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a b s t r a c t 

Global low-rank methods have achieved great successes in tensor completion. However, these methods 

neglected the abundant non-local self-similarities, which exist in a wide range of multi-dimensional 

imaging data. To integrate the global and non-local property of the underlying tensor, we propose a 

novel low-rank tensor completion model via combined non-local self-similarity and low-rank regular- 

ization, which is named as NLS-LR. We adopt the parallel low-rank matrix factorization to guarantee the 

global low-rankness while plugging in non-local based denoisers to promote the non-local self-similarity 

instead of tailoring regularizers. To tackle the proposed model, we develop an efficient block successive 

upper-bound minimization (BSUM) based algorithm. Numerical experiment results demonstrate that the 

proposed method outperforms many state-of-the-art tensor completion methods in terms of quality met- 

rics and visual effects. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Nowadays information has been explosively increasing in our

ociety, real-world data such as magnetic resonance image (MRI),

yperspectral/multispectral image (HSI/MSI), color image, and

ideo usually have high dimensional structure. As an extension of

ectors and matrices, tensors play a significant role in representing

omplex multidimensional data. Owing to information missing or

nacceptable cost to acquire complete data, tensors in the real

orld may be incomplete. The problem of estimating the miss-

ng data from the observed incompleted tensor is called tensor

ompletion. Higher-order tensor completion has a wide range of

ealistic applications, such as image inpainting [1,2] , magnetic

esonance imaging data recovery [3,4] , rain streak removal [5,6] ,

nd hyperspectral image recovery [7,8] . 

To tackle the tensor completion problem, we need to exploit

he latent relationship between the observed and the missing val-

es. Actually, real-world data usually have a strong inherent cor-

elation, which is described as low-rank property. There are a

reat many studies, which utilize the low-rank property to char-

cterize the relationship between the observed and the missing
∗ Corresponding author. 
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alues [4,9–27] , producing good performances on tensor com-

letion problem. Mathematically, the low-rank tensor completion

LRTC) problem can be written as: 

in 

Y 
rank (Y) 

.t. P �(Y) = F, 
(1.1) 

here Y is the underlying tensor, F is the observed data, � is

he index set corresponding to the observed entries, and P �( ·)
s the projection function that keeps the entries of Y in � while

aking others be zeros. Particularly, the low-rank matrix com-

letion (LRMC) problem can be viewed as a second-order tensor

ompletion problem [28] . 

Different from the matrix, there is not a unique definition for

ensor rank. Among those definitions, there are two popular ways

o formulate tensor rank: the CANDECOMP/PARAFAC (CP) rank and

he Tucker rank ( n -rank) [29] . Given a N-way tensor Y ∈ R 

d 1 ×···×d N ,

he CP-rank of Y is defined as the smallest number of rank-one

ensors that generate Y as their sum. There is another more com-

on definition called Tucker rank ( n -rank). The Tucker rank of Y
s defined as ( rank (Y (1) ) , rank (Y (2) ) , . . . , rank (Y (N) )) , where Y ( N ) is

he mode- n unfolding of tensor Y (see details in Section 2.2 ). 

However, directly minimizing the CP-rank or Tucker rank is NP-

ard [30] . In the past decade, the nuclear norm is found to be the

ightest convex surrogate approximation of a matrix’s rank and has
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been widely used to tackle rank minimization problem [31,32] . Uti-

lizing the nuclear norm, a new model is first introduced by Liu

et al. in 2009 [33] , which considers the low-rankness to all mode

of the tensor, and the low-rank tensor completion model can be

rewritten in this form: 

min 

Y 

N ∑ 

n =1 

αn 

∥∥Y (n ) 

∥∥
∗

s.t. P �(Y) = F, 

(1.2)

where αn ≥ 0 (n = 1 , 2 , . . . , N) , 
∑ N 

n =1 αn = 1 , and Y ( n ) is the mode-

n unfolding of Y . The optimization problem (1.2) can be solved by

high accuracy low-rank tensor completion (HaLRTC) [33] and the

Douglas–Rachford splitting method [34] . Optimizing the problem

(1.2) involves calculating the singular value decomposition (SVD)

of each Y ( n ) , which is computationally expensive at each iteration.

To tackle this problem, Xu et al. proposed a new model which is

called low-rank tensor completion by parallel matrix factorization

(TMac) [35] , i.e., 

min 

Y,X,A 

N ∑ 

n =1 

αn 

∥∥Y (n ) − A n X n 

∥∥2 

F 

s.t . P �(Y) = F, 

(1.3)

where A = (A 1 , A 2 , . . . , A N ) and X = (X 1 , X 2 , . . . , X N ) represent the

low-rank factor matrices, respectively. TMac applies low-rank ma-

trix factorization to each mode unfolding matrices and updates the

factorization matrices alternatively, which costs less time and gains

better performance than HaLRTC. 

Low-rank property can catch the global information of the un-

derlying tensor. However, it is not sufficient enough to exploit the

structure of the tensor. Fortunately, real-world data often exhibit

smooth prior in the spatial domain. Inspired by this point, many

recent studies investigate smoothness constraints for their work

[3,4,36–43] . Among those smoothness constraints, the total vari-

ation (TV) regularizer is widely used and has shown reasonable

performances on preserving edges in image restoration. Ji et al. in-

troduced the TV regularization term into their model [37] and the

model can be written as: 

min 

Y,X,A 

N ∑ 

n =1 

αn 

2 

∥∥Y (n ) − A n X n 

∥∥2 

F 
+ λTV (X 3 ) 

s.t. P �(Y) = F, 

(1.4)

where TV( X 3 ) is the TV regularizer of factor matrix X 3 using piece-

wise smooth prior and λ denotes the parameter which controls the

power of the TV regularizer. Due to the smoothness of the spa-

tial domain, the model gains a great improvement compared to

the based model TMac. Instead of introducing regularizer on factor

matrices, Li et al. adopted TV regularizer on each mode unfolding

matrices of tensor Y, their model [42] is written as: 

min 

Y, G, { U (n ) } N n =1 

λ1 

N ∑ 

n =1 

‖ F n Y (n ) ‖ 1 + 

1 
N 

N ∑ 

n =1 

‖ U 

(n ) ‖ ∗ + λ2 ‖G‖ 

2 
F 

s.t. P �(Y) = F, Y = G ×1 U 

(1) ×2 U 

(2) · · · ×N U 

(N) , 

(1.5)

where G denotes the core tensor and { U 

(n ) } N 
n =1 

are the Tucker de-

composition facotrs. F n is the TV matrix where F n (i, i ) = 1 , F n (i, i +
1) = −1 , and other elements are zeros. Not limited to these meth-

ods, the other related LRTC methods with their properties are

shown in Table 1 . 

1.1. Motivations and contributions 

Although the local smoothness methods have achieved promis-

ing performances, they neglect the redundant non-local self-

similarities, which can be observed in most multi-dimensional
maging data. Non-local methods can utilize not only the neighbor-

ood pixels but also the far away pixels in similar patches. Mean-

hile, the non-local methods surpass the TV based methods when

ealing with many imaging inverse problems [46–48] . 

Therefore, we propose a low-rank tensor completion model us-

ng non-local prior to enhance the self-similarities of the under-

ying tensor, which would be helpful for preserving the abundant

etails. Our tensor completion model is formulated as: 

in 

Y,X,A 

3 ∑ 

n =1 

αn 

2 

∥∥Y (n ) − A n X n 

∥∥2 

F 
+ λ�(Y) 

.t. P �(Y) = F, 

(1.6)

here 
∑ 3 

n =1 
αn 
2 

∥∥Y (n ) − A n X n 
∥∥2 

F 
is to guaratee the global low-

imensionality along each mode and λ is a regularization param-

ter. Instead of investing effort s in tailoring non-local regulariz-

rs, we develop an implicit regularizer �(Y) using Plug and Play

ramework (see details in Section 2.3 ). The implicit regularizer

(Y) is introduced by plugging in the non-local denoiser engine,

hich is convinced to express the non-local self-similarities of the

nderlying tensor. By integrating both the global low-rankness and

on-local self-similarities of the underlying tensor, the proposed

odel can effectively maintain the general structure as well as

apture the details of the underlying tensor. 

.2. Organization of this paper 

The structure of this paper is as follows: Section 2 introduces

ome basic tensor knowledge, operators, and details about Plug

nd Play. Section 3 gives the formulation of the proposed model as

ell as the solver algorithm. Section 4 evaluates the performances

f NLS-LR and the compared methods in numerical experiments.

ection 5 gives some discussions. Section 6 summarizes this paper.

. Notations and preliminaries 

In this paper, we use low-case letters (such as a ) for vectors,

se upper-case letters (such as A ) for matrices, and calligraphic let-

ers (such as A ) for tensors. We will introduce some preliminary

nowledge in the following subsection. 

.1. Tensor basics 

We define a N -way tensor as X ∈ R 

d 1 ×···×d N , whose

(i 1 , i 2 , . . . , i N ) th component is denoted as x i 1 ,i 2 , ... ,i N . A fiber of

 tensor is defined by fixing every index but one. The mode- n

bers are vectors X (i 1 , . . . , i n −1 , : , i n +1 , . . . , i N ) respectively for all

 1 , i 2 , . . . , i N . 

The mode- n unfolding of a tensor X is denoted as X (n ) ∈
 

d n ×
∏ 

d � = n d i , which is a matrix with columns being the mode- n

bers of X . The element (i 1 , i 2 , . . . , i N ) of the tensor X maps to

he ( i n , j )th element of the matrix X ( n ) in the lexicographical order,

here 

j = 1 + 

N ∑ 

k =1 ,k � = n 
(i k − 1) J k with J k = 

k −1 ∏ 

m =1 ,m � = n 
d m 

, (2.1)

he inverse operator of unfolding is denoted as “fold”, i.e., X =
old n (X (n ) ) . 

The Tucker rank ( n -rank) of X is defined as the following array.

ank (X ) = ( rank (X (1) ) , rank (X (2) ) , . . . , rank (X (N) )) . (2.2)

The inner product of two tensors X , Y ∈ R 

d 1 ×d 2 ×···×d N is defined

s 

 

X , Y 〉 := 

∑ 

i 1 ,i 2 , ... ,i N 

x i 1 ,i 2 , ... ,i N y i 1 ,i 2 , ... ,i N . (2.3)
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Table 1 

An introduction of the related LRTC methods with their properties. 

Low-rankness Spatial smoothness The solving algorithm 

Low-rankness or minimizing the rank Constrains on factors/tensors 

HaLRTC [33] The Tucker rank – An alternating direction method of multipliers 

based algorithm 

LRTC-TV-I [42] The Tucker rank Isotropic TV for underlying tensors An alternating direction method of multipliers 

based algorithm 

LRTC-TV-II [42] The Tucker decomposition Isotropic TV for underlying tensors An alternating direction method of multipliers 

based algorithm 

TMac [35] Low-rank matrix factorization – An alternating direction method of multipliers 

based algorithm 

MF-TV [37] Low-rank matrix factorization Isotropic TV for factors A block successive upper-bound minimization 

based algorithm 

MF-Framelet [4] Low-rank matrix factorization Framelet for factors A block successive upper-bound minimization 

based algorithm 

SMF-LRTC [44] Low-rank matrix factorization Unidirectional TV for underlying tensors 

and framelet for factors 

A block successive upper-bound minimization 

based algorithm 

SPC-TV/QV [36] The PARAFAC/polyadic decomposition rank Unidirectional TV/QV for underlying 

tensors 

A hierarchical alternating least squares based 

algorithm 

TNN [45] The tubal rank – An alternating direction method of multipliers 

based algorithm 
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The Frobenius norm is defined as: 

 

X ‖ F := 

√ 

〈 X , X 〉 . (2.4) 

The tensor inner product follows the exchange law and combi-

ation law, which can be proven as follows. 

 

X , Y 〉 = 

∑ 

i 1 ,i 2 , ... ,i N 

x i 1 ,i 2 , ... ,i N y i 1 ,i 2 , ... ,i N 

= 

∑ 

i 1 ,i 2 , ... ,i N 

y i 1 ,i 2 , ... ,i N x i 1 ,i 2 , ... ,i N 

= 〈 Y, X 〉 , 

(2.5) 

 

X , Y 〉 + 〈 X , Z 〉 = 

∑ 

i 1 ,i 2 , ... ,i n 

x i 1 ,i 2 , ... ,i N y i 1 ,i 2 , ... ,i N + 

∑ 

i 1 ,i 2 , ... ,i N 

x i 1 ,i 2 , ... ,i N z i 1 ,i 2 , ... ,i N

= 

∑ 

i 1 ,i 2 , ... ,i N 

x i 1 ,i 2 , ... ,i N (y i 1 ,i 2 , ... ,i N + z i 1 ,i 2 , ... ,i N ) 

= 〈 X , Y + Z 〉 , 
(2.6) 

he exchange law and combination law will be used in the deriva-

ion of (3.8) . 

.2. Projected and proximal operators 

The projected operator P �(Y) is a function that keeps the en-

ris of Y in � while making others be zeros. i.e, 

(P �(Y)) i 1 ,i 2 , ... ,i N := 

{
y i 1 ,i 2 , ... ,i N , (i 1 , i 2 , . . . , i N ) ∈ �, 

0 , otherwise . 
(2.7) 

The proximal operator of a convex function f ( x ) is defined as: 

rox f (y ) = arg min 

x 

{ 

f (x ) + 

ρ

2 

‖ 

x − y ‖ 

2 
} 

, (2.8) 

.3. Plug and Play (PnP) 

In the field of image reconstruction, numerous effort s have

een made on matching effective regularizers with advanced op-

imization algorithms [49–52] . Factly, natural image priors such as

patial sparsity, piecewise smooth are widely used, while their cor-

esponding regularizers ‖ x ‖ 1 and ‖ x ‖ TV are not differentiable. To

ackle the non-differentiability of many regularizers, some proxi-

al algorithms came to being in the past two decades, such as

he variants of iterative shrinkage/thresholding algorithm (ISTA)

49] and the alternating direction method of multipliers algorithm
ADMM) [50] . These algorithms make itself equivalent to solve the

egularized image denoising problem. 

Recently, the Plug and Play framework has become a hot topic,

hich is first proposed by Venkatakrishnan et al. [53] . Exten-

ive experiments have demonstrated its effectiveness [54–58] . The

nP framework can allow state-of-the-art denoisers into some in-

erse problems, such as image deblurring [55] and super-resolution

54] . We usually have the following sub-problems in the iterative

lgorithm for solving inverse problems in image processing: 

 

(k +1) = arg min 

x 

ρ

2 

‖ 

x − z ‖ 

2 
2 + λ�(x ) , (2.9)

here �( x ) is the regularizer and λ is a regularization parameter

hat trades off the fidelity term and the regularizer. If we define

= 

√ 

λ
ρ , the problem can be rewritten as: 

 

(k +1) = arg min 

x 

1 

2 σ 2 
‖ 

x − z ‖ 

2 
2 + �(x ) . (2.10)

Treating z as the noise image, the above problem can be re-

arded as a denoising problem. Given the regularizer �( x ), we have

 corresponding denoiser to tackle with the denoising problem. For

xample, if the regularizer �( x ) is the TV regularizer, we can use

he corresponding TV-based denoisers to solve the denoising prob-

em. In PnP framework, �( x ) is an implicit regularizer by plugging

n off-the-shelf denoisers to express the prior we want, which is

he main idea of the Pnp framework. There are many state-of-the-

rt denoisers available to solve the problem, such as BM3D [46] ,

M4D [59] , TNRD [60] , and NLM [48] . Therefore, the problem can

e solved as: 

 

(k +1) = D(z, σ ) , (2.11)

here D is the denoiser engine and σ is denoted as the denoiser

arameter. This provides the basis for us to apply non-local engines

or the LRTC problem. 

. Proposed model and algorithm 

.1. Proposed model 

Considering a three-way tensor Y ∈ R 

d 1 ×d 2 ×d 3 , the objective

unction of the proposed model (1.6) is: 

f (X, A, Y) = 

3 ∑ 

n =1 

αn 

2 

∥∥Y (n ) − A n X n 

∥∥2 

F 
+ λ�(Y) + ι(Y) , (3.1)

here αn are all positive weights 
∑ 3 

n =1 αn = 1 . A = (A 1 , A 2 , A 3 ) and

 = (X , X , X ) represent the low-rank factor matrices along each
1 2 3 
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mode, Y ( n ) denotes the mode- n unfolding of tensor Y, λ is a regu-

larization parameter, �(Y) is a non-local denoiser regularizer, and

ι(Y) is the indicator function, i.e., 

ι(Y) := 

{
0 , if P �(Y) = F, 

∞ , otherwise . 
(3.2)

The proposed model has two parts, one is the low-rank regu-

larizer term 

∑ 3 
n =1 

αn 
2 

∥∥Y (n ) − A n X n 
∥∥2 

F 
. We assume the Tucker rank

of tensor Y ∈ R 

d 1 ×d 2 ×d 3 is ( r 1 , r 2 , r 3 ), which is given as a low-

rank prior. A n ∈ R 

d n ×r n , X n ∈ R 

r n ×s n are the low-rank factor matri-

ces. This term is modeled to enhance the low-rank property in

each mode, thus can better capture the global information of the

tensor Y . 

Another part is the regularizer �(Y) , which is used to promote

the self-similar property. Instead of tailoring non-local regularizers,

the implicit regularizer �(Y) is introduced by plugging in the non-

local denoiser engine, which is convinced to express the non-local

self-similarities of the underlying tensor. 

3.2. Proposed algorithm 

In this section, we develop a BSUM-based algorithm to solve

the proposed model. 

Let Z = (X, A, Y) , Z 

k = (X k , A 

k , Y 

k ) , and h (Z , Z 

k ) = f (Z) +
ρ
2 

∥∥Z − Z 

k 
∥∥2 

F 
. By introducing the proximal operator, we can solve

the optimization problem (3.1) as follows: 

Z 

k +1 = arg min 

Z 
h (Z , Z 

k ) = arg min 

Z 
f (Z) + 

ρ

2 

∥∥Z − Z 

k 
∥∥2 

F 
, (3.3)

where Z = (X, A, Y) , Z 

k = (X k , A 

k , Y 

k ) , and ρ is the proximal pa-

rameter. With utilization of the BSUM algorithm [61] , the optimiza-

tion variables of the objective function can decomposed into multi-

blocks. Then Eq. (3.3) can be iteratively solved by: ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

X 

k +1 = arg min 

X 

{ 

h 1 (X, Z 

k 
1 ) = f (X, A 

k , Y 

k ) + 

ρ

2 

∥∥X − X 

k 
∥∥2 

F 

} 

, 

A 

k +1 = arg min 

A 

{ 

h 2 (A, Z 

k 
2 ) = f (X 

k +1 , A, Y 

k ) + 

ρ

2 

∥∥A − A 

k 
∥∥2 

F 

} 

, 

Y 

k +1 = arg min 

Y 

{ 

h 3 (Y, Z 

k 
3 ) = f (X 

k +1 , A 

k +1 , Y) + 

ρ

2 

∥∥Y − Y 

k 
∥∥2 

F 

} 

. 

(3.4)

The X n -subproblem and A n -subproblem can be written as: ⎧ ⎪ ⎨ 

⎪ ⎩ 

X 

k +1 
n = arg min 

X n 

1 

2 

∥∥Y k (n ) − A 

k +1 
n X n 

∥∥2 

F 
+ 

ρ

2 

∥∥X n − X 

k 
n 

∥∥2 

F 
, 

A 

k +1 
n = arg min 

A n 

1 

2 

∥∥Y k (n ) − A n X 

k +1 
n 

∥∥2 

F 
+ 

ρ

2 

∥∥A n − A 

k 
n 

∥∥2 

F 
. 

(3.5)

Note that the minimization problem of the X -subproblem and

A -subproblem can be solved easily due to its differentiability. Ob-

serving that the subproblems except Y-subproblem have closed-

formed solutions, the core problem turns out to be how to solve

the Y-subproblem, which can be written as: 

Y 

k +1 = arg min 

Y 

3 ∑ 

n =1 

αn 

2 

∥∥Y (n ) − A 

k 
n X 

k 
n 

∥∥2 

F 
+ 

ρ

2 

∥∥Y − Y 

k 
∥∥2 

F 

+ λ�(Y) + ι(Y) . (3.6)

The matrix Frobenius norm ‖ Y (n ) − A 

k 
n X 

k 
n ‖ 2 F 

is to calculate the

square root of the sum of the squares of all elements. If we de-

fine M 

k 
n as the fold-n tensor of A 

k 
n X 

k 
n , it’s not hard to find that

the matrix Frobenius norm ‖ Y (n ) − A 

k 
n X 

k 
n ‖ 2 F 

is equal to tensor Frobe-

nius norm ‖Y − M 

k 
n ‖ 2 , which is also to calculate the square root
F 
f the sum of the squares of all elements. Thus we can obtain the

-subproblem as follows: 

 

k +1 = arg min 

Y 

3 ∑ 

n =1 

αn 

2 

∥∥Y − M 

k 
n 

∥∥2 

F 
+ 

ρ

2 

∥∥Y − Y 

k 
∥∥2 

F 

+ λ�(Y) + ι(Y) , (3.7)

urther note that the tensor Frobenius norm can be also written as

he tensor inner product form (2.1) , we can merge the optimization

nto a more standard form as follows: 

 

k +1 = arg min 

Y 

3 ∑ 

n =1 

αn 

2 

∥∥Y − M 

k 
n 

∥∥2 

F 
+ 

ρ

2 

∥∥Y − Y 

k 
∥∥2 

F 
+ λ�(Y) 

+ ι(Y) 

= arg min 

Y 

( 1 + ρ) 

2 

〈 Y , Y 〉 −
〈 

Y , 

3 ∑ 

n =1 

αn M 

k 
n + ρY 

k 

〉 

+ λ�(Y) + ι(Y) 

= arg min 

Y 

( 1 + ρ) 

2 

〈
Y −

∑ 3 
n =1 αn M 

k 
n + ρY 

k 

( 1 + ρ) 
, Y 

−
∑ 3 

n =1 αn M 

k 
n + ρY 

k 

( 1 + ρ) 

〉
+ λ�(Y) + ι(Y) 

= arg min 

Y 

( 1 + ρ) 

2 λ

∥∥∥∥Y −
∑ 3 

n =1 αn M 

k 
n + ρY 

k 

( 1 + ρ) 

∥∥∥∥
2 

F 

+ �(Y) 

+ ι(Y) , (3.8)

here M 

k 
n = fold n (A 

k 
n X 

k 
n ) is denoted as the fold-n tensor of A 

k 
n X 

k 
n .

he exchange law and combination law of tensor inner product

sed in the derivation are proven previously in Section 2.1 . Let

˜ 
 

(k ) = 

∑ 3 
n =1 αn M 

k 
n + ρY k 

( 1+ ρ) 
and σ = 

√ 

λ
1+ ρ , the Y-subproblem will be

ewritten as: 

in 

Y 

1 

2 σ 2 

∥∥Y − ˜ Y 

(k ) 
∥∥2 

F 
+ �(Y) 

.t. P �(Y) = F, 

(3.9)

hen the question is formalized as a standard constrained opti-

ization. Factly, �(Y) is the denoiser regularizer, which can be

olved in Plug and Play method. By using the project operator to

eet the constrain, the Y-subquestion can be solved as: 

 

k +1 = P �c 

(
D( ̃  Y 

(k ) , σ ) 
)

+ F, (3.10)

here P �c is the project function to keep constraint condition, D
s the denoiser engine, and σ is denoted as the denoiser parameter

o control the strength of denoising. Note that the denoiser param-

ter σ is linked to the noise level in i.i.d. Gaussian denoising, but

n our model the σ is linked to the general system error between
˜ 
 

(k ) and the ground truth. Thus, in our model σ is treated as a

unable parameter to obtain an appropriate effect. Finally, the pro-

osed algorithm is summarized in Algorithm 1 . 

.3. Rank-increasing scheme 

In this subsection, we will talk about the rank-increasing

cheme [35,44,62] . In the proposed model. This strategy starts with

ank estimation r 0 = (r 0 
1 
, r 0 

2 
, r 0 

3 
) , when the relative error becomes

ess than the tolerance we set, i.e., 

1 −
∥∥P �c (A 

k +1 
n X 

k +1 
n ) 

∥∥
F ∥∥P �c (A 

k 
n X 

k 
n ) 

∥∥
F 

∣∣∣∣∣ < γ , n = 1 , 2 , 3 (3.11)

hen increase the corresponding rank r n to min { r n + 
r n , r 
max 
n } at

teration k + 1 , where 
r n is a positive integer and r max 
n is the
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Fig. 1. The color images used in the experiments. 

Fig. 2. Reconstrcted results for color image data with SR = 10%. From top to bottom : house, barbara, tulips , and pepper . From left to right: the observed data, the recovered 

results by TMac, MF-TV, TNN, SPC-QV, LRTC-TV-II, NLS-LR, and the original data. 

Algorithm 1 BSUM based optimization algorithm for NLS-LR. 

Input : the observed tensor F , the set index � of the observed 

entries, the denoiser parameter σ , the proximal parameter ρ , 

the initial Tucker rank r 0 = (r 0 
1 
, r 0 

2 
, r 0 

3 
) , 
r = (
r 1 , 
r 2 , 
r 3 ) , and 

r max = (r max 
1 

, r max 
2 

, r max 
3 

) . 

Output : the reconstructed tensor Y . 

1. Initialization: A 

0 
n = rand( d n × r n ), X 0 n = rand( r 0 n ×

∏ 

m � = n d m 

), 

Y = P �(F ) , and k = 1 . 

2. while not converged do : 

3. X k +1 
n ← ((A 

k 
n ) 

T A 

k 
n + ρI 1 ) 

† ((A 

k 
n ) 

T Y k 
(n ) 

+ ρX k n ) , n = 1 , 2 , 3 . 

4. A 

k +1 
n ← (Y k 

(n ) 
(X k +1 

n ) T + ρA 

k 
n )(X k +1 

n (X k +1 
n ) T + ρI 2 ) 

† , 

n = 1 , 2 , 3 . 

5. Y 

k +1 ← P �c 

(
D 

(∑ 3 
n =1 αn fold n (A k n X 

k 
n + ρY k 

(n ) 
) 

( 1+ ρ) 
, σ

))
+ F . 

4. k ← k + 1 . 

5. end while 

6. return Y . 
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aximum Tucker rank. More specifically, when the r n increased at

teration k + 1 , the A 

k +1 
n will be updated to [ A 

k 
n , rand (d n , 
r n )] and

 

k +1 
n will be updated to [ X k n ; rand (
r n , s n )] with s n = 

∏ 

m � = n d m 

, i.e.,

dding randomly generated columns 
r n to A 

k 
n and randomly gen-

rated rows 
r n to X k n . In the beginning, we can efficiently obtain
he structure of the underlying tensor by adopting low-rank es-

imation, while we can get more details recovered with the rank

ncreasing. In this paper, we set the tolerance γ = 10 −3 for color

mage data and γ = 10 −2 for video and MSI data. 

. Experiments results 

In this section, we evaluate the performance of the proposed

odel on three kinds of tensors: color image, video, and MSI. To

alidate the effectiveness of the proposed method, we adopt five

ompared methods: TMac [35] , MF-TV [37] , TNN [45] , LRTC-TV-II

42] , and SPC-QV [36] . The introduction of those models are pro-

ided in Table 1 . 

The peak signal to noise rate (PSNR) and structural similar-

ty index (SSIM) [63] are adopted to measure the quality of each

ethod. The stopping criterion of all the methods above relies on

he relative change (RelCha) of the two successive reconstructed

ensors, i.e., RelCha = 

∥∥Y k +1 −Y k 
∥∥

F ‖ Y k ‖ F < ε, where ε is a tolerance. In our

xperiments, the parameters are set as following: the parameter of

roximal operator ρ = 0 . 1 , the weights αn = 1 / 3 (n = 1 , 2 , 3) , the

olerance ε = 3 × 10 −4 , 
r = (5 , 5 , 5) , and the denoiser parameter

is selected from the set {5, 10, 15, 20}. By adopting the Plug

nd Play framework, we can flexibly choose the denoiser D with

he corresponding data. In all experiments, TMac [35] and MF-TV

37] are implemented using the default setting in [37] . TNN [45] ,
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Table 2 

The PSNR, SSIM, and average CPU time (seconds) of the results reconstructed by TMac [35] , MF-TV [37] , TNN [45] , LRTC-TV-II [42] , 

SPC-QV [36] , and NLS-LR for color image completion on different sampling rates and images. 

Color image SR 5% 10% 20% Time 

Method PSNR SSIM PSNR SSIM PSNR SSIM 

House TMac 5.624 0.013 6.932 0.022 11.378 0.145 10.3437 

MF-TV 6.344 0.022 9.243 0.050 18.959 0.364 647.459 

TNN 17.887 0.256 20.683 0.387 24.820 0.607 3.694 

LRTC-TV-II 23.723 0.716 25.921 0.778 28.476 0.840 42.441 

SPC-QV 23.983 0.695 25.686 0.752 27.248 0.808 24.086 

NLS-LR 26.875 0.784 30.353 0.826 33.189 0.866 148.385 

Barbara TMac 5.756 0.015 7.536 0.027 9.141 0.059 8.463 

MF-TV 8.042 0.046 9.427 0.087 12.916 0.226 619.314 

TNN 16.474 0.226 19.041 0.362 22.621 0.573 3.362 

LRTC-TVII 22.785 0.649 24.328 0.724 26.366 0.803 43.498 

SPC-QV 22.783 0.634 24.908 0.729 27.213 0.816 28.323 

NLS-LR 24.776 0.743 27.736 0.821 30.791 0.891 136.138 

Lena TMac 5.756 0.015 6.517 0.023 8.516 0.057 9.672 

MF-TV 6.456 0.030 7.819 0.044 12.276 0.276 611.858 

TNN 16.968 0.220 19.642 0.350 23.251 0.557 3.441 

LRTC-TV-II 23.558 0.701 26.044 0.790 28.887 0.873 43.783 

SPC-QV 23.644 0.682 25.476 0.753 27.603 0.827 26.910 

NLS-LR 25.527 0.767 27.991 0.835 30.977 0.899 138.996 

Tulips TMac 6.232 0.017 6.679 0.027 7.751 0.058 10.021 

MF-TV 7.298 0.041 9.735 0.124 14.643 0.320 618.446 

TNN 12.656 0.118 14.429 0.205 17.627 0.388 3.248 

LRTC-TV-II 18.634 0.522 20.521 0.630 23.339 0.765 42.355 

SPC-QV 19.137 0.533 21.892 0.677 24.629 0.792 41.269 

NLS-LR 20.720 0.646 24.123 0.780 27.517 0.869 134.893 

Sails TMac 6.643 0.013 7.115 0.022 8.260 0.045 9.802 

MF-TV 7.440 0.046 8.663 0.087 11.512 0.211 661.248 

TNN 16.839 0.196 18.400 0.296 20.909 0.485 3.343 

LRTC-TV-II 21.156 0.468 22.105 0.528 23.973 0.662 42.012 

SPC-QV 21.221 0.463 22.958 0.586 25.203 0.733 34.994 

NLS-LR 21.907 0.499 24.120 0.643 26.890 0.785 135.590 

Sailboat TMac 5.611 0.018 6.146 0.031 7.423 0.066 10.006 

MF-TVc 6.626 0.037 8.602 0.094 12.683 0.266 597.596 

TNN 15.925 0.238 17.827 0.340 20.705 0.517 3.321 

LRTC-TV-II 20.142 0.624 21.065 0.676 23.116 0.771 42.388 

SPC-QV 20.627 0.593 22.502 0.689 24.843 0.787 32.774 

NLS-LR 21.017 0.662 23.241 0.762 25.756 0.846 132.719 

Airplane TMac 2.879 0.008 4.147 0.014 9.193 0.051 9.573 

MF-TV 3.561 0.015 5.606 0.027 13.288 0.219 562.817 

TNN 16.946 0.286 18.883 0.399 22.046 0.587 3.715 

LRTC-TV-II 20.885 0.691 22.561 0.763 26.265 0.878 41.958 

SPC-QV 21.294 0.659 23.183 0.735 25.054 0.802 24.444 

NLS-LR 22.713 0.756 25.373 0.833 28.423 0.896 53.327 

Pepper TMac 6.522 0.020 7.121 0.029 8.626 0.059 10.184 

MF-TV 7.118 0.037 8.355 0.056 13.669 0.250 670.287 

TNN 14.305 0.140 16.940 0.245 20.394 0.447 3.294 

LRTC-TV-II 22.445 0.710 24.497 0.793 26.914 0.867 42.451 

SPC-QV 21.661 0.646 23.861 0.736 26.455 0.818 32.527 

NLS-LR 24.079 0.766 26.864 0.839 29.775 0.900 120.097 
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LRTC-TV-II [42] , and SPC-QV [36] are implemented using the pa-

rameters specified optimally by following the corresponding pa-

pers and models. All experiments were performed on the platform

of Windows 10 and MATLAB (R2018a) with an Intel Core i7-8700K

3.70 GHz and 32GB RAM. 

4.1. Color image 

In this subsection, we test the proposed model on eight color

images, named barbara, lena, house, sailboat, tulips, sails, airplane ,

and pepper . The color images are shown in Fig. 1 and all images

are of size 256 × 256 × 3. The incompleted tensors are generated

by randomly sampling elements and the sampling rates (SRs) are

set to be 5%, 10%, and 20%, respectively. The initial Tucker rank

r 0 = (10 , 10 , 3) and the maxium Tucker rank r max = (125 , 125 , 3) .

For color image data, we adopt an off-the-shell CBM3D to be the

denoiser and set the denoiser parameter to be σ = 10 . 
Table 2 presents the PSNR, SSIM, and average CPU time

seconds) of the reconstructed results obtained by NLS-LR and

ompared methods. Experimental results prove that NLS-LR con-

istently gains the best performances in terms of PSNR and SSIM.

o further compare the results, we select four images house,

arbara, tulips , and pepper to be displayed in Fig. 2 . As observed,

LS-LR produces the best visual effect, especially for the images

hich have abundant details, such as barbara and house . Compared

ith TMac, NLS-LR gains a huge improvement, which reveals the

ffectiveness of our regularizer. TMac and MF-TV only consider the

lobal low-rankness and neglect the relationship of the third di-

ension, so they are hard to reconstruct the color images. SPC-QV

nd LRTC-TV-II with the smoothness prior get commendable per-

ormance. However, the methods with smoothness priors usually

ave a staircase effect, leading to indistinct details. This is where

he non-local method matters, we see that our non-local regular-

zer gets better performances on preserving the abundant details. 
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Table 3 

The PSNR,SSIM, and average CPU time (seconds) of the results reconstructed by TMac [35] , MF-TV [37] , TNN [45] , LRTC-TV-II [42] , 

SPC-QV [36] , and NLS-LR for text masked image, gridlines damaged image, and scratched image. 

Type Text masked image Gridlines damaged image Scratched image 

Method PSNR SSIM Time PSNR SSIM Time PSNR SSIM Time 

TMac 13.042 0.522 27.313 13.725 0.611 25.462 11.884 0.538 30.598 

MF-TV 20.359 0.717 660.750 15.947 0.660 604.815 12.597 0.575 630.061 

TNN 25.753 0.820 4.420 26.259 0.831 4.389 23.727 0.777 4.602 

LRTC-TV-II 28.933 0.918 40.315 29.453 0.925 40.643 26.512 0.849 40.791 

SPC-QV 28.095 0.889 18.721 27.208 0.866 14.629 25.228 0.818 25.287 

NLS-LR 32.202 0.956 46.533 31.167 0.946 68.442 27.447 0.877 132.737 

Fig. 3. Reconstrcted results for various incomplete color image data. From top to bottom : text masked image, gridlines damaged image, and scratched image. From left to 

right: the observed data, the recovered results by TMac, MF-TV, TNN, LRTC-TV-II, SPC-QV, NLS-LR, and the original data. 
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1 http://www.cs.columbia.edu/CAVE/databases/multispectral/ . 
The reconstructed results of three kinds of incomplete color

mage data are displayed in Fig. 3 . Table 3 summaries the PSNR,

SIM, and CPU time (seconds) of them. The test data include a

asked image of barbara , a gridlines damaged image of lena , and a

cratched image of sails . We can observe that the proposed method

roduces the best visual effect. It’s visible that there is little differ-

nce between our results and the original images, while the results

btained by other methods are still not clear. 

.2. Video 

In this section, we test five videos of size 144 × 176 × 150, in-

luding suzie, news, foreman , and carphone . The maximum Tucker

ank is set to be r max = (105 , 115 , 75) . In the experiment, we use

n off-the-shell video denoiser VBM3D [64] to be the denoiser and

he denoiser parameter is set to be σ = 5 . The observed tensors

re randomly sampled by pixel and the SRs are set to be 5%, 10%,

nd 20%, respectively. The PSNR, SSIM, and average CPU time (min-

tes) of the test videos reconstructed by different methods are

hown in Table 4 . As observed, the proposed method is superior

o the compared methods in terms of both PSNR and SSIM values.

eanwhile, the time cost of NLS-LR is acceptable. Fig. 4 shows one

rame of five videos which are reconstructed by different methods.

Mac and MF-TV neglect the correlation of the third direction, thus

heir results remain a fair result on high sampling rates, while at a

ow sampling rate, their results contain evident blurry areas, lead-

ng to some details missing. It is obvious that NLS-LR achieves the
est reconstructed visual results. Especially for the moving objects,

LS-LR obtains the best recovering performances. 

.3. Multispectral image 

In this section, Columbia multispectral image database 1 is used

o test the performances of different methods. The MSI data are

ize of 256 × 256 × 31. The maximum Tucker rank is set to be

 

max = (185 , 185 , 5) . The SRs are set to be 5%, 10%, and 20%, re-

pectively. For MSI data, which is consisted of multiple bands, we

nput the n -th band and its two adjacent bands to CBM3D and

he denoiser parameter is set to be σ = 5 . Table 5 summaries

he PSNR, SSIM, and average CPU time (minutes) obtained by the

ompared methods and the proposed method. It can be seen that

he results obtained by NLS-LR are still superior to the compared

ethods. Fig. 5 provides the reconstructed results of MSI data.

e observe that the proposed method obtains a commendable

erformance. 

. Discussion 

.1. Parameter analysis 

In this subsection, we analyze the effect of the existing param-

ters of the algorithm. In the proposed model, ρ represents the
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Table 4 

The PSNR, SSIM, and average CPU time (minutes) of the results reconstructed by TMac [35] , MF-TV [37] , TNN [45] , LRTC-TV-II [42] , 

SPC-QV [36] , and NLS-LR for video completion on different sampling rates and videos. 

Video SR 5% 10% 20% Time 

Method PSNR SSIM PSNR SSIM PSNR SSIM 

Hall TMac 14.681 0.480 24.916 0.832 34.001 0.948 2.886 

MF-TV 16.706 0.523 28.905 0.880 34.384 0.947 49.732 

TNN 29.720 0.917 32.434 0.946 35.229 0.965 1.191 

LRTC-TV-II 20.288 0.603 21.931 0.705 24.151 0.823 8.751 

SPC-QV 27.492 0.877 29.024 0.905 30.272 0.924 36.961 

NLS-LR 31.219 0.937 34.817 0.965 38.314 0.980 11.934 

Coastguard TMac 7.331 0.018 8.366 0.031 11.215 0.102 2.275 

MF-TV 7.962 0.035 9.338 0.060 13.913 0.171 180.996 

TNN 23.541 0.551 25.180 0.648 27.237 0.754 0.979 

LRTC-TV-II 20.743 0.466 21.935 0.549 25.535 0.723 9.116 

SPC-QV 23.855 0.586 25.193 0.666 26.812 0.755 22.272 

NLS-LR 25.775 0.675 28.230 0.769 31.378 0.866 23.198 

News TMac 10.323 0.088 12.447 0.225 19.066 0.570 3.661 

MF-TV 11.228 0.117 14.336 0.263 26.157 0.728 191.925 

TNN 27.394 0.816 29.610 0.873 32.314 0.921 1.535 

LRTC-TV-II 20.878 0.688 22.392 0.764 25.083 0.867 9.998 

SPC-QV 27.243 0.845 29.215 0.890 31.576 0.928 22.621 

NLS-LR 29.978 0.904 33.347 0.946 36.803 0.971 16.926 

Foreman TMac 7.586 0.018 13.634 0.270 28.835 0.831 3.979 

MF-TV 8.560 0.030 17.228 0.400 31.364 0.872 171.686 

TNN 22.738 0.515 25.419 0.650 28.164 0.770 0.979 

LRTC-TV-II 20.473 0.631 22.652 0.740 27.069 0.874 9.975 

SPC-QV 26.097 0.755 27.702 0.808 29.132 0.848 21.297 

NLS-LR 27.734 0.828 30.873 0.895 34.529 0.943 15.802 

Suzie TMac 11.663 0.047 17.706 0.488 27.219 0.816 3.903 

MF-TV 13.712 0.092 22.308 0.609 32.015 0.873 172.522 

TNN 25.801 0.666 28.116 0.748 30.694 0.831 0.926 

LRTC-TV-II 24.900 0.725 28.253 0.814 31.679 0.891 9.932 

SPC-QV 29.127 0.812 30.786 0.851 32.012 0.877 20.537 

NLS-LR 30.030 0.840 32.689 0.886 35.651 0.928 15.627 

Fig. 4. One frame of five reconstructed videos coastguard, suzie, news, foreman , and hall with SR = 10%. From left to right: the observed data, the recovered results by TMac, 

MF-TV, TNN, LRTC-TV-II, SPC-QV, NLS-LR, and the original data. 
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Table 5 

The PSNR,SSIM, and average CPU time (minutes) of the results reconstructed by TMac [35] , MF-TV [37] , TNN [45] , LRTC-TV-II [42] , 

SPC-QV [36] , and NLS-LR for MSI completion on different sampling rates and different MSI data. 

MSI SR 5% 10% 20% Time 

Method PSNR SSIM PSNR SSIM PSNR SSIM 

Cloth TMac 11.164 0.109 12.196 0.237 29.346 0.829 1.566 

MF-TV 14.483 0.209 19.102 0.445 29.346 0.829 107.226 

TNN 21.972 0.532 25.266 0.736 29.835 0.882 0.979 

LRTC-TV-II 19.605 0.350 21.402 0.502 24.081 0.692 9.975 

SPC-QV 23.639 0.627 25.431 0.748 27.901 0.853 21.297 

NLS-LR 25.082 0.709 28.223 0.843 32.640 0.935 15.802 

Beads TMac 13.942 0.143 14.516 0.195 16.207 0.383 1.175 

MF-TV 16.345 0.234 18.490 0.363 22.679 0.587 94.557 

TNN 20.202 0.449 23.516 0.660 28.154 0.842 0.690 

LRTC-TV-II 17.897 0.387 20.271 0.588 24.373 0.792 4.958 

SPC-QV 24.668 0.745 27.174 0.840 29.970 0.906 12.469 

NLS-LR 25.859 0.801 28.915 0.894 32.780 0.951 37.881 

Toy TMac 12.130 0.461 14.745 0.660 24.682 0.899 2.641 

MF-TV 13.838 0.519 18.929 0.742 38.159 0.971 157.783 

TNN 28.883 0.843 32.599 0.917 37.552 0.967 0.726 

LRTC-TV-II 23.433 0.774 26.983 0.893 30.489 0.935 4.925 

SPC-QV 29.821 0.895 32.875 0.940 35.156 0.960 8.707 

NLS-LR 31.957 0.936 35.439 0.965 39.533 0.984 11.774 

Fig. 5. The pseudo-color images (R-10 G-20 B-30) of three reconstructed MSI data cloth, beads , and toy with SR = 10%. From left to right: the observed data, the recovered 

results by TMac, MF-TV, TNN, LRTC-TV-II, SPC-QV, NLS-LR, and the original data. For better visualization, the intensity of the pixels has been adjusted. 
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roximal operator, λ denotes the regularization parameter, and the

enoiser parameter σ is denoted as σ = 

√ 

λ
1+ ρ . The value of λ can

e calculated by λ = σ 2 ( 1 + ρ) given the values of ρ and σ . In

ig. 6 , we demonstrate the PSNR values of the results by NLS-LR

ith respect to ρ and σ , on color image barbara with SR = 10%. It

s observed that the proximal parameter causes a slight difference

n the final performance. Fig. 6 illustrates that the denoiser param-

ter σ is effective to its performance. Because the outcome will

erform over-smoothing if σ is too large, while it is hard to re-

over the underlying tensor if σ is set to be small. Thus, we should

arefully choose the value of denoiser parameter σ to get an

ppropriate outcome. 

.2. Complexity analysis 

Given a three-way tensor Y ∈ R 

d 1 ×d 2 ×d 3 , the complex-

ty of X -subproblem and A -subproblem at each iteration is

 

(∑ 3 
n =1 

(
d n r n s n + r 2 n s n + d n r 

2 
n + r 3 n 

))
, where s n = 

∑ 3 
m =1 ,m � = n d m 
nd ( r 1 , r 2 , r 3 ) is the Tucker rank of Y . For the Y-subproblem, the

omplexity at each iteration is O 

(∑ 3 
n =1 (d n r n s n + R ) 

)
, where R rep-

esents the computational cost of the denoiser engine, e.g. CBM3D

47] and VBM3D [64] . Therefore, the total computational complex-

ty at each iteration is O 

(∑ 3 
n =1 (d n r n s n + r 2 n s n + d n r 

2 
n + r 3 n + R ) 

)
.

or example, if the denoiser engine is CBM3D, the computational

omplexity is O 

(∑ 3 
n =1 (d n r n s n + r 2 n s n + d n r 

2 
n + r 3 n + Cd 1 d 2 d 3 ) 

)
, 

here C is a constant related to the parameters set in

BM3D. 

.3. Convergence 

Although the Plug and Play framework has been widely proven

o be effective, it still remains an open question whether the PnP

ramework can be written as a convex model that has a good

roperty of convergence [65,66] . In Fig. 7 , we display the RelCha

urve of barbara with SR = 10%. Factly, it can be observed that the

roposed algorithm has an obvious convergence. 
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Fig. 6. The PSNR values with respect to iterations for different proximal parameter 

ρ and denoiser parameter σ . 
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Fig. 7. The convergence curve with respect to iterations. 
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6. Concluding remarks 

In this paper, we proposed a novel low-rank tensor completion

model, which integrated low-rank constrains with non-local self-

similar regularizer using Plug and Play framework. We adopted

the low-rank matrix factorization to guarantee the global low-

rankness of the underlying tensor and enhanced the self-similarity

of the tensor by employing off-the-shell denoisers (i.e., CBM3D and

VBM3D). We adopted the BSUM algorithm to solve the minimizing

problem. The numerical experiments showed the effectiveness of

the proposed method in preserving the abundant details, which

demonstrated its superiorities to many state-of-the-art meth-

ods. The tensor reconstructed by the proposed method produced

better visual effects and gained the best quality metrics. 
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