy 28.151 0.751 – 36.641 0.926 –
one column 38.486 0.971 230.311 43.021 0.991 343.444
half of one column 38.138 0.973 224.136 41.372 0.990 330.496
quarter of one column 37.486 0.973 234.334 42.248 0.991 344.667
eighth of one column 35.166 0.956 242.899 43.081 0.991 339.799

container

Rainy 28.551 0.758 – 37.162 0.929 –
one column 45.252 0.993 293.509 51.363 0.998 317.864
half of one column 45.146 0.992 289.778 51.900 0.998 328.565
quarter of one column 44.677 0.991 288.526 52.347 0.998 331.965
eighth of one column 44.837 0.993 299.657 52.430 0.998 329.999

coastguard

Rainy 28.128 0.833 – 36.579 0.956 –
one column 35.951 0.971 344.890 40.222 0.986 423.444
half of one column 35.982 0.970 339.756 40.538 0.986 434.899
quarter of one column 35.934 0.965 346.813 40.665 0.987 423.131
eighth of one column 35.754 0.970 334.287 40.497 0.986 435.998

highway

Rainy 29.056 0.744 – 37.524 0.925 –
one column 41.281 0.974 367.434 43.629 0.982 444.590
half of one column 39.899 0.970 359.142 43.326 0.986 435.827
quarter of one column 41.799 0.976 339.982 43.413 0.985 437.896
eighth of one column 41.842 0.977 378.869 43.223 0.983 447.867

bridgefar

Rainy 28.945 0.713 – 37.264 0.910 –
one column 45.743 0.983 333.867 49.921 0.994 397.441
half of one column 46.005 0.985 340.665 50.518 0.994 403.676
quarter of one column 46.203 0.985 328.443 50.924 0.994 399.674
eighth of one column 45.989 0.984 329.441 51.167 0.995 402.335

foreman

Rainy 28.341 0.808 – 36.954 0.947 –
one column 36.050 0.967 289.332 41.055 0.987 338.564
half of one column 36.090 0.966 296.996 40.693 0.986 365.447
quarter of one column 35.781 0.966 302.154 39.327 0.986 336.732
eighth of one column 36.009 0.966 288.838 40.317 0.988 332.655

Table 3
Quantitative comparisons of rain streak removal results by LRMC [7], DIP [15], and the
proposed method, on the selected 2 synthetic videos, respectively.

Rain video Quantitative comparisons

Video Method PSNR SSIM Time (s)

highway2

Rainy 27.170 0.803 –
LRMC 27.640 0.878 2530.393
DIP 33.406 0.929 258.067
Proposed 36.783 0.953 343.453

waterfall

Rainy 28.551 0.758 –
LRMC 31.338 0.877 1850.684
DIP 35.593 0.939 184.324
Proposed 37.782 0.960 293.509

2. The noise tensor is blurred by a Gaussian blur.
3. The blurred and noisy tensor is further blurred by a motion blur.

The angles between motion direction and vertical direction are
randomly distributed in [5◦, 15◦].

Table 4
Quantitative comparisons of rain streak removal results by LRMC [7], DIP [15], and the
proposed method on the “carphone”synthetic videos, respectively.

Rain type Heavy Light

Method PSNR SSIM Time (s) PSNR SSIM Time (s)

Rainy 28.151 0.751 – 36.641 0.926 –
LRMC 30.496 0.848 2230.193 36.490 0.978 1381.876
DIP 35.196 0.955 190.997 42.742 0.987 280.895
Proposed 38.486 0.971 230.311 43.021 0.991 343.444
Proposed without (a) 38.406 0.969 763.256 43.005 0.990 1027.011
Proposed without (b) 37.856 0.962 221.054 42.958 0.989 310.520

4. The blurred and noisy tensor is directly added to the clean videos,
and the intensity values greater than 1 are set as 1.

Parameters setting: The parameter 𝛽 is set as 50, and the parameters
𝛼1, 𝛼2, 𝛼3, and 𝛼4 are selected from {0.1, 0.3, 1, 3, 10, 30, 100, 300,
1000}. The stopping criterion is that the relative error of the rain streaks
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Fig. 10. Rain streak removal results of different methods on the video ‘‘the Matrix’’. From left to right: the rainy frames, the results by LRMC [7], DIP [15], and the proposed method.
From top to bottom: three frames of the first real video.

Fig. 11. Rain streak removal results of different methods on the video ‘‘yard’’. From left to right: the rainy frames, the results by LRMC [7], DIP [15], and the proposed method.
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Fig. 12. Rain streak removal results of different methods on the video ‘‘crossing’’. From left to right: the rainy frames, the results by LRMC [7], DIP [15], and the proposed method.

is less than 5×10−3 or the iteration number is larger than 250. The results
with the highest PSNR among the tested values are reported.

Performance comparisons: We can observe from Table 1 that the
proposed method significantly outperforms the compared methods in
terms of PSNR and SSIM values. In the cases of light rain streaks and
heavy rain streaks, the proposed method achieves the highest PSNR and
SSIM values except for the last video with light rain streaks. On average,
the PSNR values of the proposed method are 8.016 dB and 2.966 dB
higher than those of LRMC and DIP with heavy rain streaks, respectively.
The PSNR values of the proposed method are 7.292 dB and 0.330 dB
higher than those of LRMC and DIP with light rain streaks, respectively.

For visual comparisons, the frames of the estimated video are
displayed in Figs. 6 and 7. It is observed that the proposed method
achieves significantly better visual quality than the compared methods
in terms of preserving details and removing rain streaks. There are two
main reasons. On the one hand, LRMC and DIP both assume the clean
video is low-rank, which leads to the loss of some obvious details. In
the proposed method, we drop the low-rankness of the clean video.
This choice helps the proposed method to handle the dynamic video
better. For example, DIP and LRMC mistakenly remove the road signs
in ‘‘highway’’ with both heavy rain streaks and light rain streaks. In
‘‘bridgefar’’, although the clean video is almost static, some details such
as the ripples caused by the wind would destroy the low-rankness. DIP
and LRMC fail to preserve ripples well. On the other hand, we use
the group sparsity to characterize rain streaks, which helps to preserve
the continuity of the rain streaks, leading to more accurate rain streak
removal results than compared methods. In comparison, DIP fails to
preserve the continuity of rain streaks, e.g., ‘‘coastguard’’ and ‘‘foreman’’

with heavy rain streaks and ‘‘carphone’’ with light rain streaks. Since the
continuity of the rain streaks is significant for heavy rain streaks, it is
easy to observe that the proposed method equipped with group sparsity
term outperforms the compared methods in the videos with heavy rain
streaks.

Discussion of each term: We investigate the role of each term
in our model (7) by changing one parameter while fixing the others.
Fig. 8 shows the PSNR curves of the proposed method using different
parameter settings, where the testing parameter is chosen from the
geometric series {0.1, 0.121,… , 0.1×1.1𝑘,… , 1000}. It could be found that
each component in the proposed method has an important contribution
to the performance of the proposed method.

Discussion of groups: The group size is a vital parameter which is
set as one column in this paper unless otherwise specified. Nevertheless,
it is interesting to investigate the influence of different group sizes.
Table 2 shows the PSNR and SSIM values of the proposed model using
different group sizes. From Table 2, we can observe that the group size
has an influence on the performance of the proposed model. The video
with heavy rain streaks favors large group size while the video with
light rain streaks favors small group size. For simplicity, we choose
one column as default in all experiments because there is no significant
difference among different group sizes.

Discussions of oblique rain streaks: Since we initially assumed
that the rain streaks are vertical, the proposed method favors the case
of vertical rain streaks. However, in practice, our assumption may not
hold when the angle between the rain streaks and the vertical direction
may be large. To test the performance of the proposed method on
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Fig. 13. Rain streak removal results of different methods on the video ‘‘wall’’. From left to right: the rainy frames, the results by LRMC [7], DIP [15], and the proposed method.

the videos with oblique rain streaks, we consider two synthetic videos
‘‘highway2’’ and ‘‘waterfall’’, where the angles between rain streaks
and the vertical direction are randomly distributed in [35◦, 55◦] in
‘‘highway2’’ and [15◦, 35◦] in ‘‘waterfall’’, respectively. The quantitative
results are given in Table 3 and the recovered frames are displayed
in Fig. 9. We observe that the proposed method still obtains the best
performance and achieves promising results. We give an explanation for
this. The proposed model consists of four regularization terms, which
simultaneously contribute to the rain streak removal. When the rain
streaks are oblique, the regularizers corresponding to the directional
property and the group sparsity of the rain streaks would not be helpful.
Nonetheless, the temporal and horizontal continuity of the background
still hold. Therefore, tuning the parameters to emphasize the effects of
these two regularizers would help the proposed method to remove the
rain streaks.

Discussions of the preprocessing: Before applying our algorithm,
there are two preprocessing steps: (a) the conversion from RGB color
space to YUV color space; (b) adding reflective boundary conditions.
We illustrate the influence of the two preprocessing steps using the
video ‘‘carphone’’ with heavy rain streaks and light rain streaks. Table 4
shows the quantitative effects from these two preprocessing steps. We
observe that the preprocessing (a) does not have a significant influence
on the performance but can significantly reduce the running time. Since
LRMC is designed for RGB videos, we do the preprocessing (a) for
DIP, while we still use the RGB format as the input of LRMC. On the
other hand, as we expected, the reflective boundary condition slightly
improves the performance. Based on the above discussions, we keep the

two preprocessing steps in the proposed method for the performance
and efficiency purpose.

4.2. Real data

We test four real rainy videos. The first one is a clipped part of
size 260 × 440 × 3 × 128 from the movie “the Matrix”, and
the second video4 (denoted as ‘‘yard’’) is a backyard video of size
512 × 256 × 3 × 128 recorded in a rainy day. The third video5 (denoted
as ‘‘crossing’’) of size 480 × 640 × 3 × 108 is captured in the crossing with
complex traffic conditions, and the last video (denoted as ‘‘wall’’) of size
288 × 368 × 3 × 173 is download from the CAVE dataset6. It is worth
mentioning that the proposed method is not sensitive to parameters.
The parameters for real data are the same as those in the first synthetic
experiments.

Performance comparisons: The first video is a very challenging
video under lightning which enlarges the difference between adjacent
frames and breaks the continuity along the temporal direction. The rain
streak removal results are displayed in Fig. 10. We can observe that the
rain streaks are more effectively removed by the proposed methods as
compared with the other methods.

4 https://github.com/TaiXiangJiang/FastDeRain/blob/master/yard.mp4.
5 https://github.com/hotndy/SPAC-SupplementaryMaterials/blob/master/

Dataset_Testing_RealRain/ra4_Rain.rar.
6 http://www.cs.columbia.edu/CAVE/projects/camerarain/.
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For the second video, the rain streak removal results are displayed
in Fig. 11. The performance of DIP is promising when there is no
moving foreground and dynamic background, which, however, is not
always meet in the real-world. Nevertheless, the rain streaks are more
effectively removed by the proposed methods as compared with the
other methods.

The rain streak removal results for the third video and the last video
are displayed in Figs. 12 and 13, respectively. We observe that the
proposed method performs better than the competing methods. More
precisely, with the help of the group sparsity, the proposed method
removes rain streaks more completely than LRMC and DIP. On the other
hand, by dropping the low-rankness regularizer, the proposed method
preserves image details better than DIP. These results demonstrate the
superiority of the proposed method again.

5. Conclusions

In this paper, we proposed a tensor-based rain streak removal model.
We used the group sparsity and the smoothness along the vertical
direction to characterize the rain streaks, and used the smoothness
along the horizontal direction and the temporal direction to charac-
terize the clean video. We developed an efficient ADMM algorithm to
solve the proposed model. The experiments on synthetic and real data
demonstrate the superiority of the proposed method over state-of-the-art
methods quantitatively and qualitatively.
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