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FastDeRain: A Novel Video Rain Streak Removal
Method Using Directional Gradient Priors

Tai-Xiang Jiang , Ting-Zhu Huang, Xi-Le Zhao , Liang-Jian Deng, and Yao Wang

Abstract— Rain streaks removal is an important issue in out-
door vision systems and has recently been investigated extensively.
In this paper, we propose a novel video rain streak removal
approach FastDeRain, which fully considers the discriminative
characteristics of rain streaks and the clean video in the gradient
domain. Specifically, on the one hand, rain streaks are sparse
and smooth along the direction of the raindrops, whereas on the
other hand, clean videos exhibit piecewise smoothness along the
rain-perpendicular direction and continuity along the temporal
direction. Theses smoothness and continuity result in the sparse
distribution in the different directional gradient domain. Thus,
we minimize: 1) the �1 norm to enhance the sparsity of the
underlying rain streaks; 2) two �1 norm of unidirectional
total variation regularizers to guarantee the anisotropic spatial
smoothness; and 3) an �1 norm of the time-directional differ-
ence operator to characterize the temporal continuity. A split
augmented Lagrangian shrinkage algorithm-based algorithm is
designed to solve the proposed minimization model. Experiments
conducted on synthetic and real data demonstrate the effective-
ness and efficiency of the proposed method. According to the
comprehensive quantitative performance measures, our approach
outperforms other state-of-the-art methods, especially on account
of the running time. The code of FastDeRain can be downloaded
at https://github.com/TaiXiangJiang/FastDeRain.

Index Terms— Video rain streak removal, unidirectional
total variation, split augmented Lagrangian shrinkage
algorithm (SALSA).

I. INTRODUCTION

OUTDOOR vision systems are frequently affected by
bad weather conditions [1]–[5], one of which is the

rain. Raindrops usually introduce bright streaks into the
acquired images or videos, because of their scattering of
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Fig. 1. A frame of a rainy video (left), the rain streaks removal result by the
proposed method FastDeRain (middle) and the extracted rain streaks (right).
The pixel values of the rain streaks are scaled for better visualization.

light into complementary metal–oxide–semiconductor cam-
eras and their high velocities. Moreover, rain streaks also
interfere with nearby pixels because of their specular high-
lights, scattering, and blurring effects [1]. This undesirable
interference will degrade the performance of various com-
puter vision algorithms [6], such as event detection [7],
object detection [8], tracking [9], recognition [10], and scene
analysis [11]. Therefore, the removal of rain streaks is an
essential task [78], which has recently received considerable
attention.

Numerous methods have been proposed to improve the
visibility of images/videos captured with rain streak interfer-
ence [12]–[49]. They can be classified into two categories:
multiple-images/videos based techniques and single-image
based approaches. Fig. 1 exhibits an example of video rain
streaks removal. Without loss of generality, in this paper,
we use “background” to denote the rain-free content of the
data.

For the single-image de-raining task, Kang et al. [12]
decomposed a rainy image into low-frequency (LF) and
high-frequency (HF) components using a bilateral filter and
then performed morphological component analysis (MCA)-
based dictionary learning and sparse coding to separate the
rain streaks in the HF component. To alleviate the loss of the
details when learning HF image bases, Sun et al. [13] tactfully
exploited the structural similarity of the derived HF image
bases. Chen and Hsu [14] considered the similar and repeated
patterns of the rain streaks and the smoothness of the back-
ground. Sparse coding and dictionary learning were adopted
in [16]–[18]. In their results, the details of backgrounds were
well preserved. Meanwhile, Zhang and Patel [19] decomposed
a rainy image into a clear background image and a rain streak
image using a set of generic sparsity-based and low-rank
representation-based convolutional filters. The recent work by
Li et al. [1], [20] utilized Gaussian mixture model (GMM)
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patch priors for rain streak removal, with the ability to
account for rain streaks of different orientations and scales.
Zhu et al. [21] proposed a joint bi-layer optimization method
progressively separate rain streaks from background details,
in which the gradient statistics are analyzed. Meanwhile,
the directional property of rain streaks received a lot of
attention in [24]–[26] and these methods achieved promising
performances. Wang et al. [27] took advantage the image
decomposition and dictionary learning. The recently devel-
oped deep learning technique was also applied to the single
image rain streaks removal task, and excellent results were
obtained [28]–[38].

For the video rain streaks removal, Garg and Nayar [39]
firstly raised a video rain streaks removal method with com-
prehensive analysis of the visual effects of the rain on an
imaging system. Since then, many approaches have been
proposed for the video rain streaks task and obtained good rain
removing performance in videos with different rain circum-
stances. Comprehensive early existing video-based methods
are summarized in [40]. Chen and Chau [15] took account
of the highly dynamic scenes. Whereafter, Kim et al. [41]
considered the temporal correlation of rain streaks and the
low-rank nature of clean videos. Santhaseelan and Asari [42]
detected and removed the rain streaks based on phase congru-
ency features. You et al. [43] dealt with the situations where
the raindrops are adhered to the windscreen or the window
glass. In [44], a novel tensor-based video rain streak removal
approach was proposed considering the directional property.
Ren et al. [45] handled the video desnowing and deraining
task based on matrix decomposition. The rain streaks and the
clean background were stochastically modeled as a mixture
of Gaussians by Wei et al. [46] while Li et al. [47] learned
the multiscale convolutional filters from the rainy data. Both of
these two methods [46], [47] achieved excellent performances
with surveillance videos. For the video rain streaks removal,
the deep learning based methods also started to reveal their
effectiveness [48]–[50].

In general, the observation model for a rainy image is
formulated as O = B + R [1], which can be generalized
to the video case as: O = B + R, where O, B, and R ∈
R

m×n×t are three 3-mode tensors representing the observed
rainy video, the unknown rain-free video and the rain streaks,
respectively. When considering the noise or error, the obser-
vation model is modified as O = B + R + N , where N
is the noise or error term. The goal of video rain streak
removal is to distinguish the clean video B and the rain
streaks R from an input rainy video O. This is an ill-posed
inverse problem, which can be handled by imposing prior
information. Therefore, from this point of view, the most
significant issues are the rational extraction and sufficient
utilization of the prior knowledge, which is helpful to wipe
off the rain streaks and reconstruct the rain-free video. In this
paper, we mainly focus on the discriminative characteristics of
rain streaks and background in different directional gradient
domains.

From the temporal perspective, the clean video is contin-
uous along the time direction, while the rain streaks do not
share this property [41], [46], [51]. As observed in Fig. 2, the

Fig. 2. From left to right: the histograms of temporal gradient of the
rainy video (a-1), the clean video (a-2) and the isolated rain streaks (a-3),
respectively; several example frames from the rainy video, the clean video
and the isolated rain streaks; and the histograms of the vertical gradient
(b-1,2,3) and the intensities along a row (c-1,2,3) in the rainy video, the clean
video and the isolated rain streaks, respectively.

time-directional gradient of the rain-free video (a-2) exhibits
a different histogram compared with those of the rainy video
(a-1) and the rain streaks (a-3). The temporal gradient of the
clean video is much sparser and it is corresponding to the
temporal continuity of the clean video. Therefore, we intend
to minimize �∇tB�1, where ∇t is the temporal differential
operator.

From the spatial perspective, it has been widely recognized
that natural images are largely piecewise smooth and their
gradient fields or the coefficients in the tight wavelet frame
domain are typically sparse [52]–[54]. Many aforementioned
de-rain methods take the spatial gradient into consideration
and use the total variation (TV) to depict the property of the
rain-free part [1], [14]. However, the effects of the rain streaks
on the vertical gradient and horizontal gradient are different.
This phenomenon was likewise noticed in [24]–[26]. Initially,
for the sake of convenience, we assume that rain streaks are
approximately vertical. The impact of the vertical rain streaks
on the vertical gradient is limited. The subfigures (b-1,2,3)
in Fig. 2 reveal that the vertical gradient of rain streaks
are much sparser than those of the clean video and the
rainy video. Nonetheless, the vertical rain streaks severely
disrupt the horizontal piecewise smoothness. As exhibited
in Fig. 2 (c-1,2,3), the pixel intensity is piecewise smooth
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only in (c-2), whereas burrs frequently appear in (c-1) and (c-
3). Therefore, we intend to minimize �∇1R�1 and �∇2B�1,
where ∇1 and ∇2 are respectively the vertical difference (or say
vertical unidirectional TV [55]–[57]) operator and horizontal
difference (or say horizontal unidirectional TV) operator.

Given a real rainfall-affected scene, without the wind,
the raindrops generally fall from top to bottom. Meanwhile,
when not very windy, the angles between rain streaks and
the vertical direction are usually not very large. Therefore,
the rain streak direction can be approximated as the vertical
direction, i.e. the mode-1 (column) direction of the video
tensor. Actually, this assumption is reasonable for parts of the
rainy sceneries. For the rain streaks that are oblique (or say far
from being vertical), directly utilizing the directional property
is very difficult for the digital video data, which are cubes of
distinct numbers. To cope with this difficulty, in Sec. III-E,
we would design the shift strategy, based on our automatical
rain streaks’ direction detection method.

The contributions of this paper include three aspects.

• We propose a video rain streaks removal model, which
fully considers the discriminative prior knowledge of the
rain streaks and the clean video.

• We design a split augmented Lagrangian shrinkage
algorithm (SALSA) based algorithm to efficiently and
effectively solve the proposed minimization model. The
convergence of our algorithm is theoretically guaranteed.
Meanwhile, the implementation on the graphics process-
ing unit (GPU) device further accelerates our method.

• To demonstrate the efficacy and the superior performance
of the proposed algorithm in comparison with state-of-
the-art alternatives, extensive experiments both on the
synthetic data and the real-world rainy videos are con-
ducted.

This work is an extension of the material published in [44].
The new material is the following: a) the proposed rain streaks
removal model is improved and herein introduced in more
technical details; b) we explicitly use the split augmented
Lagrangian shrinkage algorithm to solve the proposed model;
c) to make the proposed method more applicable, we provide
the shift strategy to deal with oblique rain streaks; d) in our
experiments, we re-simulate the rain streaks for the synthetic
data, using two different techniques and considering the rain
streaks not very vertical; e) three recent state-of-the-art meth-
ods, consisting of methods in [31] and [47] and the method
in our conference paper [44], are brought into comparison.

The paper organized as follows. Section II gives the prelim-
inary on the tensor notations. In Section III, the formulation
of our model is presented along with a SALSA solver. Exper-
imental results are reported in Section IV. Finally, we draw
some conclusions in Section V.

II. NOTATION AND PRELIMINARIES

Following [58]–[61], we use lower-case letters for vectors,
e.g., a; upper-case letters for matrices, e.g., A; and calligraphic
letters for tensors, e.g., A. An N-mode tensor is defined as
X ∈ R

I1×I2×···×IN , and xi1,i2,··· ,iN denotes its (i1, i2, · · · , iN )-
th component.

TABLE I

TENSOR NOTATIONS

A fiber of a tensor is defined by fixing every index but one.
A third-order tensor has column, row, and tube fibers, denoted
by x: j k , xi:k , and xi j :, respectively. When extracted from their
tensors, fibers are always assumed to be oriented as column
vectors.

A slice is a two-dimensional section of a tensor, defined by
fixing all but two indices. The horizontal, lateral, and frontal
slides of a third-order tensor X are denoted by Xi::, X: j :,
and X::k , respectively. Alternatively, the k-th frontal slice of
a third-order tensor, X::k , may be denoted more compactly
by Xk .

The inner product of two same-sized tensors X and Y
is defined as �X ,Y� := �

i1,i2,··· ,iN

xi1i2···iN · yi1i2···iN . The

corresponding norm (Frobenius norm) is then defined as
�X�F := √�X ,X �.

Please refer to [62] for a more extensive overview.

III. MAIN RESULTS

A. Problem Formulation

As mentioned before, a rainy video O ∈ R
m×n×t can be

modeled as a linear superposition:

O = B + R + N , (1)

where O,B,R and N ∈ R
m×n×t are four 3-mode ten-

sors representing the observed rainy video, the unknown
rain-free video, the rain streaks and the noise (or error) term,
respectively.

Our goal is to decompose the rain-free video B and the rain
streaks R from an input rainy video O. To solve this ill-posed
inverse problem, we need to analyze the prior information for
both B and R and then introduce corresponding regularizers,
which will be discussed in the next subsection.

B. Priors and Regularizers

In this subsection, we continue the discussion on the prior
knowledge with the assumption that rain streaks are approxi-
mately vertical.

a) Sparsity of rain streaks: When the rain is light, the rain
streaks can naturally be considered as being sparse. To boost
the sparsity of rain streaks, minimizing the �1 norm of the
rain streaks R is an ideal option. When the rain is very heavy,
it seems that this regularization is not proper. However, when
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the rain is extremely heavy, it is very difficult or even
impossible to recover the rain-free part because of the huge
loss of the reliable information. The rainy scenarios discussed
in this paper are not that extreme, and we assume that the
rain streaks always maintain lower energy than the background
clean videos. Therefore, when the rain streaks are dense, the �1
norm can be viewed as a role to restrain the magnitude of the
rain streaks. Meanwhile, in our model, other regularization
terms would also contribute to distinguishing the rain streaks.
Thus, we can tackle the heavy raining scenarios by tuning the
parameter of the sparsity term so as to reduce its effect.

b) The horizontal direction: In Fig. 2, (c-1,2,3) show the
pixel intensities along a fixed row of the rainy video, the clean
video and the rain streaks, respectively. It is obvious that
the variation of the pixel intensity is piecewise smooth only
in (c-2), whereas burrs frequently appear in (c-1) and (c-3).
Therefore, a horizontal unidirectional TV regularizer is a
suitable candidate for B.

c) The vertical direction: It can be seen from Fig. 2 that
(b-3), which is the histogram of the intensity of the vertical
gradient in a rain-streak frame, exhibits a distinct distribution
with respect to (c-1) and (c-2). The long-tailed distributions in
(c-1) and (c-3) indicate that the minimization of the l1 norm
of ∇1R would help to distinguish the rain streaks.

d) The temporal direction: From the first column of
Fig. 2, it can be observed that clean videos exhibit the conti-
nuity along the time axis. Sub-figures (a-1,2,3), which present
the histograms of the magnitudes in the temporal directional
gradient, illustrate that the clean video’s temporal gradients
consist of more zero values and smaller non-zero values,
whereas those of the rainy video and rain streaks tend to be
long-tailed. Therefore, it is natural to minimize the l1 norm
of the temporal gradient of the clean video B. By the way,
the low-rank regularization used in [44] is discarded since
that the low-rank assumption is not reasonable for the videos
captured by dynamic cameras and the rain streaks, which
always share the repetitive patterns, can occasionally be more
low-rank than the background along the spatial directions.

C. The Proposed Model

Generally, there is an angle between the vertical direction
and the real falling direction of the raindrops. The rain streaks
pictured in Fig. 2 are not strictly vertical and there is a
5-degree angle between the rain streaks and the y-axis. In
other words, the prior knowledge discussed above are still
valid when this angle is small. Large-angle cases would be
discussed in Sec. III-E). Therefore, the rain streak direction
is referred to as the vertical direction corresponding to the
y-axis, whereas the rain-perpendicular direction is referred to
as the horizontal direction corresponding to the x-axis. Thus,
as a summary of the discussion of the priors and regularizers,
our model can be compactly formulated as follows:

min
B,R

α1�∇1R�1 + α2�R�1 + α3�∇2B�1

+α4�∇tB�1 + 1

2
�O − (B + R)�2

F

s.t. O � B � 0, O � R � 0, (2)

where ∇1, ∇2 and ∇t are the vertical, horizontal and temporal
differential operators, respectively. ∇1 and ∇2 are also written
as ∇y and ∇x in [24] and [44]. An efficient algorithm is
proposed in the following subsection to solve (2).

D. Optimization

Since the proposed model (2) is concise and convex, many
state-of-the-art solvers are available to solve it. Here, we apply
the ADMM [63], which has been proved an effective strategy
for solving large scale optimization problems [64]–[67]. More
specifically, we adopt SALSA [68].

After introducing four auxiliary tensors the proposed
model (2) is reformulated as the following equivalent con-
strained problem:

min
B,Vi ,Di

α1�V1�1 + α2�V2�1 + α3�V3�1 + α4�V4�1

+1

2
�O − (B + R)�2

F

s.t. V1 = ∇1(R), V2 = R, V3 = ∇2(B),

V4 = ∇t (B), O � B � 0, O � R � 0 (3)

where Vi ∈ R
m×n×t (i = 1, 2, 3, 4).

Then, the augmented Lagrangian function of (3) is

Lμ(B,R,Vi ,Di )

= 1

2
�O − B − R�2

F + α1�V1�1 + α2�V2�1

+α3�V3�1 + α4�V4�1 + μ

2
�∇1R − V1 − D1�2

F

+μ

2
�R − V2 − D2�2

F + μ

2
�∇2B − V3 − D3�2

F

+μ

2
�∇tB − V4 − D4�2

F ,

where the Di s (i = 1, 2, 3, 4) are the scaled Lagrange
multipliers and the μ is a positive scalar.

e) Vi sub-problems: For i = 1, 2, 3, 4, the Vi

sub-problem can be written as a equivalent problem:

V+
i = arg min

Vi

αi�Vi�1 + μ

2
�Ai − Vi�2

F .

Such a problem has a closed-form solution, obtained through
soft thresholding:

V+
i = S αi

μ
(Ai ) .

Here, the tensor non-negative soft-thresholding operator
Sv (·) is defined as

Sv (A) = Ā

with

āi1i2 ···iN =
�

ai1i2 ···iN − v, ai1i2 ···iN > v,

0, otherwise.
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Therefore, Vi (i = 1, 2, 3, 4) can respectively be updated
as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V (t+1)
1 = S α1

μ

(∇1R − D1) ,

V (t+1)
2 = S α2

μ

(R − D2) ,

V (t+1)
3 = S α3

μ

(∇2B − D3) ,

V (t+1)
4 = S α4

μ

(∇tB − D4) .

(4)

The time complexity of each sub-problem above is O(mnt).
f) B and R sub-problems: B and R sub-problems are

least-squares problems:

B+ = arg min
O≤B≤0

1

2
�O − B − R�2

F + μ

2
�∇2B − V3 − D3�2

F

+μ

2
�∇tB − V4 − D4�2

F ,

R+ = arg min
O≤R≤0

1

2
�O − B − R�2

F + μ

2
�∇1R − V1 − D1�2

F

+μ

2
�R − V2 − D2�2

F .

Then, we have

B+ = O − R + μ∇	
2 (V3 − D3) + μ∇	

t (V4 − D4)

1 + μ∇	
2 ∇2 + μ∇	

t ∇t

R+ = O − B + μ∇	
1 (V1 − D1) + μ(V2 − D2)

1 + μ∇	
1 ∇1 + μ

(5)

We adopt the fast Fourier transform (FFT) for fast calculation
when updating B and R. Meanwhile, the elements in B(t+1)

and R(t+1)that are smaller than 0 or larger than the corre-
sponding elements in O will be shrunk. The time complexity
of updating B (or R) is O(mnt · log(mnt)).

g) Multipliers updating: The Lagrange multipliers Di s
(i = 1, 2, 3, 4) can be updated as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D1 = D1 + ∇1R − V1

D2 = D2 + R − V2

D3 = D3 + ∇2B − V3

D4 = D4 + ∇tB − V4

(6)

The proposed algorithm for video rain streak removal is
denoted as “FastDeRain” and summarized in Algorithm 1. For
a video with dimensions of m × n × t , the time complexity of
the proposed algorithm is proportional to O (mnt log(mnt)).

E. The Shift Strategy for Oblique Rain Streaks

As we know that, in a real rainfall-affected scene, the rain
streaks are not always vertical. Thus, the directional property
we utilized in our model is a double-edged sword when dealing
with digital videos. Fortunately, as shown in the experimental
part, our FastDeRain is robust to a range of angles, about −15◦
to 15◦ with respect to the vertical direction. Thus, we consider
to divide the rainy situations into different cases.

Without loss of generality, we assume that the rain streaks
are in a similar direction and the angle between rain

Algorithm 1 FastDeRain

Fig. 3. Illustrations of the shift I and the shift II operations. For better
visualization, the rain streaks in the left part are roughly labeled with the red
color, while the pixel values of the rain streaks images in the right are scaled.

streaks and the vertical direction is denoted as θ . Generally,
the angle θ distributes in (−90◦, 90◦). If the angle θ ∈
(−90◦, 0◦), we can restrict it to the range of (0◦, 90◦) by
the left-right flipping of each frame. When θ ∈ (45◦, 90◦),
we can restrict it to the range of (0◦, 45◦) by transposing (i.e.
interchanging the rows and columns of a given matrix) each
frame. Therefore, our goal turns to handle the rain streaks with
angles in [0◦, 45◦].

When the angle θ is close to zero and not bigger than,
we directly use our FastDeRain, and for other elaborately
In this subsection, inspired by the shearing techniques used
for cartoon-texture image decomposition [69], we propose the
shift strategy to deal with rain streaks not vertical.

a) The shift operations: We first introduce two shift oper-
ations, as shown in Fig. 3. Different from the rotation operation
recommended in [44], the core idea of the shift operations is to
rationally slide the rows of the rainy frames and make the rain
streaks being approximately vertical without any degradation
caused by the interpolation [70]. We remark here that these
shifting operations would not affect the priors mentioned in
Sec. III-B. These two shift operations are detailed as follows:

Shift I For each frame O::k , we slide the i -th row (i − 1)
pixel(s) to the right.

Shift II For each frame O::k , we slide the i -th row � (i−1)
2 �1

pixel(s) to the right.
Without loss of generality, we assume that the rain streaks

are in a similar direction and the angle between rain streaks
and the vertical direction is denoted as θ . Shift I is suitable for
the rain streaks with θ = 45◦ while Shift II is ideal for θ =
26.57◦, since that arctan 1 = 45◦ and arctan 1/2 ≈ 26.57◦.
Considering that the proposed FastDeRain is robust to a range

1�x� denotes the rounding the x to the nearest integers towards minus
infinity.
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of angles (see details in Sec. IV), our method with Shift I and
Shift II is sufficient for the situations when θ ∈ [0◦, 45◦].

Generally, the angle θ distributes in (−90◦, 90◦). If the
angle θ ∈ (−90◦, 0◦), we can restrict it to the range of
(0◦, 90◦) by the left-right flipping of each frame. When θ ∈
(45◦, 90◦), we can restrict it to the range of (0◦, 45◦) by
transposing (i.e. interchanging the rows and columns of a
given matrix) each frame. Hence, our method with the shift
operations is able to handle all the cases.

b) The shift strategy: After giving the shift operations
and the left-right flipping and transposing transformations, the
question comes to how to automatically decide the transforma-
tion and the shift operation. Fortunately, based on our analysis
of the prior knowledge in Sec. III-B, it’s not difficult to come
up with a practical and efficient strategy with these two shift
operations.

Then, for a rainy video O ∈ R
m×n×t , our strategy consists

of three steps:
1) Filtering. Filter the horizontal slices of the rainy video

with a 3 × 3 median filter, i.e., for i = 1, 2, · · · , m,
�O(i, :, :) = med(O(i, :, :)), and obtain R0 = O − �O.

2) Transforming and shifting. Left-right flip and transpose
each frame of R0, and respectively apply shift I and shift II
operations. Then we obtain a set of tensors, consisted of R0
and the variants of R0.

3) Computing vertical gradients. For each tensor Ri
0 in this

set, we compute yi = �∇1Ri
0�1. Then we select the transfor-

mation and shift operations corresponding to the minimal yi .
By these three steps, the transforming and shift operations are
automatically selected. We input the data after transforming
and shifting into Algorithm 1 and finally conduct the inverse
transformation and shift on the output.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
algorithm on synthetic data and real-world rainy videos.

a) Implementation details: Throughout our experiments,
color videos with dimensions of m × n × 3 × t are trans-
formed into the YUV format. YUV is a color space that
is often used as part of a color image pipeline. Y stands
for the luma component (the brightness), and U and V are
the chrominance (color) components2. We apply our method
only to the Y channel with the dimension of m × n × t . The
exhibited rain streaks are scaled for better visualization.

Since that the graphics processing unit (GPU) device is
able to speed up the large-scale computing, we implement our
method on the platform of Windows 10 and Matlab (R2017a)
with an Intel(R) Core(TM) i5-4590 CPU at 3.30GHz, 16 GB
RAM, and a GTX1080 GPU. The involved operations in
algorithm 1 is convenient to be implemented on the GPU
device [71]. If we conduct our algorithm on the CPU, the run-
ning time for dealing with a video of size 240×320×3×100
is about 23 seconds, while 7 seconds on the GPU device.
Meanwhile, Fu et al.’s method [31] can also be accelerated by
the GPU device, from 38 seconds on the CPU to 24 seconds
on the GPU, dealing with a video of size 240×320×3×100.

2https://en.wikipedia.org/wiki/YUV

Fig. 4. The rainy frame, rain streaks removal results, extracted rain streaks
and corresponding error images by different methods with synthetic rain
streaks in case 1, respectively. The corresponding videos from top to bottom
are the “’foreman”, ”bus”, ”waterfall” and ”highway”. From left to right
are: the rainy data (or the color bar), results by TCL [41], DDN [31],
DIP [44], (MS-CSC [47],) FastDeRain, and the ground truth (GT) clean video,
respectively.

Thus, we only report the GPU running time of FastDeRain
and Fu et al.’s method in this section.

b) Compared methods: To validate the effectiveness
and efficiency of the proposed method, we compare our
method (denoted as “FastDeRain”) with recent state-of-the-
art methods, including one single image based method, i.e.,
Fu et al.’s deep detail network (DDN) method3 [31]; and three
video-based methods, i.e., Kim et al.’s method using temporal
correlation and low-rankness (TCL) 4 [41], the method,
in our conference paper, utilizing discriminative intrinsic priors
(DIP) [44], and Li et al.’s multiscale convolutional sparse cod-

3http://smartdsp.xmu.edu.cn/xyfu.html
4http://mcl.korea.ac.kr/j̃hkim/deraining/deraining_code_with_example.zip
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ing (MS-CSC) method5 [47]. In fact, DDN is a single-image-
based rain streak removal method, but their performance
has already surpassed some video-based methods. The deep
learning technique shows a great vitality and an extremely
wide application prospect. Hence, the comparison with DDN
is reasonable and challenging.

A. Synthetic Data

a) Rain streak generation: Adding rain streaks to a
video is indeed a complex problem since there is not an
existing algorithm nor a free software to accomplish it in
one step. Meanwhile, as Starik and Werman [51] pointed out
that the rain streaks can be assumed temporal independent,
thus we can simulate rain streaks for each frame using the
synthetic method mentioned in many recently developed single
image rain streaks removal approaches [12], [17], [30], i.e.,
using the Photoshop software with the tutorial documents [72].
The density of the simulated rain streaks by this method
is mainly determined by the ratio of the amounts of dots
(in [72, Step 8]) to the number of all the pixels, and, for
convenience, the ratio is denoted as r . Another way to syn-
thesize the rain streaks was proposed in [46] and [47], adding
rain streaks taken by photographers under black background6.

Referring to [46], [47], and [72], we generate 3 types of
rain streaks as follows:

Case 1: Rain streaks simulated referring to [72] with r ≤
0.04. In a single frame, the rain streaks share the same angle.
The fixed angles for different frames increase from −15◦ to
15◦ with time;

Case 2: Rain streaks simulated referring to [72] with r ≥
0.05. In a single frame, the rain streaks are with different
angles. The angles uniformly distribute in a range [−15◦, 15◦];

Case 3: Rain streaks simulated referring to [46].
Four videos are selected as the clean background. Three

videos7, named “foreman” with the size of 144×176×3×160,
“bus” and “waterfall” with the size of 288×352×3×100, are
captured by dynamic cameras, while the other one8, named “
highway” with the size of 240 × 320 × 3 × 100, are recorded
by a static camera.

MS-CSC [47] is designed mainly for the videos captured by
static cameras, and directly applying it on the video captured
by dynamic camera would result in poor performances (see
the gray values in Table II. Therefore, for a fair comparison,
the compared methods included DDN [30], TCL [41] and
DIP [44] when dealing with the synthetic rainy data generated
on the videos “foreman” “bus” and “waterfall”. When dealing
with the rainy data simulated with the video “highway”,
MS-CSC [47] would be brought into comparison.

b) Quantitative comparisons: For quantitative assess-
ment, the peak signal-to-noise ratio (PSNR) of the whole
video, and the structural similarity (SSIM) [73], the fea-
ture similarity (FSIM) [74], the visual information fidelity
(VIF) [75], the universal image quality index (UIQI) [76], and

5https://github.com/MinghanLi/MS-CSC-Rain-Streak-Removal
6http://www.2gei.com/video/effect/1_rain/
7http://trace.eas.asu.edu/yuv/
8http://www.changedetection.net

TABLE II

QUANTITATIVE COMPARISONS OF THE RAIN STREAK REMOVAL RESULTS
OF [41], [31], [46], [47] AND THE PROPOSED METHOD ON SYNTHETIC

VIDEOS. THE BEST QUANTITATIVE VALUES ARE IN BOLDFACE

the gradient magnitude similarity deviation (GMSD, smaller
is better) [77] of each frame are calculated. The PSNR,
the corresponding mean values of SSIM FSIM VIF and UIQI,
and the running time are reported in Table II, in which the
best quantitative values are in boldface.

As observed in Table II, our method considerably outper-
formed the other four state-of-the-art methods in terms of
all the selected quality assessment indexes. Notably, in many
cases, the performances of the single-image-based deep learn-
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Fig. 5. The rainy frame, rain streaks removal results, extracted rain streaks
and corresponding error images by different methods with synthetic rain
streaks in case 2, respectively. The corresponding videos from top to bottom
are the “’foreman”, ”bus”, ”waterfall” and ”highway”. From left to right
are: the rainy data (or the color bar), results by TCL [41], DDN [31],
DIP [44], (MS-CSC [47],) FastDeRain, and the ground truth (GT) clean video,
respectively.

ing method DNN surpassed the those of the video-based
method TCL. This is in agreement with the aforementioned
rationality of considering comparisons with the single-image-
based method.

The running time of the our FastDeRain is extremely
low. In particular, our method took less than 10 seconds
when dealing with all the synthetic data. The speed of DIP
and DNN are comparably fast. After removing the nuclear
norm term and avoiding the time consuming singular values
decomposition, our algorithm, with closed-form solutions to
its sub-problems and a time complexity of approximately
O(mnt log(mnt)) for an input video with a resolution of m×n
and t frames, is expected to be efficient. In the meantime,

Fig. 6. The rainy frame, rain streaks removal results, extracted rain streaks
and corresponding error images by different methods with synthetic rain
streaks in case 3, respectively. The corresponding videos from top to bottom
are the “’foreman”, ”bus”, ”waterfall” and ”highway”. From left to right
are: the rainy data (or the color bar), results by TCL [41], DDN [31],
DIP [44], (MS-CSC [47],) FastDeRain, and the ground truth (GT) clean video,
respectively.

the aforementioned implementation on the GPU device also
largely accelerated our algorithm.

c) Visual comparisons: Fig. 4, 5 and 6 exhibit the results
conducted on videos with synthetic rain streaks in case 1,
case 2 and case 3, respectively. In Fig. 4, since the angles
of rain streaks in case 1 increase with time, we display the
frames at the beginning or end. Meanwhile, only one frame is
exhibited in Fig. 5, Fig. 6 on account of that the rain streaks
in every frame are of various directions.

In Fig. 4, all the methods removed almost all of the
rain streaks and the proposed method maintained the best
background. Many details in the background were incorrectly
extracted to the rain streaks by DDN and TCL. It can be found
in the 6-th row of Fig. 4, i.e., the error images of the results
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Fig. 7. The mean SSIM FSIM and UIQI values with respect to different values of α1, α2, α3, α4 and μ. The solid lines are corresponding to the results of
FastDeRain while the dashed lines are related to the results obtained by our method without the N in Eq. (1).

on the video “bus”, that little vertical patterns were mistakenly
extracted as the rain streaks by the proposed method.

For the rain streaks in case 2, the denser rain streaks
imply that it is more difficult than rain streaks in case 1.
As we mentioned in Sec. III-B, the low-rank assumption
is not reasonable for the videos with moving objects. The
performance of DIP on the video “highway” was degraded.
From Fig. 5, we can find that our method preserved the
backgrounds well and other four methods erased the details
of the backgrounds.

In Fig. 6, the proposed method removed most of the
rain streaks and considerably preserves the background.
Other methods tended to obtain over de-rain or under de-rain
results. Considering the similarity of the extract rains streaks
to the ground truth rain streaks, our FastDeRain held obvious
advantages.

In summary, for these different types of synthetic data, our
method can simultaneously remove almost all rain streaks
while commendably preserving the details of the underlying
clean videos.

d) Discussion of each component: There are four com-
ponents in our model (2). To elucidate their distinct effects,
we degrade our method by setting each αi (i = 1, 2, 3, 4)
equal to 10−15, respectively. These degraded methods and
FastDeRain are tested on the video “waterfall” with synthetic
rain streaks in case 1. We present the quantitative assessments
in Fig. 9 and the visual results in Fig. 8.

From Fig. 9 and Fig. 8, we can conclude that all the four
components contribute to the removal of rain streaks. Specif-
ically, (a) when setting α1 = 10−15, the rain streaks tend to
be intermittent along the vertical direction; (b) the rain streaks
are fatter when the sparsity term contributes little; (c) some
rain streaks remain in the background when the horizontal
smoothness of the background is not sufficiently enhanced;
(d) the temporal continuity seems overwhelmingly important
since that without this regularization term our method nearly
failed.

e) Parameters: To examine the performance of the
proposed FastDeRain with respect to different parameters,
we conduct a series of experiments on the rainy data on
synthetic video “waterfall” with the synthetic rain streaks in
case 1 and the Gaussian noise with zero mean and standard
deviation 0.02. In Fig. 7, a parameter analysis is presented
and the SSIM FSIM and MUIQI are selected. Based on
guidance from Fig. 7, our tuning strategy is as following:
(1) set α2 and α3 as 10−4 and other αi s to 0.01, and μ = 1,
(2) tune α1 and α4 until the results are barely satisfactory,

Fig. 8. The top row shows the 80th frame of the rainy video, the results
by FastDeRain and its degraded versions, in which the αi s in Eq. (3) are set
as � = 10−15 in turn, and the ground truth (GT) clean video, respectively.
The middle row presents the extracted rain streaks by FastDeRain and its
degraded versions and the ground truth rain streaks, while the color bar and
corresponding error images are exhibited in the bottom row.

Fig. 9. The quantitative performances of the proposed method and its
degraded versions, in which the αi s in Eq. (3) are set as 10−15 in turn.

(3) and then fix α1 and α4 and enlarge α2 and α3 to further
improve the performance. The tuning principle is as follows:
when some of the texture or detail of the clean video is
extracted into the estimated rain streaks, we increase α2 and
α1 or decrease α4 and α3, and we do the opposite when
rain streaks remain in the estimated rain-free content. Our
recommended set of candidate values for α1 through α4 is
{0.0001, 0.0003, 0.001, 0.003, 0.01}. The Lagrange parame-
ter μ is suggested to be 1. In practice, the time cost for the
empirical tuning of the parameters is not much.

f) Discussion of the noise term N in Eq. (1): In this
paper, the noise (or error) term (N in Eq. (1)) is taken into
consideration in the observation model. To illustrate its effects,
we conduct a series of experiments, in which the Gaussian
noises of different standard deviations are respectively added
to the video “waterfall” with synthetic rain streaks in case 1.
The quantitative assessments of the results obtained by the
proposed method with and without the noise (or error) term
N taken into consideration (denoted as “w N ” and “w/o N ”,
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TABLE III

QUANTITATIVE COMPARISONS OF THE RAIN STREAK REMOVAL RESULTS
OF THE PROPOSED FASTDERAIN WITH (W) AND WITHOUT(W/O)

THE NOISE TERM TAKEN INTO CONSIDERATION ON SYNTHETIC

VIDEO “WATERFALL” WITH THE SYNTHETIC RAIN STREAKS IN

CASE 1. THE BEST QUANTITATIVE VALUES ARE
IN BOLDFACE

respectively ) are reported in Table III. In addition, we also
exhibit the effects of different parameters on the proposed
method without N in Fig. 7.

From Table III, we can conclude our method without N
would acquire a better result when the rainy video is free
from the noise. However, when the video is simultaneously
affected by the rain streaks and the noise, which is unavoidable
in real data, our method with N got better results. Therefore,
we adopt the term N in Eq. (3) which enhances the robustness
of our method to the noise. Meanwhile, the solid lines and
the dashed lines in Fig. 7 also demonstrate that taking the
noise (or error) term N into account would contribute to the
robustness of the proposed method to different parameters.

B. Real Data

In this section, four real-world rainy videos are chosen
in this subsection. The first one (denoted as “wall”) of size
288×368×3×171 is download from the CAVE dataset9 and
the second video10(denoted as “yard”) of size 512×256×3×
126 was recorded by one of the authors on a rainy day in his
backyard. The background of the video “wall” is consist of
regular patterns while the background of the video “yard” is
more complex. The third video is clipped from the well-known
film “the Matrix”. The scene in this clips changes fast so that it
is more difficult to deal with this video. The last video of size
480 × 640 × 3 × 108 is denoted as “crossing”11, and it was
captured in the crossing with complex traffic conditions. In
the mean time, to further illustrate the effects from noise term
N in Eq. (1) in the experiments with real-world rainy data,
we also exhibit the results obtained by our method without
the noise (or error) term N taken into consideration (denoted
as“w/o N ”).

9http://www.cs.columbia.edu/CAVE/projects/camera rain/
10https://github.com/TaiXiangJiang/FastDeRain/blob/master/yard.mp4
11https://github.com/hotndy/SPAC-SupplementaryMaterials/blob/master/

Dataset_Testing_RealRain/ra4_Rain.rar

Fig. 10. Rain streak removal performance of different methods obtained on
the video “wall”. From top to bottom, two adjacent frames of the deraining
results and corresponding extracted rain streaks are illustrated. From left to
right are: the rainy data, results by different methods, and the ground truth.

Fig. 11. Rain streak removal results on the video “yard”. From left to right
are frames of the rainy video, rain streaks removal results and corresponding
extracted rain streaks by different methods, respectively. From left to right
are: the rainy data, results by different methods, and the ground truth.

Fig. 10 shows two adjacent frames of the results obtained on
the video “wall”. There are many vertical line patterns in the
background of this video. Thus, exhibiting two adjacent frames
would further help to distinguish the rain streaks from the
background. It can be found in the zoomed in red blocks that
this rain streak with high brightness is not handled properly
by DNN and MS-CSC. Our methods, including DIP and
FastDeRain, remove almost all the rain streaks and preserves
the background best compared with the results by other three
methods. It can be found that the rain streaks acquired by
our FastDeRain is more smooth along the vertical direction
compared with the results obtained by our method without N .

Since that there is little texture or structure similar to
rain streaks in the video “yard”, only one frame is exhibited
in Fig. 11. DNN didn’t distinguish most of the rain streaks,
especially in the zoomed in red blocks. Although TCL and
MS-CSC separated the majority of rain streaks, we could still
observe remaining rain streaks in the zoomed in area. The
deraining results got by DIP and FastDerain were similarly
clean, and our FastDeRain without N incorrectly extracted
some content of the background into the rain streaks.

In Fig. 12, two adjacent frames of the rainy video “the
Matrix” and deraining results by different methods are shown.
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Fig. 12. Rain streak removal performance of different methods obtained on the clips of movie “the Matrix”. From top to bottom, 2 adjacent frames of the
rainy video/deraining results and corresponding extracted rain streaks are illustrated. From left to right are: the rainy data, results by different methods, and
the ground truth.

Fig. 13. Rain streak removal performance of different methods obtained on the video “crossing”. From left to right are: the rainy data, deraining results or
extracted rain streaks by different methods, and the ground truth.

The two adjacent rainy frames reveal the rapidly changing
of the scene, particularly the luminance. For this video, DIP
showed its limitation, remaining rain streaks in the deraining
result. Once again, our FastDeRain obtained the best result,
especially when dealing with the obvious rain streak on the
face of Neo. Our FastDeRain comparatively outperformed its
variation ersion without N in consideration of preservation of
the face of Neo.

The results on the rainy video “crossing” are exhibited
in Fig. 13. From the zoomed in areas in the first row, we can
observe that TCL and our FastDeRain (with and without N )
acquired the most clean background while DNN MS-CSC and
DIP left some rain streaks in the background more of less.
The extracted rain streaks in the second row show that TCL
extracted some the structure of the curb line into the rain
streaks while DNN tended to remove all the textures with line
pattern. The extracted rain streaks by the proposed FastDeRain
were visually the best among all the results.

The scenarios in these four videos are of large differences.
Our method obtains the best results, both in removing rain
streaks and in retaining spatial details. In addition, the running
time of our method is also obviously less than other methods,
especially those video-based methods.

TABLE IV

QUANTITATIVE COMPARISONS OF THE RAIN STREAK REMOVAL RESULTS
OF [41], [30], [46], [47] AND THE PROPOSED METHOD WITH THE

SHIFT STRATEGY WHEN RAIN STREAKS ARE FAR AWAY FROM

BEING VERTICAL. THE BEST QUANTITATIVE VALUES ARE

IN BOLDFACE

C. Oblique Rain Streaks

In this subsection, we examine the performance of our
method with the shift strategy and other four methods, when
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Fig. 14. From top to bottom are the rain streaks removal results, extracted
rain streaks and corresponding error images by different methods on the video
“highway1” (top 3 row) and “highway2” (bottom 3 row), respectively. From
left to right are: the rainy data, results by TCL [41], DDN [31], MS-CSC [47],
DIP [44] , and FastDeRain with the shift strategy, and the ground truth.

the rain streaks are far away from being vertical. We simulated
two rainy videos: one is rain streaks with angles varying
in [15◦, 35◦] added to the video “waterfall” (captured by a
dynamic camera); another one is rain streaks with angles
varying in [35◦, 55◦] added to the video “highway” (captured
by a static camera). As shown in Table IV and Fig. 14, the
shift strategy helped our method to obtains the best results
when dealing with the oblique rain streaks. The superior of
the proposed FastDeRain is obvious both quantitatively and
visually.

V. CONCLUSION

We have proposed a novel video rain streaks removal
approach: FastDeRain. The proposed method, based on direc-
tional gradient priors in combination with sparsity, outper-
forms a series of state-of-the-art methods both visually and
quantitively. We attribute the outperforming of FastDeRain
to our intensive analysis of the characteristic priors of rainy
videos, clean videos and rain streaks. Besides, it notable that
our method is markedly faster than the compared methods,
even including a every fast single-image-based method. Our
method is not without limitation. The natural rainy scenario is
sometimes mixed with haze, and how to handle the residual
rain artifacts remains an open problem. These issues will be
addressed in the future.
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