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ABSTRACT

In this paper, we propose a new tensor rank, named fibered
rank, by generalizing the tensor singular value decomposition
(t-SVD) to the mode-k t-SVD. It factorizes a three-way tensor
into two mode-k orthogonal tensors and a mode-k diagonal
tensor. To efficiently remove mixed noise and finely preserve
the structure information, we propose a novel hyperspectral
image denoising model based on the three-directional tensor
nuclear norm (3DTNN), which is a convex relaxation of the
fibered rank. An efficient alternating direction method of mul-
tipliers (ADMM)-based algorithm is developed to solve the
proposed model. Experimental results demonstrate the supe-
riority of the proposed method over the compared ones.

Index Terms— Hyperspectral image, fibered rank, tensor
nuclear norm, alternating direction method of multipliers.

1. INTRODUCTION

Hyperspectral images (HSIs) contain wealthy spatial-spectral
knowledge and have been widely used in many applications
[1]. However, HSIs in real applications always suffer from
various noises, such as Gaussian noise, sparse noise, and
stripes. The noises preclude the widespread employ of H-
SIs for subsequent processing tasks, such as target detection
and unmixing. Therefore, HSI denoising is an essential and
critical preprocessing step for HSI applications [2—4]. The
conclusive issue of HSI denoising is to explore rationally
extract spatial-spectral prior knowledge of HSIs. Generally,
the nonlocal self-similarity, the piecewise smoothness, and
the low rankness are often taken into consideration.

The nonlocal self-similarity assumes that HSIs contain
many similar cubes at different locations. This form of pri-
or has been fully exploited in BM4D [5], which first searches
similar 3D cubes and then removes noise collaboratively. The
piecewise smoothness means that HSIs are local continuous
along both spatial and spectral modes. To exploit this prior,
Yuan et al. [6] designed a spectral-spatial adaptive total varia-
tion (SSAHTV); and Aggarwal and Majumdar [7] introduced
the spatio-spectral total variation (SSTV). For low-rank prior,
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Fig. 1. Illustration of the mode-k t-SVD of X for k = 1,2, 3.
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one classic work is the low-rank matrix recovery (LRMR)-
based HSI denoising method [8].

Since an HSI can be regarded as a three-way tensor, many
denoising methods are devoted to designing the tensor de-
composition algorithms and the corresponding tensor ranks,
such as the low-rank tensor approximation (LRTA) based on
Tucker decomposition [9]. As the recent popular tensor tubal
rank, defined based on the tensor singular value decomposi-
tion (t-SVD), obtains promising results [10], Fan et al. [11]
proposed an HSI denoising model via low-tubal-rank tensor
recovery (LRTR). However, within the framework of t-SVD,
for a three-way tensor, the correlations along the first and the
second modes are characterized by the SVD while the correla-
tion along the third mode is encoded by the embedded circular
convolution. It means that t-SVD and tubal rank lack direct
characterization for the correlation along spectral mode.

Contributions. (1) We propose a new definition for ten-
sor rank, termed as tensor fibered rank, by generalizing the
t-SVD to the mode-k t-SVD (See Fig. 1). (2) To efficiently re-
move mixed noise, we propose a novel HSI denoising model
based on the three-directional tensor nuclear norm (3DTNN),
a convex relaxation of the fibered rank. An efficient alternat-
ing direction method of multipliers (ADMM)-based algorith-
m is developed to solve the proposed model.

The outline of this paper is as follows. Section 2 presents
some notations. Section 3 defines the fibered rank and its re-
laxation 3DTNN. Section 4 proposes a 3DTNN-based HSI
denoising model with an ADMM-based solver. Section 5 e-
valuates the performance of the proposed model. Section 6
concludes this paper.
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2. NOTATIONS

For X € R™>"2X"3_ we use Xfil) € Rm2xns, X2(i2) €
R7sX71 and XéiS) € R™1*"2 to denote its 71 -th mode-1 (hor-
izontal), io-th mode-2 (lateral), and i3-th mode-3 (frontal) s-
lices, respectively. We use A, to denote the tensor generated

by performing the Discrete Fourier Transformation (DFT) a-
long each mode-k fiber of X, i.e., X, = ££t(X, [], k).

3. THE FIBERED RANK AND ITS RELAXATION

In this section, we design the mode-k t-SVD, and propose the
tensor fibered rank and its convex relaxation 3DTNN.

We define the following mode-k£ t-product, which can be
regarded as a matrix-matrix multiplication, except that the
multiplication operation between scalars is replaced by cir-
cular convolution between the mode-k fibers.

Definition 1 (mode-k t-product) The mode-k t-product ()
between two three-way tensors X and ) is defined as

F = X*lyﬁf(:ajvs) = lel X(:)j7t)*y(:at7s)a
F=XxYe Fli:s) :lez\,’(t,:,s)*y(i,:,t),
F=XxY o 5= " Xit:)«Vti),

where x denotes the circular convolution and X' € R™ X2 xm3,
Next, we define the mode-k conjugate transpose and some
special tensors.
Definition 2 (mode-k conjugate transpose) The  mode-k
conjugate transpose of a three-way tensor X' € R™ *m2xn3
denote as X'+, is the tensor obtained by conjugate transpos-
ing each of the mode-k slices and then reversing the order of
transposed mode-k slices 2 through ny.

Definition 3 (some special tensors) The mode-k identity
tensor Zy, is the tensor whose first mode-k slice is the identity
matrix, and other mode-k slices are all zeros.

A three-way tensor Q is mode-k orthogonal if Qs oTe =
QM %), Q =T

A three-way tensor S is mode-k diagonal if each of its
mode-k slices is a diagonal matrix.

With the above definitions, we design the mode-k t-SVD.
Theorem 1 (mode-k t-SVD) Assuming that X' € R™1*"2xn3
is a three-way tensor, then it can be factored as

X = Uy, Sp *1 Vi*, k=1,2,3,
where U}, and Vy, are the mode-k orthogonal tensors, and Sy,
is the mode-k diagonal tensor.

Since the circular convolution in the spatial domain is
equivalent to the multiplication in the Fourier domain, the
mode-k t-SVD can be efficiently obtained by computing a se-
ries of matrix SVDs in the Fourier domain.

Definition 4 (mode-k fibered rank and mode-k multi rank)
For a three-way tensor X € R"1*"2*"3 the mode-k fibered
rank of it, denoted as ranky, (X'), is defined as the number
of non-zero mode-k fibers of Sy, where Si comes from the
mode-k t-SVD of X'. The mode-k multi rank of X is a vector
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Fig. 2. Tllustration of low-fibered-rank property of an HSI. (a)
The HSI Washington DC Mall of size 256 x 256 x 150. (b)
The tensor X, generated by performing the DFT along each
mode-k fiber of X'. (c) Singular value curves from the second
to the end mode-% slices of Xj. (d) Singular value curves of
the first mode-k slices of X.

Table 1. The rank estimation of an HSI.

Data Size
Washington DC Mall | 256 x 256 x 150

Tucker rank | Tubal rank | Fibered rank
(107,110,6) 182 (8,8,182)

ranky,, (X) € R™, whose i-th element is the rank of i-th
mode-k slice of Xj, where X}, = fft(X,[],k). That is,
rank, (X) = max (ranky, (X)).

Actually, the tensor tubal/multi rank is actually the mode-
3 fibered/multi rank. We define the following tensor fibered
rank to combine all mode-£ (k = 1, 2, 3) fibered rank.
Definition 5 (tensor fibered rank) The fibered rank of a
three-way tensor X, denoted as rank¢(X), is defined as a
vector, whose k-th element is the mode-k fibered rank.

Table 1 gives the rank estimation of the HSI Washing-

ton DC Mall' and Fig. 2 visually shows its low-fibered-rank
property. As observed, the proposed fibered rank has the ad-
vantage of simultaneous characterization for the correlations
along different modes. As minimizing the fibered rank is NP-
hard, we propose the 3DTNN as its convex relaxation.
Definition 6 (mode-k TNN) The mode-k tensor nuclear nor-
m of a tensor X € R"*™2*"s_denoted as || X||tnn,. is de-
fined as the sum of singular values of all the mode-k slices
of X, ey [| X[ = 00, [|(Xi) |, where (X)L is
the i-th mode-F slice of X}.
Definition 7 (3DTNN) The three-directional nuclear norm
of a tensor X € R"™*"2%"3_ denoted as ||X||sprnn, is de-
fined as a weighted sum of all the mode-k tensor nuclear
norms of X, i.e., || X|spnn = 22:1 || X ||, , Where
arp >0 (k=1,2,3)and 3;_; ay, = L.

TNN has shown its effectiveness to preserve the intrin-
sic structure of the three-way tensors [10]. Therefore, as the
weighted sum of all the mode-k TNN, the proposed 3DTNN
can effectively exploit the correlations along all modes while
preserving the intrinsic structure of the underlying tensor. E-
specially, we can easily prove that the 3DTNN is numerically
equal to the triple tubal nuclear norm proposed in [12].

Uhttp://lesun.weebly.com/hyperspectral-data-set.html



Algorithm 1 ADMM-based optimization algorithm for the 3DTNN-based HSI denosing model.

Input: The noisy HSI Y, parameters o = (a1, a2, a3), o = (1, 42, £3), A1, A2, Sand p = 1.2.
Initialization: p =0, X =0, N =0,8% =0, 2) =0, M9 = 0,and P° = 0.

1: while not converged do
2: UpdateZi,JJrl =Da, /up (XP + M} /i, k), k=1,2,3.

Update XP1 = (353  (ue 20T — ME) + (BY — BNP — BSP +PP)) /(S5 bk + B).

Update NP+ = (8Y — gXPHL — BSP 4 PP) /(2A1 + B).

Update SP+1 = shrink(y — xptl _ NPHL 4 %p A—r"), where [shrink(X,g)}

> B

Letp=pu; B=pB;p=p+1.

ijs sgn(Tijs) max(|@iss| — &, 0).

Check the convergence condition || X (P+1) — x @) ||p /| X®) || < 10~4.

end while
Output: The restored HSI X.

3
4
5
6 Update MPH! = MP 4 pp (XP+1 — ZPH1) | = 1,23, PpH1 = PP 4 B(Y — (AP 4 NPT 4 SPHY),
7.
8
9:

4. THE 3DTNN-BASED HSI DENOISING MODEL
Considering a three-way tensor X' € R"1*"2*"3 the pro-
posed 3DTNN-based HSI denoising model is formulated as

. 2
Anin X o + MV fE + A2l

st. Y=X+N+S,

where X is the underlying HSI, ) is the observed HSI, A is
the Gaussian noise, S is the sparse noise, and A; and )\, are
the tuning parameters. The problem (1) can be rewritten as

3
aning >kl Xl + M NE + A2lIS ]

st. YV=X+N+S8,
where o, > 0 (k= 1,2,3) and Zizl ap = 1.
Next, we use the ADMM to solve (2). We introduce three
auxiliary tensors Zj (k = 1,2, 3) and reformulate (2) as

3
P Zk:l akl| 2k, + AN + A2lIS ],

st. V- (X +N+8) =0, @)
X—-2,=0,k=1,2,3.
The augmented Lagrangian function of (3) is
3
L/"Lkaﬁ(zk/’7 XaNa S: M}C: P) = Zk:l {akHZk ||TNNk

(X = Zi, M) + o/ 2]|% = 2 [ b4 M IV 2 S

FY— (XN +S), PY+B/2[ Y= (X+N+8)|5

where My, (k = 1,2,3), P are the Lagrange multipliers; py,
(k = 1,2,3) and 3 are the penalty parameters. Within the
framework of ADMM, Z;, X, NV, and S are alternately up-
dated as shown in Algorithm 1. Particularly, the solution of
Zj,-subproblem is given by the following theorem.

Theorem 2 For a tensor Z € R *"2XM"s3 3 minimizer to

argzminTHZHTNNk +1/2||2 - Y||%,

@

is given by the tensor singular value thresholding operation
Z =D (Y, k) := Uy, Sf 1 VL*, where Y = Uy xS Vi *
and S7 = max(S; — 7,0).

The computational cost at each iteration of the proposed
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algorithm is O (nnans (log(ninans) +Z§:1min(n1;,n,;+1))) ,
where ny = ni. The convergence of the developed algorith-
m within the ADMM framework is guaranteed theoretically,
considering the convexity of the objective function.

5. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of the proposed
3DTNN-based HSI denoising method on the HSI Washington
DC Mall, which is of size 256x256x 191 and normalized to
[0,1]. We employ the peak signal to noise rate (PSNR), the
structural similarity (SSIM), and the spectral angle mapping
(SAM) to measure the quality of the recovered results. The
comparison methods include: TRPCA+BM4D [5, 13], SSTV
[7], LRMR [8], and LRTR [11]. TRPCA+BMA4D is a hybrid
denoising method which first uses TRPCA to filter the sparse
noise and then performs BM4D to remove Gaussian noise.
The parameters of all compared methods are set based on au-
thors’ codes or suggestions in their papers. The noisy datasets
are generated as follows.

Case 1: Synthetic data with different Gaussian noise,
fixed salt and pepper noise, and fixed stripe noise. The
zero-mean Gaussian noise is added to all bands and standard
deviation o are set to be 0.02, 0.06, and 0.10. The salt and
pepper noise is added to all bands and the proportion v is 0.2.
Stripes are added to 10 bands from band 131 to 140. In each
band, the percent of stripes is 10%.

Case 2: Synthetic data with different salt and pepper
noise, fixed Gaussian noise, and fixed stripe noise. The salt
and pepper noise is added to all bands and the proportion v
are set to be 0.1, 0.3 and 0.4. The zero-mean Gaussian noise
is added to all bands and standard deviation o is 0.02. Stripes
are added to 10 bands from band 131 to 140. In each band,
the percent of stripes is 10%.

Table 2 lists the PSNR, SSIM, SAM, and average run-
ning time (in seconds) of the testing HSI recovered by five
competing methods. It can be observed that the proposed
method consistently outperforms the compared methods in
terms of PSNR, SSIM, and SAM values. In Fig. 3, we vi-
sually show the denoising results in one case. As observed,



Table 2. The performance comparison of five competing methods with respect to different noise levels.

Case Case 1 Case 2

Gaussian noise o =0.02 o =0.06 ‘ o =0.10 o =0.02 average
Salt and pepper noise v =02 v =0.1 v =03 v =04 time (s)

Method PSNR SSIM SAM |PSNR SSIM SAM |[PSNR SSIM SAM |PSNR SSIM SAM |PSNR SSIM SAM |PSNR SSIM SAM

Noise 11.373 0.1212 47.389(11.188 0.1137 48.025|10.839 0.1023 49.172|14.357 0.2531 41.766(9.6182 0.0718 49.704 |8.3756 0.0470 50.771 -

TRPCA+BM4D  |38.798 0.9790 3.7193|33.657 0.9342 5.8150{30.991 0.8821 7.3463{39.900 0.9832 3.2894|37.273 0.9708 4.4344|33.336 0.9240 7.0538| 973.81
SSTV 39.043 0.9754 4.3674|34.377 0.9326 6.6053(31.251 0.8734 8.8027|40.239 0.9804 4.0178|37.839 0.9682 4.8038|36.336 0.9562 5.4216| 595.87
LRMR 35.196 0.9488 5.6839|33.653 0.9301 6.8313(31.516 0.8952 8.6890|38.597 0.9730 3.8940(32.704 0.9189 7.4550|30.588 0.8819 9.2499 73.816
LRTR 36.479 0.9629 5.1349|33.928 0.9331 6.2357(30.968 0.8923 8.4193|38.663 0.9741 3.7062(34.617 0.9428 6.2333|31.113 0.8717 9.2404 | 135.69
3DTNN 41.658 0.9920 1.8010|35.554 0.9655 3.9101|32.398 0.9317 5.5411(42.794 0.9937 1.6046|40.345 0.9897 2.0145|38.629 0.9856 2.3506| 316.43

TRPCA+BM4D [5, 13]

Clean image Noisy image

SSTV [7]

..

LRMR [8] LRTR [11] 3DTNN

Fig. 3. The denoising results for the Gaussian noise with ¢ = 0.02 and the salt and pepper noise with v = 0.4. Top row: The
three dimensional visualization of the denoising results. Bottom row

the proposed method produces visually superior results than
the compared methods. Specifically, the proposed method is
capable of better removing the unexpected mixed noise while
finely preserving the structure of the underlying HSI, while
the results obtained by TRPCA+BM4D and LRTR remain a
small amount of stripes. SSTV and LRMR can perform com-
paratively better in stripes removing, but their results remain
a small amount of Gaussian noise or salt and pepper noise.

6. CONCLUSION

In this paper, we extended the t-SVD to mode-k t-SVD to de-
pict the correlations along different modes, and then defined
the tensor fibered rank and its convex relaxation 3DTNN. And
we proposed a 3DTNN-based HSI denoising model and de-
veloped an efficient ADMM-based algorithm to solve it. Nu-
merical results demonstrated the superiority of the proposed
method in comparison with other state-of-the-art methods.
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