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a b s t r a c t 

Low-rank modeling has achieved great success in tensor completion. However, the low- 

rank prior is not sufficient for the recovery of the underlying tensor, especially when the 

sampling rate (SR) is extremely low. Fortunately, many real world data exhibit the piece- 

wise smoothness prior along both the spatial and the third modes (e.g., the temporal mode 

in video data and the spectral mode in hyperspectral data). Motivated by this observation, 

we propose a novel low-rank tensor completion model using smooth matrix factorization 

(SMF-LRTC), which exploits the piecewise smoothness prior along all modes of the un- 

derlying tensor by introducing smoothness constraints on the factor matrices. An efficient 

block successive upper-bound minimization (BSUM)-based algorithm is developed to solve 

the proposed model. The developed algorithm converges to the set of the coordinate-wise 

minimizers under some mild conditions. Extensive experimental results demonstrate the 

superiority of the proposed method over the compared ones. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

With the rocketing development of information technology, realistic data, such as magnetic resonance image (MRI), hy-

perspectral image, and video, tend to have high dimensions and complex structures. As a high-dimensional generalization of

vector and matrix, tensor can better express the complex essential structures of higher-order data. Thus, higher-order ten-

sors have extensive applications in many fields, such as MRI data recovery [1,2] , hyperspectral image recovery [3–8] , video

rain streak removal [9,10] , image/video inpainting [11–14] , and signal reconstruction [15,16] . 

Tensor completion is to recover the higher-order tensor with missing entries. The key is to built up the relationship

between the available and the missing entries [17] . As an extension of low-rank matrix completion (LRMC) [18,19] , low-rank

tensor completion (LRTC) utilizes the low-rank prior to characterize the relationship between the available and the missing

entries. Mathematically, the LRTC problem can be written as 

min 

Y 
rank (Y) 

s.t. P �(Y) = F, 
(1)
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Fig. 1. Illustrations of the physical interpretations of the factors A 3 and X 3 in hyperspectral unmixing. Each row of Y (3) and X 3 are reshaped to image for 

visualization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where Y is the underlying tensor, F is the observed tensor, � is the index set for available entries, and P �(·) is the pro-

jection operator that keeps the entries of Y in � and zeros out others. Among all definitions for the rank of tensors, the

Tucker rank (also named n -rank, see details in Section 2 ) is widely used to depict the low-rankness of the underlying tensor

[17,20,21] . However, directly minimizing the Tucker rank is NP-hard [22,23] . 

In the past decade, the nuclear norm, as the tightest convex surrogate of the matrix rank, has been widely used for low-

rank matrix approximation [24,25] . Inspired by this, Liu et al. [17] established the following definition of the nuclear norm

for tensors: 

‖Y‖ ∗ = 

N ∑ 

n =1 

αn ‖ Y (n ) ‖ ∗, (2) 

where αn ≥ 0 ( n = 1 , 2 , . . . , N), 
∑ N 

n =1 αn = 1 , and Y ( n ) denotes the mode- n unfolding of Y (see details in Section 2 ). With the

definition in (2) , their model can be written as 

min 

Y 

N ∑ 

n =1 

αn ‖ Y (n ) ‖ ∗

s.t. P �(Y) = F . 

(3) 

To solve (3) , Liu et al. [17] proposed three algorithms (SiLRTC, FaLR-TC, and HaLRTC); Gandy et al. [26] developed two

algorithms (Douglas–Rachford splitting technique and ADMM). However, all these methods involve the singular value de-

composition (SVD) of Y ( n ) with high computational complexity. To tackle this issue, Xu et al. [27] proposed a new model to

recover a low-rank tensor by parallelly performing low-rank matrix factorizations to the unfoldings of Y along all modes,

i.e., 

min 

Y,X,A 

N ∑ 

n =1 

αn 

2 

‖ Y (n ) − A n X n ‖ 

2 
F 

s.t. P �(Y) = F, 

(4) 

where A = (A 1 , A 2 , . . . , A N ) , X = (X 1 , X 2 , . . . , X N ) , αn ≥ 0 ( n = 1 , 2 , . . . , N), and 

∑ N 
n =1 αn = 1 . Their method, named low-rank

tensor completion by parallel matrix factorization (TMac), has been shown higher time efficiency and better performance

than FaLRTC. 

Not limited to the low-rank prior, many real-world data, such as natural color image, video, and hyperspectral image,

exhibit the spatial piecewise smoothness prior [28,29,38,39] . And in many real-world applications, the factors A 3 and X 3 

in (4) have clear physical interpretations. For example, in hyperspectral unmixing [4,40,41] , the linear mixing model of a

hyperspectral image Y ∈ R 

d 1 ×d 2 ×d 3 ( d 3 is the number of spectral bands) can be written as 

Y (3) = A 3 X 3 , 

where Y (3) denotes the mode-3 unfolding of Y, the i th (i = 1 , 2 , . . . , d 3 ) row of Y (3) is the vectorized image of the i th spec-

tral band, A 3 ∈ R 

d 3 ×r 3 is a spectral library, each column of which denotes the spectral signatures of the corresponding end-

members, and X 3 ∈ R 

r 3 ×d 1 d 2 is the abundance matrix, each row of which denotes the abundances of the corresponding

endmembers. Fig. 1 shows the ground truth (includes the spectral library A 3 and the abundance matrix X 3 ) of the hy-

perspectral image Urban 1 . As observed, each row of the factor X 3 mainly reflects the spatial structure of the original data

and is piecewise smooth. Thus, many methods exploit the spatial piecewise smoothness prior of the underlying tensor by

boosting the piecewise smoothness of the rows of X 3 [28,29,38,39] . Among them, Ji et al. [28] and Jiang et al. [29] intro-

duced the total variation (TV) regularizer and framelet regularizer into the LRTC problem, respectively. Their model can be
1 http://lesun.weebly.com/hyperspectral- data- set.html . 
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Table 1 

A comparison of the related LRTC methods and their properties. 

Method Characterization for 

low-rankness 

Characterization for spatial 

smoothness 

Characterization for the 

third mode’s smoothness 

The solving algorithm 

Low-rank factorization or 

minimizing the rank 

Constraints on factors or 

target tensors 

Constraints on factors or 

target tensors 

HaLRTC [17] minimizing the Tucker rank – – an alternating direction 

method of multipliers 

based algorithm 

TMac [27] low-rank matrix 

factorization 

– – an alternating minimization 

based algorithm 

MF-TV [28] low-rank matrix 

factorization 

isotropic TV for factors – a block successive 

upper-bound 

minimization based 

algorithm 

MF-Framelet [29] low-rank matrix 

factorization 

framelet for factors – a block successive 

upper-bound 

minimization based 

algorithm 

TNN [30] minimizing the tubal rank – – an alternating direction 

method of multipliers 

based algorithm 

TCTF [31] low-tubal-rank tensor 

factorization 

– – an alternating minimization 

based algorith 

Tubal-Alt-Min [32] low-tubal-rank tensor 

factorization 

– – an alternating minimization 

based algorithm 

GTV [33] – generalized TV for target 

tensors 

generalized TV for target 

tensors 

a novel Augmented 

Lagrange Multiplier 

based algorithm 

SPC-TV/SPC-QV [34] PARAFAC decomposition unidirectional TV/QV for 

factors 

unidirectional TV/QV for 

factors 

a hierarchical alternating 

least squares based 

algorithm 

LRTC-TV-I [35] minimizing the Tucker rank anisotropic TV for target 

tensors 

anisotropic TV for target 

tensors 

an alternating direction 

method of multipliers 

based algorithm 

LRTC-TV-II [35] Tucker decomposition anisotropic TV for target 

tensors 

anisotropic TV for target 

tensors 

an alternating direction 

method of multipliers 

based algorithm 

LRTV-PDS [36] minimizing the Tucker rank isotropic TV for target 

tensors 

isotropic TV for target 

tensors 

a primal-dual splitting 

based algorithm 

MDT-LRTC [37] Tucker decomposition with 

multi-way 

delay-embedding 

transform 

– – an alternating least squares 

based algorithm 

SMF-LRTC low-rank matrix 

factorization 

framelet for factors unidirectional TV for 

factors 

a block successive 

upper-bound 

minimization based 

algorithm 

 

 

 

 

 

 

 

 

 

generally written as 

min 

Y,X,A 

3 ∑ 

n =1 

αn 

2 

‖ Y (n ) − A n X n ‖ 

2 
F + λR(X 3 ) 

s.t. P �(Y) = F, 

(5)

where λ denotes the regularization parameter and R( X 3 ) is the regularization term. As exhibited in [28] and [29] , regular-

izing the TV/framelet of rows of X 3 effectively enhances the spatial piecewise smoothness of the underlying tensor, leading

to a significant improvement. Not limited to this studying route, the other related LRTC methods and their properties are

summarized in Table 1 . 

1.1. Motivations and contributions 

It should be noted that many real-world data exhibit piecewise smoothness along the third mode, e.g., the temporal

mode in video data and the spectral mode in hyperspectral data, which were not considered in [28] and [29] . Furthermore,

as shown in Fig. 1 , in hyperspectral unmixing, the piecewise smoothness along the spectral mode of a hyperspectral image

is related to the spectral library A 3 , each column of which is piecewise smooth. 

Generally and mathematically, assuming that the Tucker rank of a three-way tensor Y ∈ R 

d 1 ×d 2 ×d 3 is ( r 1 , r 2 , r 3 ), the

mode-3 unfolding Y (3) can be factorized as Y (3) = A 3 X 3 , where A 3 ∈ R 

d 3 ×r 3 and X 3 ∈ R 

r 3 ×d 1 d 2 are factor matrices. It is easy to
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Fig. 2. Illustrations of the effectiveness of the proposed method. The first and second columns are four frames and the intensity of one mode-3 fiber of 

the reconstructed video data suzie , respectively. The third and fourth columns are the intensity of selected three columns of the factor matrix A 3 and four 

factor images reshaped by the corresponding rows of the factor matrix X 3 , respectively. From the second to fourth row: the results obtained by TMac [27] , 

MF-Framelet [29] , and the proposed method, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

see that each column of Y (3) is the linear combination of all columns of A 3 and each row of Y (3) is the linear combination

of all rows of X 3 , i.e., columns of A 3 (rows of X 3 ) can be viewed as a basis of the column (row) space of Y (3) . As piecewise

smooth bases tend to generate piecewise smooth data, we can enhance the smoothness of columns of Y (3) (the third mode

of Y) by boosting the piecewise smoothness of the columns of A 3 and enhance the smoothness of rows of Y (3) (spatial

mode of Y) by boosting the piecewise smoothness of the rows of X 3 . Motivated by this, we propose a novel LRTC model

simultaneously considering the low-rankness and the piecewise smoothness priors of the underlying tensor Y . The proposed

model, named low-rank tensor completion by smooth matrix factorization (SMF-LRTC), is formulated as 

min 

Y,X,A 

N ∑ 

n =1 

αn 

2 

‖ Y (n ) − A n X n ‖ 

2 
F + λ1 ‖ W X 

T 
3 ‖ 1 , 1 + λ2 ‖∇ y A 3 ‖ 1 , 1 

s.t. P �(Y) = F, 

(6) 

where λ1 and λ2 are regularization parameters, W denotes the framelet transformation matrix, ∇ y indicates the vertical

derivative operator, and the � 1,1 -norm of a matrix is defined as the sum of the absolute values of its all elements (see

details in Section 3.1 ). The major difference between the proposed method and the method of Jiang et al. [29] lies on

the consideration of the piecewise smoothness prior along the third mode of the underlying tensor. The distinctions and

relations between the proposed method and the other related LRTC methods are summarized in Table 1 . 

To better comprehend our motivation, in Fig. 2 , we provide an example conducted on the video data suzie with a low

sampling rate ( SR = 5% ), it means that only 5% entries are known. The left two columns suggest that (1) the results by the

proposed method have considerably higher visual quality than those by TMac [27] and the MF-Framelet [29] ; (2) the mode-

3 fibers by the proposed method are much smoother and closer to the original ones comparing with those by the other two

methods. The right two columns indicate that (1) the columns of A 3 by the proposed method are much smoother than those

by the compared methods; (2) owing to the smoothness constraint on the factor matrix A 3 , the factor images (the rows of

X ) by the proposed method contain more details and geometrical features than those by the compared methods. The above
3 
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observations from Fig. 2 are consistent with the fore discussion of our motivation regarding the piecewise smoothness, i.e.,

smoothness constraint on X 3 can lead the spatial mode of the recovered data to be smooth and smoothness constraint on

A 3 can make the third mode of the recovered data to be smooth. 

The contributions of this paper are mainly three folds: (1) we observe that the smoothness of the underlying tensor can

be enhanced by boosting the piecewise smoothness of the factor matrices; (2) based on the above observation, we pro-

pose a LRTC model using smooth matrix factorization, which can simultaneously exploits the low-rankness and the piece-

wise smoothness priors of the underlying tensor; (3) we develop an efficient block successive upper-bound minimization

(BSUM)-based algorithm to solve the proposed model, numerical experiments demonstrate that our method can signifi-

cantly improve the quality of the results. 

1.2. Organization of the paper 

The outline of this paper is as follows. Section 2 reviews some preliminary knowledge about tensor, framelet, the proxi-

mal operator, and the BSUM algorithm. Section 3 gives model formulation and an efficient BSUM-based solver with conver-

gence analysis. Section 4 evaluates the performance of the proposed method and compares the results with three competing

methods. Section 5 concludes this paper. 

2. Preliminary 

In this paper, we denote vectors as lowercase letters (e.g., a ), matrices as uppercase letters (e.g., A ), and tensors as

calligraphic letters (e.g., A ). Below, we review some preliminary knowledge that will be used in this paper. 

2.1. Tensor basics 

In this section, we partially adopt the nomenclatures of Kolda and Bader’s [42] review on tensor. 

A fiber of a tensor A is a vector generated by fixing every index but one. The mode-n fibers are all vectors A (i 1 , . . . , i n −1 , :

, i n +1 , . . . , i N ) for all i 1 , i 2 , . . . , i N . 

A slice of a tensor A is a matrix generated by fixing every index but two. For a three-way tensor A , horizontal slices are

all matrices A (i 1 , : , :) for all i 1 , i 2 , i 3 , lateral slices are all matrices A (: , i 2 , :) for all i 1 , i 2 , i 3 , and frontal slices are all matrices

A (: , : , i 3 ) for all i 1 , i 2 , i 3 . 

The Frobenius norm of an N -way tensor A ∈ R 

d 1 ×d 2 ×···×d N is defined as 

‖A‖ F = 

( d 1 ∑ 

i 1 =1 

d 2 ∑ 

i 2 =1 

· · ·
d N ∑ 

i N =1 

| a i 1 i 2 ... i N | 2 
)

1 
2 , 

where a i 1 i 2 ... i N is the (i 1 , i 2 , . . . , i N ) -th element of the tensor A . Furthermore, ‖A‖ F also can be written as 
√ 〈A , A〉 with the

following definition of inner product of two same-sized tensors A and B: 

〈A , B〉 = 

∑ 

i 1 ,i 2 , ... ,i N 

a i 1 i 2 ... i N · b i 1 i 2 ... i N . 

The mode-n unfolding of a tensor A is denoted as A (n ) ∈ R 

d n ×
∏ 

i 	 = n d i , whose ( i n , j )th element maps to the (i 1 , i 2 , . . . , i N ) th

element of A , where 

j = 1 + 

N ∑ 

k =1 ,k 	 = n 
(i k − 1) J k with J k = 

k −1 ∑ 

m =1 ,m 	 = n 
d m 

. 

The inverse operator of unfolding is denoted as “fold”, i.e., A = fold n (A (n ) ) . 

The Tucker rank ( n-rank ) of a tensor A is defined as the following array. 

rank t (A ) = 

(
rank (A (1) ) , rank (A (1) ) , . . . , rank (A (N) ) 

)
. 

Interested readers can refer to [42] for a more extensive overview. 

2.2. Framelet 

A system X ⊂ L 2 (R ) is called a tight frame of L 2 (R ) if 

f = 

∑ 

g∈ X 
〈 f, g〉 g, ∀ f ∈ L 2 (R ) , 

where 〈 · , · 〉 is the inner product of L 2 (R ) . A wavelet (also called affine) system X ( �) is defined by the following collection

of dilations and shifts of a finite set � = { ψ 1 , ψ 2 , . . . , ψ r } ⊂ L 2 (R ) . 

X (�) = 

{
2 

k/ 2 ψ l (2 

k · - j) : ψ l ∈ �; 1 ≤ l ≤ r; k, j, l ∈ Z 

}
. 
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Particularly, ψ l ( l = 1 , 2 , . . . , r) are called the (tight) framelets and X ( �) is called a tight wavelet frame if X ( �) is a tight

frame for L 2 (R ) simultaneously. 

In the discrete setting, a discrete image f is considered as the coefficients { f i = 〈 f, ψ(·- i ) 〉} up to a dilation, where ϕ
is a refinable function associated with the framelet system. Then the L -level discrete framelet decomposition of f is the

coefficients { f = 〈 f, 2 - L/ 2 ψ i (2 - L · - j) 〉} at a prescribed coarsest level L , and the framelet coefficients are 

{ f = 〈 f, 2 

- L/ 2 ψ i (2 

- L · - j) 〉 , 1 ≤ i ≤ r 2 − 1 } for 0 ≤ l ≤ L. 

This decomposition can be written into a linear operator applied to the discrete image (vector form) f ∈ R 

mn , i.e., Wf with

W ∈ R 

k ×mn . By the unitary extension principle (UEP) of [43] , W 

T W = I, where W 

T is the inverse framelet transform. Thus the

row vectors of W form a tight frame system in R 

mn . Our implementations mainly use the piecewise linear B-spline framelets

constructed by [43] . A detailed description about framelet can be found in [39,43,44] . 

2.3. Proximal operator 

The proximal operator [45] of a given convex function f ( x ) is defined as 

prox f (y ) = arg min 

x 

{
f (x ) + 

ρ

2 

‖ x − y ‖ 

2 

}
, (7) 

where ρ > 0 is a constant. There are two attractive conclusions about the proximal operator. One is that min x { f ( x )} is equiv-

alent to min x,y { f (x ) + ρ/ 2 ‖ x − y ‖ 2 } , and another is that (7) is strongly convex with respect to x when f ( x ) is convex. Thus,

proximal algorithms minimize { f ( x )} by iteratively solving prox f ( x 
k ), where x k is the latest update of x . 

2.4. Block successive upper-bound minimization algorithm 

Assuming that the feasible set X is the Cartesian product of n closed convex sets: X = X 1 × X 2 × · · · × X n with X i ∈ R 

m i , the

optimization variable x ∈ X can be decomposed as x = (x 1 , x 2 , . . . , x n ) with x i ∈ X i for i = 1 , 2 , . . . , n . Considering the problem

min f (x ) 

s.t. x ∈ X, 
(8) 

the BSUM algorithm updates only the single block of variables in each iteration, i.e., (8) can be iteratively solved by ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

Step 1 : x k +1 
1 = arg min 

x 1 

prox f (x k 1 ) , 

Step 2 : x k +1 
2 = arg min 

x 2 

prox f (x k 2 ) , 

. . . 

Step n : x k +1 
n = arg min 

x n 

prox f (x k n ) . 

(9) 

Details about BSUM algorithm can be found in [46] . 

3. Proposed model and algorithm 

3.1. Proposed model 

Considering a three-way tensor Y ∈ R 

d 1 ×d 2 ×d 3 , the proposed model (6) is as follows: 

min f ( X, A, Y ) = 

3 ∑ 

n =1 

αn 

2 

‖ Y ( n ) − A n X n ‖ 

2 
F + λ1 ‖ W X 

T 
3 ‖ 1 , 1 + λ2 ‖ ∇ y A 3 ‖ 1 , 1 + ι( Y ) , (10) 

where λ1 and λ2 are regularization parameters, Y ( n ) denotes the mode- n unfolding of Y, A = (A 1 , A 2 , A 3 ) , X = (X 1 , X 2 , X 3 ) ,

αn ≥ 0 ( n = 1 , 2 , 3 ), 
∑ 3 

n =1 αn = 1 , and ι( · ) is the following indicator function: 

ι(Y) := 

{
0 , if P �(Y) = F, 

∞ , otherwise . 

In the fidelity term 

∑ 3 
n =1 

αn 
2 ‖ Y (n ) − A n X n ‖ 2 F 

, the Tucker rank of a tensor Y is ( r 1 , r 2 , r 3 ), A n ∈ R 

d n ×r n and X n ∈ R 

r n ×s n with

s n = 

∏ 

i 	 = n d i are the factor matrices. This term is used to promote the low-rankness of the underlying tensor. 

In the framelet-based regularization term ‖ W X T 
3 
‖ 1 , 1 , W indicates the framelet transformation matrix satisfying W 

T W = I.

As pointed out in [29,47] , a smooth gray-level image have good sparse approximations in framelet domain. It implies that for
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a gray-level image (vector form) f ∈ R 

mn , ‖ Wf ‖ 1 is able to enhance its piecewise smoothness. Note that X T 3 can be rewritten

as 

X 

T 
3 = 

((
x 1 3 

)
T , 

(
x 2 3 

)
T , . . . , 

(
x r 3 

3 

)
T 
)
, 

where x i 
3 

∈ R 

1 ×d 1 d 2 (i = 1 , 2 , . . . , r 3 ) indicates the i -th row of X 3 . In detail, each (x i 
3 
) T can be viewed as a vectorized factor

image and the framelet decomposition operation W (x i 
3 
) T acts on each x i 

3 
independently, but it can be concisely calculated

by W X T 3 with the good structure of X 3 . Therefore, ‖ W X T 3 ‖ 1 , 1 can enhance smoothness of the rows of X 3 . As analysis in

Section 1.1 and [4,28,29] , the piecewise smoothness along the spatial mode of the underlying tensor Y can be enhanced by

this regularization term. 

In the TV-based regularization term ‖∇ y A 3 ‖ 1,1 , ∇ y indicates the vertical derivative operator, and ∇ y A 3 can be calculated

by DA 3 , where D is the first-order difference matrix 

D = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

−1 1 . . . 0 0 

0 −1 . . . 0 0 

. . . 
. . . 

. . . 
. . . 

. . . 
0 0 . . . −1 1 

1 0 . . . 0 −1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

. 

This term aims to enhance the piecewise smoothness along the third mode of the underlying tensor Y by boosting the

piecewise smoothness of the columns of A 3 . 

In summary, these two smoothness constraints ensure the piecewise smoothness of the rows of X 3 and the columns of

A 3 . As a result, the piecewise smoothness along all modes of the underlying tensor Y can be enhanced. 

3.2. Proposed algorithm 

In this section, we develop an BSUM-based algorithm to solve (10) . 

It is clear that although the objective function of (10) is not jointly convex for (X, A, Y) , it is convex with respect to

X, A, Y independently. Let Z = (X, A, Y) , naturally Z 

k = (X k , A 

k , Y 

k ) , with utilization of the proximal operator (7) and (10),

(6) can be solved through the following problem: 

Z 

k +1 = arg min 

Z 
h (Z , Z 

k ) = arg min 

Z 
f (Z) + 

ρ

2 

‖Z − Z 

k ‖ 

2 
F , (11)

where ρ > 0 is the proximal parameter. Let Z 

k 
1 

= (X k , A 

k , Y 

k ) , Z 

k 
2 

= (X k +1 , A 

k , Y 

k ) , and Z 

k 
3 

= (X k +1 , A 

k +1 , Y 

k ) , with utilization

of the BSUM algorithm, (11) can be rewritten as ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

Step 1 : X 

k +1 = arg min 

X 

{ 

h 1 (X, Z 

k 
1 ) 

} 

= arg min 

X 

{ 

f (X, A 

k , Y 

k ) + 

ρ

2 

‖ X − X 

k ‖ 

2 
F 

} 

, 

Step 2 : A 

k +1 = arg min 

A 

{ 

h 2 (A, Z 

k 
2 ) 

} 

= arg min 

A 

{ 

f (X 

k +1 , A, Y 

k ) + 

ρ

2 

‖ A − A 

k ‖ 

2 
F 

} 

, 

Step 3 : Y 

k +1 = arg min 

Y 

{ 

h 3 (Y, Z 

k 
3 ) 

} 

= arg min 

Y 

{ 

f (X 

k +1 , A 

k +1 , Y) + 

ρ

2 

‖Y − Y 

k ‖ 

2 
F 

} 

. 

(12)

It is easy to note that the X - and A - subproblems can be decomposed into three independent problems. Thus, it is clear

that (12) has the following solutions. 

Step 1 ( X -subproblems): 

X 

k +1 
n = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

(
αn (A 

k 
n ) 

T A 

k 
n + ρI 1 

)
† 
(
αn (A 

k 
n ) 

T Y k (n ) + ρX 

k 
n 

)
, n = 1 , 2 , 

arg min 

X 3 

{
α3 

2 

‖ Y k (3) − A 

k 
3 X 3 ‖ 

2 
F + λ1 ‖ W X 

T 
3 ‖ 1 , 1 + 

ρ

2 

‖ X 3 − X 

k 
3 ‖ 

2 
F 

}
, n = 3 , 

(13)

Step 2 ( A -subproblems): 

A 

k +1 
n = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

(
αn Y 

k 
(n ) (X 

k +1 
n ) T + ρA 

k 
n 

)(
αn X 

k +1 
n (X 

k +1 
n ) T + ρI 2 

)
† , n = 1 , 2 , 

arg min 

A 3 

{
α3 

2 

‖ Y k (3) − A 3 X 

k +1 
3 ‖ 

2 
F + λ2 ‖ DA 3 ‖ 1 , 1 + 

ρ

2 

‖ A 3 − A 

k 
3 ‖ 

2 
F 

}
, n = 3 , 

(14)

Step 3 ( Y-subproblems): 
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Y 

k +1 = P �c 

(
3 ∑ 

n =1 

αn fold n 

(
αn A 

k +1 
n X 

k +1 
n + ρY k 

(n ) 

αn + ρ

))
+ F, (15) 

where F denotes the observed data and ( · ) † indicates the Moore–Penrose pseudoinverse of ( · ). The complexity of comput-

ing X n (n = 1 , 2) is O (r 2 n d n + r n d 1 d 2 d 3 ) , the complexity of computing A n (n = 1 , 2) is O (r 2 n d n + r n d 1 d 2 d 3 ) , and the complexity

of computing Y is O( 
∑ 3 

n =1 r n d 1 d 2 d 3 ) . 

Next, we give the details for solving the X 3 - and A 3 - subproblems. For the X 3 - subproblem in Step 1, it is easy to find

that the problem fits the framework of the alternating direction method of multipliers (ADMM) [48] . Thus, we rewrite the

X 3 subproblem as the following equivalent constrained problem 

min 

X 3 ,V 

μ1 

2 

‖ Y k (3) − A 

k 
3 X 3 ‖ 

2 
F + ‖ V ‖ 1 , 1 + 

ρx 

2 

‖ X 3 − X 

k 
3 ‖ 

2 
F 

s.t. V = W X 

T 
3 , 

(16) 

where μ1 = α3 / λ1 and ρx = ρ/ λ1 . The concise form of the augmented Lagrangian function of (16) can be expressed as 

L β1 
(X 3 , V, �) = 

μ1 

2 

‖ Y k (3) − A 

k 
3 X 3 ‖ 

2 
F + ‖ V ‖ 1 , 1 + 

ρx 

2 

‖ X 3 − X 

k 
3 ‖ 

2 
F + 

β1 

2 

∥∥∥∥W X 

T 
3 − V + 

�

β1 

∥∥∥∥
2 

F 

+ C, (17) 

where � denotes the Lagrange multiplier and β1 > 0 is the penalty parameter. Then, (17) can be updated through alternating

direction as ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

X 

k +1 ,p+1 
3 

= 

(
μ1 (A 

k 
3 ) 

T A 

k 
3 + (ρx + β1 ) I 

)
† 

(
μ1 (A 

k 
3 ) 

T Y k (3) + ρx X 

k 
3 + β1 

[ 
W 

T 
(

V 

p − �p 

β1 

)] 
T 

)
, 

V 

p+1 = S 1 
β1 

(
W 

(
X 

k +1 ,p+1 
3 

)
T + 

�p 

β1 

)
, 

�p+1 = �p + β1 

(
W 

(
X 

k +1 ,p+1 
3 

)
T − V 

p+1 
)
, 

(18) 

where S α( · ) denotes the component-wise soft thresholding operator with threshold α, i.e., 

[ S α(x ) ] i j = sgn (x i j ) max 
{
(| x i j | − α) , 0 } . (19) 

The complexity of computing X 3 is O (r 2 3 d 3 + r 3 d 1 d 2 d 3 + r 3 d 
2 
1 d 

2 
2 ) . 

For the A 3 -subproblem in Step 2, similar to the X 3 -subproblem, we rewrite the A 3 -subproblem as 

min 

A 3 ,M 

μ2 

2 

‖ Y k (3) − A 3 X 

k +1 
3 ‖ 

2 
F + ‖ M‖ 1 , 1 + 

ρa 

2 

‖ A 3 − A 

k 
3 ‖ 

2 
F 

s.t. M = DA 3 , 

(20) 

where μ2 = α3 / λ2 and ρa = ρ/ λ2 . The concise form of the augmented Lagrangian function of (20) can be written as 

L β2 
(A 3 , M, ) = 

μ2 

2 

‖ Y k (3) − A 3 X 

k +1 
3 ‖ 

2 
F + ‖ M‖ 1 , 1 + 

ρa 

2 

‖ A 3 − A 

k 
3 ‖ 

2 
F + 

β2 

2 

∥∥∥∥DA 3 − M + 



β2 

∥∥∥∥
2 

F 

+ C, (21) 

where  denotes Lagrange multiplier and β2 > 0 is the penalty parameter. To minimize (21) , we can update A, M , and  as

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

A 

k +1 ,p+1 
3 

∈ arg min 

A 3 

L β2 
(A 3 , M 

p , p ) , 

M 

p+1 = S 1 
β2 

(
DA 

k +1 ,p+1 
3 

+ 

p 

β2 

)
, 

p+1 = p + β2 

(
DA 

k +1 ,p+1 
3 

− M 

p+1 
)
. 

(22) 

For the A 3 -subproblem in (22) , we solve the following problem: 

arg min 

A 3 

{
μ2 

2 

‖ Y k (3) − A 3 X 

k +1 
3 ‖ 

2 
F + 

ρa 

2 

‖ A 3 − A 

k 
3 ‖ 

2 
F + 

β2 

2 

∥∥∥∥DA 3 − M 

p + 

p 

β2 

∥∥∥∥
2 

F 

}
, (23) 

which can be solved via the classical Sylvester matrix equation 

μ2 A 3 X 

k +1 
3 (X 

k +1 
3 ) T + ρa A 3 + β2 D 

T DA 3 = μ2 Y 
k 
(3) (X 

k +1 
3 ) T + ρa A 

k 
3 + β2 D 

T 

(
M 

p − p 

β2 

)
. (24) 

To solve (24) , we develop the following theorem. 
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Theorem 1. Assuming that A ∈ R 

m ×m , B ∈ R 

n ×n , and X, C ∈ R 

m ×n . The following classical Sylvester matrix equation 

AX + X B = C (25)

has a unique solution if only if G = I n � A + B T � I m 

is a invertible matrix, where � denotes the Kronecker product. Especially, if

matrices A and B satisfy 

A = U 1 �1 U 

T 
1 , B = U 2 �2 U 

T 
2 , 

where �1 and �2 are diagonal matrices; U 1 and U 2 are unitary matrices. Then the unique solution is 

X = U 1 

(
(1 ./T ) . ∗ (U 

T 
1 CU 2 ) 

)
U 

T 
2 , 

where “. ∗” represents the component-wise multiplication, “./” represents the component-wise division, and T = 

(
diag 2

(�1 ) , diag (�1 ) , . . . , diag (�1 ) 
)

T + 

(
diag (�2 ) , diag (�2 ) , . . . , diag (�2 ) 

)
. 

Proof. Using the Kronecker product notations, (25) can be rewritten as 

(I n � A + B 

T 
� I m 

) vec (X ) = vec (C) , (26)

where “vec( · )” refers to a vector by lexicographical ordering of the entries in a matrix. Since A = U 1 �1 U 

T 
1 

and B = U 2 �2 U 

T 
2 
,

we rewrite (26) as (
I n � (U 1 �1 U 

T 
1 ) + (U 2 �2 U 

T 
2 ) � I m 

)
vec (X ) = vec (C) 

⇐⇒ 

(
(U 2 I n U 

T 
2 ) � (U 1 �1 U 

T 
1 ) + (U 2 �2 U 

T 
2 ) � (U 1 I m 

U 

T 
1 ) 

)
vec (X ) = vec (C) 

⇐⇒ 

(
(U 2 � U 1 )(I n � �1 + �2 � I m 

)(U 

T 
2 � U 

T 
1 ) 

)
vec (X ) = vec (C) , 

(27)

then, vec( X ) can be expressed as 

vec (X ) = 

(
(U 2 � U 1 )(I n � �1 + �2 � I m 

) −1 (U 

T 
2 � U 

T 
1 ) 

)
vec (C) 

= (U 2 � U 1 ) 
(
diag ( vec (1 ./T )) 

)
(U 

T 
2 � U 

T 
1 ) vec (C) 

= (U 2 � U 1 ) 
(
diag ( vec (1 ./T )) 

)
vec (U 

T 
1 CU 2 ) 

= (U 2 � U 1 ) vec 
(
(1 ./T ) . ∗ (U 

T 
1 CU 2 ) 

)
. 

(28)

Thus, the unique solution of (25) is X = U 1 

(
(1 ./T ) . ∗ (U 

T 
1 CU 2 ) 

)
U 

T 
2 . �

In (24) , the matrix D 

T D is a circulant matrix, which can diagonalized via one-dimensional Fourier transformation; mean-

while, the matrix X k +1 
3 

can be diagonalized by using the singular value decomposition. Letting 

X 

k +1 
3 = U�V 

∗, D 

T D = F ∗�2 F , 

and 

K = μ2 Y 
k 
(3) (X 

k +1 
3 ) T + ρa A 

k 
3 + β2 D 

T 

(
M 

p − p 

β2 

)
. 

With Theorem 1 , the solution of (24) can be expressed as 

A 

k +1 ,p+1 
3 

= F ∗
(
1 ./T . ∗ (F KU ) 

)
U 

∗, (29)

where T = μ2 

(
diag (�2 ) , diag (�2 ) , . . . , diag (�2 ) 

)
T + β2 

(
diag (�2 ) , diag (�2 ) , . . . , diag (�2 ) 

)
+ ρa ones (d 3 , r 3 ) 

3 . 

The complexity of computing A 3 is O 

(
r 2 

3 
d 3 + r 3 d 1 d 2 d 3 + r 3 d 

2 
3 

+ r 3 d 1 d 2 min (r 3 , d 1 d 2 ) 
)
. Thus, the complexity of computing

all the variables at each iteration is O 

(∑ 3 
n =1 (r 2 n d n + r n d 1 d 2 d 3 ) + r 3 (d 2 

1 
d 2 

2 
+ d 2 

3 
) 
)
. 

As the Tucker rank r is an important parameter, we considered the following heuristic rank-increasing scheme to adjust

it automatically. 

Rank-increasing scheme. This scheme starts with an underestimated rank, i.e., r 0 = (r 1 , r 2 , r 3 ) ≤ rank t (Y) , where Y ∈
R 

d 1 ×d 2 ×d 3 is the underlying tensor. Following [27,49] , we increase r n to min (r n + �r n , r 
max 
n ) at iteration k + 1 if ∣∣∣∣1 − ‖P �c (A 

k +1 
n X 

k +1 
n ) ‖ F 

‖P �c (A 

k 
n X 

k 
n ) ‖ F 

∣∣∣∣ < 10 

−2 , n = 1 , 2 , 3 , 

which implies “slow” progress in the r n dimensional space along the n th mode. Here, �r n is a positive integer and r max
n 

is the maximal rank estimate. If the r n is increased at iteration k + 1 , we update A 

k +1 to [ A 

k +1 , rand (d n , �r n )] 4 and X k +1

n n n 

2 When X is a diagonal matrix, diag( X ) is defined as a column vector whose elements are the diagonal elements of X . When x is a column vector, diag( x ) 

is defined as a diagonal matrix whose diagonal elements are the elements of x . 
3 ones( m, n ) is an m × n matrix whose elements are all 1. 
4 rand( m, n ) is an m × n random matrix whose elements are generated from the uniform distribution on the interval (0,1). 
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to [ X k +1 
n ; rand (�r n , s n )] , i.e., adding �r n randomly generated columns to A 

k +1 
n and �r n randomly generated rows to X k +1 

n ,

respectively. 

Finally, we show the pseudocode of BSUM-based algorithm for the proposed model (6) in Algorithm 1 . 

Algorithm 1 BSUM-based optimization algorithm for proposed model (6) . 

Input: the observed tensor F , the set of index of observed entries �,the initial Tucker rank r 0 = (r 0 
1 
, r 0 

2 
, . . . , r 0 n ) , �r =

(�r 0 
1 
, �r 0 

2 
, . . . , �r 0 n ) , r 

max = (r max 
1 

, r max 
2 

, . . . , r max 
n ) ,parameters μ1 , β1 , μ2 , β2 , and ρ . 

Output: The completed tensor Y . 

1: Initialization: A 

0 
n = rand (d n × r n ) , X 0 n = rand (r n ×

∏ 

i 	 = n d i ) with n = 1 , 2 , 3 , Y = P �(F ) , and N max . 

2: while not converged and k < N max do 

3: Update X n (n = 1 , 2) via (13) and update X 3 via (18). 

4: Update A n (n = 1 , 2) via (14) and update A 3 via (22). 

5: Update Y via (15). 

6: end while 

7: return Y . 

3.3. Convergence analysis 

In this section, we discuss the convergence of the proposed algorithm. We recall the convergence result of BSUM [46] ,

i.e., the core scheme of the proposed algorithm. 

Lemma 1. Suppose X is the feasible set, given the problem min f ( x ) and subject to x ∈ X , and assume that u (x, x k −1 ) is an

approximation of f ( x ) at the ( k − 1 )th iteration, which satisfies the following conditions: 

u i (y i , y ) = f (y ) , ∀ y ∈ X , ∀ i ;
u i (x i , y ) ≥ f (y 1 , . . . , y i −1 , x i , y i +1 , . . . , y n ) , ∀ x i ∈ X i , ∀ y ∈ X , ∀ i ;
u 

′ 
i (x i , y ; d i ) | x i = y i = f ′ (y ; d) , ∀ d = (0 , . . . , d i , . . . , 0) s.t. y i + d i ∈ X i , ∀ i ;

u i (x i , y ) is continuous in (x i , y ) , ∀ i, 

where u i ( x i , y ) is the subproblem with respect to the i-th block and f 
′ 
(y ; d) is the direction derivative of f at the point y in

direction d. Suppose u i ( x i , y ) is quasi-convex in x i for i = 1 , . . . , n . Furthermore, assume that each subproblem argmin u i (x i , x 
k −1 ) ,

s.t. x ∈ X i has a unique solution for any point x k −1 ∈ X . Then, the iterates generated by the BSUM algorithm converge to the set

of coordinatewise minimum of f. In addition, if f ( · ) is regular at z, then z is a stationary point. 

Next, we illustrate the convergence of the proposed algorithm for the model (6) . 

Theorem 2. The sequence generated by (12) converges to the set of the coordinate-wise minimizers. 

Proof. It is easy to verify that h (Z , Z 

k ) is an approximation and a global upper bound of f (Z) at the k -th iteration, which

satisfies the following conditions: 

h i (Z i , Z) = f (Z ) , ∀Z , i = 1 , 2 , 3 , 

h i ( Z̄ i , Z) ≥ f (Z 1 , . . . , Z̄ i , . . . , Z 3 ) , ∀ Z̄ i , ∀Z, i = 1 , 2 , 3 , 

h 

′ 
1 ( Z̄ 1 , Z;D 1 ) | Z̄ 1 = Z 1 = f ′ (Z;D 

1 ) , ∀D 

1 = (D 1 , 0 , 0) , 

h 

′ 
2 ( Z̄ 2 , Z;D 2 ) | Z̄ 2 = Z 2 = f ′ (Z;D 

2 ) , ∀D 

2 = (0 , D 2 , 0) , 

h 

′ 
3 ( Z̄ 3 , Z;D 3 ) | Z̄ 3 = Z 3 = f ′ (Z;D 

3 ) , ∀D 

3 = (0 , 0 , D 3 ) , 

h i ( Z̄ i , Z) is continuous in ( Z̄ i , Z) i = 1 , 2 , 3 , 

where Z = (X, A, Y) and Z i equals to X, A, Y for i = 1 , 2 , 3 , respectively. In addition, the subproblem h i , (i = 1 , 2 , 3) is strictly

convex with respect to X, A , and Y respectively and thus each subproblem has a unique solution. Therefore, all assumptions

in Lemma 1 are satisfied. �

4. Numerical experiments 

In this section, we evaluate the performance of the proposed method 

5 on completing three kinds of three-way tensors:

video, hyperspectral image, and MRI. The peak signal to noise rate (PSNR) and the structural similarity index (SSIM) [50] are
5 The code of SMF-LRTC is available at https://github.com/uestctensorgroup/code _ SMFLRTC . 
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adopted to measure the quality of the reconstructed results. The compared LRTC methods include: TMac 6 [27] , MF-TV 

7

[28] , and MF-Framelet 8 [29] , representing state-of-the-arts for matrix factorization based method; SPC-QV 

9 [34] , represent-

ing state-of-the-arts for PARAFAC decomposition based method; LRTC-TV-I 10 [35] , representing state-of-the-arts for Tucker

decomposition based method. 

The stopping criterion of all methods is the relative change (RelCha) of two successive reconstructed tensors, which can

be expressed as RelCha = 

‖Y k +1 −Y k ‖ F 
‖Y k ‖ F < ε , where ε is a tolerance. 

In all experiments, TMac [27] , MF-TV [28] , and MF-Framelet [29] are implemented using the parameters reported in [29] .

SPC-QV [34] and LRTC-TV-I [35] are implemented using the parameters reported in their paper. For the proposed method,

the parameters are set as: the proximal parameter ρ = 0 . 01 , the first regularization parameter μ1 = 10 , the second regu-

larization parameter μ2 = 100 , the first penalty parameter β1 = 10 0 0 , the second penalty parameter β2 = 1 , the tolerance

ε = 2 × 10 −4 , the weights αn = 1 / 3 (n = 1 , 2 , 3) , the initial Tucker rank r 0 = (10 , 10 , 10) , and �r = (5 , 5 , 5) . All tests are

implemented on the platform of Windows 7 and MATLAB (R2017b) with an Intel Core i5-4590 3.30GHz and 16GB RAM. 

4.1. Video data 

In this section, we test eight videos, including coastguard, news, salesman, foreman, suzie, hall, highway , and container 11 .

All videos are in the YUV format. In our tests, we only used the first 150 frames of Y channel. All testing videos are of size

144 × 176 × 150. The maximum Tucker rank is set to be r max = (85 , 95 , 65) . The SRs are set to be 5%, 10%, 20%, 30%, 40%,

and 50%, respectively. 

Table 2 summarizes the PSNR, SSIM, and average CPU time (in minutes) of all testing videos reconstructed by six utilized

LRTC methods for different SRs. It shows that except that when SR = 5% , the proposed method consistently outperforms

the compared methods in terms of both PSNR and SSIM values. Fig. 3 shows one frame of all videos reconstructed by six

utilized LRTC methods for SR = 10% . We observe that the visual effect of the reconstructed videos by the proposed method

is superior to those by the compared methods. Specifically, the proposed method is capable of better completing the missing

entries while finely preserving the structure of the underlying videos, while the results obtained by TMac, MF-TV, and MF-

Framelet remain large amount of missing entries. SPC-QV and LRTC-TV-I can perform comparatively better in missing entries

completing, but their results contain evident blurry area, leading to some details missing. 

For comprehensive comparisons of the performance of six LRTC methods, we select two reconstructed videos news and

hall as representations. The PSNR values of each frame reconstructed by six compared methods are shown in Fig. 4 . As

observed, the proposed method has an overall better performance in all frames than the compared methods in term of

PSNR values. The piecewise smoothness along the temporal mode of the reconstructed videos can be seen from Fig. 5 ,

which shows the pixel values of one mode-3 fiber of these two videos reconstructed by six compared methods for different

SRs. It can be seen that although the curves estimated by three compared methods are excessive fluctuation and deviated

from the original, the proposed method has a nice touch of the original and enhance the piecewise smoothness along the

temporal mode of the reconstructed videos. 

4.2. Hyperspectral data 

In this section, the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Cuprite data 12 . and the Washington DC Mall

data 12 are used to test the performance of different methods. We only select a part of them (of size 150 × 150 × 130) as

the testing hyperspectral images. The maximum Tucker rank is set to be r max = (85 , 85 , 10) . The SR is set to be 5%. Fig. 6

shows a band of the test hyperspectral images reconstructed by the proposed methods and three compared methods. It is

observed that the proposed method is able to produce visually superior results than the compared methods. The PSNR and

SSIM values of each band of the reconstructed hyperspectral images are shown in Fig. 7 . We can see that the PSNR and SSIM

values in all bands obtained by the proposed method are higher than those obtained by the compared methods. We display

the intensity of two mode-3 fibers of the reconstructed hyperspectral images in Fig. 8 . As observed, the curves output by

the proposed methods are much smoother and more closer to the original than those obtained by the compared methods. 

4.3. MRI data 

This test uses the MRI data 13 of size 181 × 217 × 181 as the testing data. The maximum Tucker rank is set to be r max =
(70 , 70 , 70) . The SR is set to be 10%. Since the slices of all directions can be treated as images, in Fig. 9 , we display three
6 The code of TMac is available at https://xu-yangyang.github.io/TMac/ . 
7 The code of MF-TV is available at https://github.com/uestctensorgroup/MF _ TV . 
8 The code of MF-Framelet is available at https://github.com/uestctensorgroup/code _ MF _ Framelet . 
9 The code of SPC-QV is available at https://sites.google.com/site/yokotatsuya/home/software . 

10 The code of LRTC-TV-I is available at https://xutaoli.weebly.com/ . 
11 http://trace.eas.asu.edu/yuv/ . 
12 http://lesun.weebly.com/hyperspectral- data- set.html . 
13 http://brainweb.bic.mni.mcgill.ca/brainweb/selection _ normal.html .–
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Table 2 

The PSNR, SSIM, and average CPU time (in minutes) obtained by six utilized LRTC methods for videos. 

video SR 5% 10% 20% 30% 40% 50% Time 

Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

TMac 6.9472 0.0175 7.7145 0.0319 9.6940 0.0733 13.124 0.1941 22.827 0.6680 29.466 0.8675 8.699 

MF-TV 7.5460 0.0372 8.6137 0.0625 11.503 0.1308 17.482 0.3462 26.335 0.7586 31.146 0.9001 121.2 

coastguard MF-Framelet 10.401 0.1131 13.025 0.1857 18.164 0.3167 21.969 0.5471 28.594 0.8350 32.079 0.9211 291.4 

SPC-QV 22.878 0.5626 24.534 0.6732 27.036 0.7982 28.366 0.8480 29.564 0.8829 30.756 0.9105 58.37 

LRTC-TV-I 19.789 0.4320 21.497 0.5334 24.127 0.6942 26.254 0.7973 29.113 0.8637 29.959 0.9099 16.73 

SMF-LRTC 22.596 0.5709 24.965 0.6999 27.190 0.8047 29.107 0.8651 30.772 0.9030 32.252 0.9301 24.76 

TMac 9.7905 0.0849 11.216 0.1822 14.851 0.4176 25.940 0.7527 33.399 0.9027 37.011 0.9563 14.54 

MF-TV 10.611 0.1158 12.658 0.2177 19.132 0.5282 30.475 0.8404 34.987 0.9321 37.589 0.9644 112.4 

news MF-Framelet 14.351 0.3850 17.286 0.4912 22.458 0.6663 33.332 0.9209 36.221 0.9571 38.286 0.9743 217.3 

SPC-QV 26.639 0.8536 29.308 0.8841 31.906 0.9415 33.279 0.9546 34.407 0.9630 35.470 0.9701 56.31 

LRTC-TV-I 19.187 0.6574 21.107 0.7426 24.463 0.8667 27.481 0.9269 29.994 0.9575 32.546 0.9751 20.13 

SMF-LRTC 26.711 0.8541 30.773 0.9208 33.744 0.9522 35.748 0.9685 37.222 0.9762 38.721 0.9824 23.62 

TMac 12.048 0.0712 14.759 0.2662 21.910 0.7306 33.191 0.9143 37.839 0.9659 40.102 0.9807 13.78 

MF-TV 13.155 0.0956 17.568 0.3450 27.852 0.8322 35.271 0.9425 38.176 0.9695 40.161 0.9813 74.24 

salesman MF-Framelet 17.646 0.4481 20.227 0.6196 30.629 0.8875 36.043 0.9556 38.625 0.9744 40.465 0.9834 198.1 

SPC-QV 30.304 0.8732 32.410 0.9192 34.322 0.9463 35.457 0.9580 36.449 0.9662 37.436 0.9729 48.64 

LRTC-TV-I 22.401 0.5115 25.412 0.6659 28.977 0.8301 31.351 0.9010 33.517 0.9400 35.785 0.9642 18.37 

SMF-LRTC 30.931 0.8892 34.229 0.9412 36.253 0.9607 37.721 0.9710 38.989 0.9779 40.962 0.9856 22.81 

TMac 6.3165 0.0145 11.101 0.1701 26.850 0.7970 32.718 0.9146 34.417 0.9408 35.897 0.9576 11.51 

MF-TV 7.0164 0.0248 13.733 0.2642 29.707 0.8457 32.779 0.9156 34.452 0.9413 35.898 0.9584 61.54 

foreman MF-Framelet 7.2518 0.0291 14.345 0.3142 30.255 0.8590 32.918 0.9203 34.526 0.9439 35.911 0.9599 154.3 

SPC-QV 25.597 0.7651 27.037 0.7813 28.321 0.8461 29.264 0.8684 30.139 0.8867 31.050 0.9041 49.92 

LRTC-TV-I 19.186 0.5741 21.869 0.7080 26.792 0.8301 29.594 0.9141 31.665 0.9440 33.643 0.9631 18.64 

SMF-LRTC 24.329 0.6613 28.482 0.8395 32.041 0.9159 34.115 0.9422 35.726 0.9585 37.221 0.9696 15.82 

TMac 11.653 0.0488 17.886 0.5077 27.635 0.8242 34.509 0.9223 36.596 0.9479 38.041 0.9621 11.68 

MF-TV 13.775 0.0963 22.281 0.6050 31.888 0.8711 35.089 0.9279 36.723 0.9493 38.106 0.9628 58.17 

suize MF-Framelet 17.049 0.2912 24.838 0.6979 32.502 0.8851 35.263 0.9311 36.811 0.9505 38.167 0.9635 161.1 

SPC-QV 29.589 0.8249 30.863 0.8527 32.009 0.8779 32.905 0.8959 33.729 0.9109 34.654 0.9258 41.16 

LRTC-TV-I 23.516 0.6936 27.722 0.8034 31.406 0.8873 33.747 0.9259 35.622 0.9486 37.419 0.9644 16.68 

SMF-LRTC 27.667 0.7932 31.755 0.8823 34.254 0.9228 36.057 0.9456 37.387 0.9580 38.825 0.9697 16.19 

TMac 12.349 0.4085 21.492 0.7890 33.106 0.9399 34.995 0.9579 36.306 0.9682 37.520 0.9759 6.243 

MF-TV 13.781 0.4300 25.171 0.8335 33.213 0.9415 35.034 0.9592 36.255 0.9687 37.481 0.9762 20.74 

hall MF-Framelet 13.101 0.4855 24.591 0.8424 33.515 0.9476 35.217 0.9630 36.449 0.9715 37.664 0.9782 64.26 

SPC-QV 27.977 0.9007 29.109 0.9178 30.108 0.9306 30.878 0.9398 31.665 0.9472 32.469 0.9552 24.11 

LRTC-TV-I 19.815 0.6451 22.493 0.7923 26.983 0.9090 29.869 0.9466 32.227 0.9674 34.737 0.9804 17.51 

SMF-LRTC 26.004 0.8686 32.578 0.9536 36.106 0.9730 37.856 0.9793 39.256 0.9840 40.551 0.9873 16.01 

TMac 27.904 0.7644 31.689 0.8768 33.420 0.9119 34.430 0.9299 35.437 0.9438 36.475 0.9660 2.613 

MF-TV 27.035 0.7825 31.673 0.8786 33.390 0.9129 34.401 0.9305 35.393 0.9440 36.427 0.9660 6.551 

highway MF-Framelet 28.966 0.8103 31.764 0.8866 33.480 0.9158 34.467 0.9321 35.445 0.9452 36.493 0.9668 16.54 

SPC-QV 28.171 0.8183 28.483 0.8288 29.024 0.8484 29.618 0.8601 30.323 0.8765 31.107 0.8945 9.149 

LRTC-TV-I 26.975 0.8105 28.096 0.8549 30.019 0.9008 31.959 0.9295 33.813 0.9494 35.549 0.9636 15.21 

SMF-LRTC 29.142 0.8220 32.257 0.9101 34.857 0.9389 36.181 0.9512 37.417 0.9610 38.582 0.9693 12.38 

TMac 15.393 0.6089 28.492 0.8882 34.271 0.9455 35.934 0.9597 37.258 0.9695 38.211 0.9773 4.210 

MF-TV 18.131 0.6494 29.410 0.8980 34.286 0.9464 35.841 0.9598 37.177 0.9697 38.384 0.9774 8.254 

container MF-Framelet 16.581 0.6458 29.562 0.9045 34.344 0.9479 35.901 0.9603 37.246 0.9696 38.429 0.9769 21.57 

SPC-QV 27.238 0.8654 28.589 0.8906 29.804 0.9112 30.608 0.9249 31.378 0.9368 32.234 0.9481 28.59 

LRTC-TV-I 20.198 0.6722 22.305 0.7512 25.721 0.8561 28.279 0.9114 30.563 0.9443 33.123 0.9671 15.94 

SMF-LRTC 25.623 0.8317 31.894 0.9418 36.261 0.9664 38.278 0.9753 39.749 0.9809 41.087 0.9854 14.28 

 

 

 

 

 

 

 

 

 

 

representative slices of the reconstructed MRI data which are observed from three different directions, respectively. For all

directions, we see that the visual quality of the reconstructed MRI by the proposed method is superior to the compared

methods. In Fig. 10 , we show the PSNR and SSIM values of each slice of the reconstructed MRI data observed from three

different directions, respectively. It can be seen that no matter which direction they are from, the proposed method achieves

the best PSNR and SSIM values among six LRTC methods. Fig. 11 presents the intensity of nine fibers (three mode-1 fibers,

mode-2 fibers, and mode-3 fibers) of the reconstructed MRI data. It is obvious that the proposed method can obtain a

smooth approximating curve, whereas the curves estimated by the compared methods are fluctuated and deflected. 

4.4. Discussions 

An extreme case ( SR = 1%): we test five videos and one hyperspectral data for SR = 1% . As this test is an extreme case, we

fix the Tucker rank and use the numbers of the singular values which are larger than 0.5% of the largest one to approximate

it. The tolerance ε is set as 10 −5 . We display one frame (band) of the testing data reconstructed by the proposed method

in Fig. 12 . We observe that our method can recognize the shape of the original data for the testing data without obvious
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Fig. 3. One frame of the testing videos reconstructed by six utilized LRTC methods with SR = 10% . From left to right: the original data, the observed data, 

the reconstructed results by TMac [27] , MF-TV [28] , MF-Framelet [29] , SPC-QV [34] , LRTC-TV-I [35] , and the proposed method, respectively. 

Table 3 

The PSNR, SSIM, and CPU time (in minutes) with respect to different values of maximum Tucker rank. 

Maximum rank ( r max ) (55,55,55) (60,60,60) (65,65,65) (70,70,70) (75,75,75) (80,80,80) (85,85,85) (90,90,90) (95,95,95) (100,100,100) 

PSNR 34.254 34.288 34.334 34.299 34.216 34.172 34.164 34.162 34.141 34.109 

SSIM 0.9168 0.9201 0.9214 0.9222 0.9220 0.9219 0.9185 0.9210 0.9208 0.9205 

Time 9.4225 10.078 10.470 11.779 12.118 13.141 14.933 15.045 15.948 16.802 

 

 

 

 

 

 

 

 

 

 

 

low-rankness (such as suzie, salesman , and news ) and obtain promising visual results for the testing data with obvious low-

rankness (such as hall, highway , and Cuprite ). 

Parameter analysis: we analyze the robustness of the proposed method with respect to different parameters using the

video data suzie with SR = 20% in this test. The parameter analysis is presented in Fig. 13 . As observed, (1) different values of

the proximal parameter ρ lead to nearly the same PSNR value, i.e., the proximal parameter mainly affects the computational

efficiency rather than the performance; (2) the proposed method is slightly sensitive to the regularization parameters μ1

and μ2 , which are set to be 10 and 100 in all experiments, respectively; (3) the values of the penalty parameters β1 and

β2 have an impact on the performance of the proposed method, although the convergence of the proposed method is

theoretically guaranteed regardless of the penalty parameter as long as it is a positive number. The penalty parameters β1

and β2 are set to be 10 0 0 and 1 in all experiments, respectively. 

Maximum rank analysis: we analyze the robustness of the proposed method with respect to different maximum rank

r max = (r max 
1 

, r max 
2 

, r max 
3 

) . The testing data is video suzie and the SR is set to be 20%. Table 3 lists the PSNR, SSIM, and CPU

time (in minutes) output by the proposed method for different values of maximum Tucker rank. We observe that within
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Fig. 4. The PSNR values of all frames of the reconstructed videos news and hall obtained by six utilized LRTC methods. The top and bottom rows are the 

results of videos news and hall , respectively. From left to right: the SR are set to be 10%, 20%, and 30%, respectively. 

Fig. 5. The pixel values of one mode-3 fiber (the same location of each frame) of the reconstructed videos news and hall obtained by six utilized LRTC 

methods. The top and bottom rows are the results of videos news and hall , respectively. From left to right: the SR are set to be 10%, 20%, and 30%, 

respectively. 

 

 

 

limits, different values of r max lead to nearly the same PSNR value, i.e., it mainly affects the computational efficiency rather

than the performance. For video data Y ∈ R 

d 1 ×d 2 ×d 3 , we empirically recommend users to select r max as (� 3 5 d 1 � ± 10 , � 3 5 d 2 � ±
10 , � 2 5 d 3 � ± 10) . For hyperspectral images, the correlation along their spectral mode should be much stronger than those

along their spatial modes, thus we empirically recommend users to select r max as (� 3 d 1 � ± 10 , � 3 d 2 � ± 10 , � 1 d 3 � ± 10) .
5 5 10 
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Fig. 6. One band of the testing hyperspectral images Cuprite and Washington DC Mall reconstructed by six utilized LRTC methods with SR = 5% . From left 

to right: the original data, the observed data, the reconstructed results by TMac [27] , MF-TV [28] , MF-Framelet [29] , SPC-QV [34] , LRTC-TV-I [35] , and the 

proposed method, respectively. 

Fig. 7. The PSNR and SSIM values of all bands of the reconstructed hyperspectral images Cuprite and Washington DC Mall obtained by six utilized LRTC 

methods. 

Fig. 8. The pixel values of two mode-3 fibers of the reconstructed hyperspectral images Cuprite and Washington DC Mall obtained by six utilized LRTC 

methods. 

Table 4 

The PSNR, SSIM, and CPU time (in minutes) with respect to different iterations for computing X 3 . 

Inner iterations 2 5 8 10 12 15 18 20 

PSNR 33.846 34.375 34.386 34.331 34.233 34.241 34.204 34.211 

SSIM 0.9097 0.9242 0.9247 0.9249 0.9235 0.9241 0.9235 0.9236 

Time 6.3490 10.996 13.914 18.713 24.212 26.835 34.671 38.296 

 

 

 

 

 

 

For MRI data, since the slices of all directions of them can be treated as images, we empirically recommend users to select

r max as (� 2 5 d 1 � ± 10 , � 2 5 d 2 � ± 10 , � 2 5 d 3 � ± 10) . 

Inner iteration analysis: we analyze the sensitivity of the iterations for computing X 3 and A 3 on video suzie with SR =
20% . In Table 4 and Table 5 , we report the PSNR, SSIM, and CPU time with respect to different iterations for computing X 3

and A 3 , respectively. We observe that the iterations greater than 5 lead to nearly the same PSNR and SSIM values, but the

CPU time increased along with inner iteration increasing. Following the guidance of Tables 4 and 5 , in all tests, the inner

iterations for computing both X 3 and A 3 are set to be 5. Thus, although the ADMM is performed repeatedly as the inner

loop, the proposed method is still efficient. 
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Fig. 9. Three slices observed from three different directions of the MRI data reconstructed by six utilized LRTC methods with SR = 10% . From top to bottom: 

horizontal slices, lateral slices, and frontal slices, respectively. From left to right: the original data, the observed data, the reconstructed results by TMac 

[27] , MF-TV [28] , MF-Framelet [29] , SPC-QV [34] , LRTC-TV-I [35] , and the proposed method, respectively. 

Fig. 10. The PSNR and SSIM values of all slices observed from different directions of the reconstructed MRI data obtained by six utilized LRTC methods. 

From left to right: horizontal slices, lateral slices, and frontal slices, respectively. 

Table 5 

The PSNR, SSIM, and CPU time (in minutes) with respect to different iterations for computing A 3 . 

Inner iterations 2 5 8 10 12 15 18 20 

PSNR 34.350 34.375 34.336 34.328 34.329 34.320 34.234 34.326 

SSIM 0.9239 0.9242 0.9235 0.9238 0.9231 0.9234 0.9221 0.9235 

Time 10.308 10.996 11.113 11.655 11.839 12.464 12.523 12.842 
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Fig. 11. The pixel values of nine fibers of the reconstructed MRI data obtained by six utilized LRTC methods. From top to bottom: mode-1 fibers (columns), 

mode-2 fibers (rows), and mode-3 fibers (tubes), respectively. 

Fig. 12. One frame (band) of five videos and one hyperspectral image reconstructed by the proposed method. From top to bottom: the original data, the 

observed data, and the reconstructed data, respectively. 



694 Y.-B. Zheng, T.-Z. Huang and T.-Y. Ji et al. / Applied Mathematical Modelling 70 (2019) 677–695 

Fig. 13. The PSNR values with respect to the iteration for different values of parameters: ρ , μ1 , μ2 , β1 , and β2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusions 

In this paper, we proposed a model for low-rank tensor completion by combining low-rank matrix factorization, framelet,

and total variation. Meanwhile, an efficient BSUM-based algorithm was developed to solve the proposed model with guar-

anteed convergence. Numerical results demonstrated some superiorities of the proposed method: (1) qualitatively, the pro-

posed method produced the best results both in recovering visual effects and in enhancing the piecewise smoothness; (2)

quantitatively, the proposed method had an overall better performance than the compared methods in terms of both PSNR

and SSIM values. 
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