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Hyperspectral images (HSIs) are unavoidably degraded by mixed noise, including Gaussian noise and
sparse noise. In this paper, we consider a constrained tubal rank and sparsity model (CTSD) to tackle
the HSIs mixed noise removal, which characterizes the clean HSIs via the low-tubal-rank constraint
and the sparse noise via the l0 and l1 norm constraints, respectively. Due to the strong non-convexity,
the CTSD model is challenging to solve. To tackle the CTSD, we develop the proximal alternating mini-
mization (PAM) algorithm via the exact tensor singular value decomposition (t-SVD) and establish the
global convergence under mild assumptions. Since the t-SVD is computationally expensive, especially
for large scale images, we further design an efficient inexact PAM algorithm via an inexact t-SVD. The
inexact PAM enjoys two advantages: (1) The computational complexity for SVDs of the inexact PAM
O rn1n2n3ð Þð Þ is about twofold faster than that of the exact PAM O min n1;n2ð Þn1n2n3ð Þð Þ for
r � min n1;n2ð Þ; (2) The accuracy of the inexact PAM is theoretically guaranteed. Extensive experiments
on HSIs denoising demonstrate that the exact and inexact methods both outperform comparing methods
in quantitative evaluation metrics and visual effects, and the inexact PAM can compromise between the
accuracy and efficiency for large scale HSIs.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

Hyperspectral images (HSIs) [1,2] are widely applied in seg-
mentation [3], matching [4], classification [5,6], and spectral signa-
ture unmixing [1,7–9]. HSIs often inevitably suffer from various
types of noise in the acquisition and transmission process
[10,11], which dramatically affects some subsequent applications.
Therefore, it is critical to reduce the noise in HSIs and improve their
quality for the subsequent image analysis.

Compared with the noise of gray-scale or RGB images, the noise
of HSIs is more complex, and there usually exists a combination of
different types of noise. As shown in Fig. 1, the corrupted HSI is a
3-D cube, which can be decomposed as the clean HSI part, the
sparse noise part, and the Gaussian noise part. The sparse noise
part generally includes impulse noise, stripes, and deadlines. Com-
plex noise increases the difficulty of noise removal. Additionally,
since HSIs are usually large scale, HSIs denoising is highly time-
consuming. Thus, developing effective and efficient methods for
HSIs denoising becomes an important research topic [12–16].

Due to the spatial and spectral redundancy, clean HSIs are usu-
ally low-rank. Therefore, many denoising methods are devoted to
exploiting the low-rank structure of HSIs [10,11,17]. One possible
way is unfolding HSIs to matrices and considering the low-
matrix-rank-based methods, such as the classical low-rank matrix
recovery (LRMR) [18] using the Godec algorithm [19]. Some non-
convex low-matrix-rank regularization were also considered in
the low-matrix-rank-based methods to improve denoising perfor-
mance, including log-sum penalty [20], Schatten p-norm [21], and
c-norm [22]. Additionally, many low-matrix-rank subspace
representation-based methods [23–25] were also developed, such
as fast hyperspectral image denoising [23,24] and adaptive
hyperspectral mixed noise removal [25], which have significant
efficiency for large scale HSIs denoising. Although theses low-
matrix-rank-based methods achieved good effectiveness, unfold-
ing HSIs to matrices destroys the structure of HSIs and introduces
the loss of useful structure information. Specifically, unfolding an
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Fig. 1. The decomposition of the corrupted HSI.
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HSI along its spectral dimension makes it difficult to utilize the
spatial redundancy.

Since tensor can well exploit the global redundancy of the
higher-dimensional data, tensor-based methods [26–30] have
received considerable attention recently. In the tensor case, the
corrupted HSI is a 3-D tensor X 2 Rn1�n2�n3 , which can be decom-
posed as

X ¼ L þ S þN ; ð1Þ

where the tensor L 2 Rn1�n2�n3 is the clean HSI part, the tensor
S 2 Rn1�n2�n3 is the sparse noise part, and the tensor N 2 Rn1�n2�n3

is the Gaussian noise part. How to exploit the low-tensor-rank
structure of HSIs is the central issue of the low-tensor-rank-based
HSIs denoising [31–33]. Different from the matrix, the definition
of tensor rank is not unique. Based on different decomposition
schemes, including the parallel factor analysis (PARAFAC) decompo-
sition and the Tucker decomposition, several low-tensor-rank-
based methods have been developed for HSIs denoising. The PAR-
AFAC decomposition is a natural generation from the definition of
matrix rank, where the tensor is decomposed as the sum of the
rank-one tensors [34]. The PARAFAC rank [31,34] is defined as the
minimal number of the rank-one tensors. However, determining
the PARAFAC rank of a given tensor is an NP-hard problem [34].
The Tucker decomposition scheme decomposes a tensor into a core
tensor multiplied by matrices along each mode [35]. The Tucker
rank is defined as the vector, which consists of the ranks of each
unfolding matrix along different modes. Since the Tucker rank is
easy to be optimized by matrization along each mode, it inspired
many methods for HSIs denoising, including the genetic kernel
Tucker decomposition [36], low-n-rank tensor approximation
(LRTA) [35], and the Tucker rank and TV minimization [37]. How-
ever, the matrization along each mode unavoidably destroys the
global intrinsic structure of tensor data.

Recently, the tensor singular value decomposition (t-SVD) [38]
introduced a new popular tensor tubal rank, which well preserves
the global intrinsic low-rank structure of tensor data [26,39]. Many
low-tubal-rank-based methods have been developed for HSI
denoising [32,40,41]. Fan et al. (LRTR [32]) considered the tensor
nuclear norm (TNN) and the l1 norm to characterize the clean
HSI and the sparse noise, respectively, and employed alternating
direction method of multipliers (ADMM) for solving. However,
since the TNN and the l1 norm are convex surrogates of the tensor
tubal rank and the l0 norm [26], they are not the most accurate to
characterize the clean HSI and the sparse noise, resulting in a sub-
optimal performance in denoising. Further, Fan et al. suggested a
TNN and tubal rank hybrid model and solved it by the augmented
Lagrange method (ALM) [41]. However, the solving algorithm
lacked a rigorous convergence guarantee.

Additionally, many deep-learning-based methods [12–14] are
also developed for HSIs denoising. The deep residual convolutional
neural network (CNN) was considered in [12] to exploit the spatial
and spectral redundancy of HSIs. In [14], Li et al. proposed the
unsupervised fully convolutional network, which utilized the
change detection maps to train the deep CNN and then removed
the noise during the end-to-end training process. The denoised
HSIs can improve the performance of the subsequent image analy-
sis, such as the accuracy of classification [12,41,42]. Wang et al.
[42] utilized the locality constraint criterion and the structure-
preserving strategy to sufficiently exploit the local and global
structures of HSIs and then accurately classified HSIs. Therefore,
HSIs denoising is an essential task for many real-world
applications.

1.1. Problems and motivations

In this work, we consider the low-tubal-rank-based model for
HSIs mixed noise removal, which can be formulated as

min
L;S

1
2 kX � L � Sk2F ;

s:t: L 2 C ¼ L : rankt Lð Þ 6 rf g;
S 2 D ¼ S : kSk0 6 q

� �
;

ð2Þ

where X is the observed HSI, L is the clean HSI, S is the sparse noise,
k � kF is the Frobenius norm, rankt �ð Þ is the tensor tubal rank, and
k � k0 is the l0 norm. Here, C is the set of low-tubal-rank tensors L,
where r is the bound of the tubal rank. Here, D is the set of sparse
tensors S, where q is the bound of the number of non-zero entries.

Since the pixel values of sparse noise are in a given range, we
can further introduce the l1 norm constraint into the low-tubal-
rank-based HSI denoising model, i.e.,

min
L;S

kX � L � Sk2F ;
s:t: L 2 C ¼ L : rankt Lð Þ 6 rf g;
S 2 D ¼ S : kSk0 6 q; kSk1 6 c

� �
;

ð3Þ

where the introduced l1 norm k � k1 is the maximum of absolute
values of the tensor’s entries. Here, we denote the set of low-
tubal-rank tensors as C, where r is the bound of the tubal rank.
We denote the set of sparse tensors as D, where q is the bound of
the number of non-zero entries and c is the bound of the max abso-
lute value of entries. We name the optimization (3) as Constrained
Tubal rank and Sparsity tensor Decomposition (CTSD). The CTSD can
also flexibly incorporate different regularizers by exploiting desired
priors for better performance. Here, we consider the original CTSD
in this work.

There are two challenges for solving CTSD:
(1) Theoretical aspect: The rigorous convergence is still missing

for solving CTSD. Due to the tubal-rank constraint and the l0 norm
constraint, the CTSD is a strongly non-convex problem. ADMM and
ALM factually have limitations to solve CTSD from the above dis-
cussion. This motivates us to develop the algorithm with theoreti-
cal guarantees of convergence for solving CTSD.

(2) Computational aspect: Solving CTSD suffers the heavy com-
putational burden for large scale HSIs. Solving the low-tubal-rank
tensor of CTSD needs to calculate the exact t-SVD. The exact
t-SVD computes the singular value decomposition (SVD) within
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each frontal slice of the tensor in the Fourier domain [26]. This
motivates us to develop an efficient algorithm to solve the low-
tubal-rank tensor of CTSD fast.

1.2. Contributions

The contributions of our work are summarized as follows:

� We consider the CTSD model for HSIs mixed noise removal,
which characterizes the clean HSI via the low-tubal-rank con-
straint and the sparse noise via the l0 and l1 norm constraints,
respectively.

� We develop the exact proximal alternating minimization (PAM)
algorithm via the exact t-SVD to solve the proposed model and
establish the global convergence under mild assumptions.

� Furthermore, we suggest the inexact truncated t-SVD by design-
ing bilateral random tensor projections (t-BRP) and the corre-
sponding inexact PAM for large scale HSIs. The computational
complexity for SVDs in the inexact PAM O rn1n2n3ð Þð Þ is about
twofold faster than that of the exact PAM
O min n1;n2ð Þn1n2n3ð Þð Þ for r � min n1;n2ð Þ. Moreover, we estab-
lish the theoretical guarantee of the accuracy of the inexact
PAM.

1.3. Paper Organization

This paper is arranged as follows. Section 2 gives notations and
preliminaries. Section 3 discusses the exact PAM and its conver-
gence analysis, and the inexact PAM and its accuracy analysis. Sec-
tion 4 reports experimental examples, discusses the influence of
parameters, and compares the inexact PAM with the exact PAM.
Section 5 concludes this paper.

2. Notations and preliminaries

In this section, some notations and preliminaries are introduced
for the development of the algorithm for CTSD.

Throughout this paper, we denote tensor as capitalized calli-
graphic letters (e.g., X), matrices as capitalized boldface letters
(e.g., X), vectors as boldface lowercase letters (e.g., x), and scalars
as lowercase letters (e.g., x). For a 3-D tensor X 2 Rn1�n2�n3 , its
i; j; kð Þ-th entry is represented by xijk, its tube is represented by

A i; j; :ð Þ, and its i-th frontal slice is represented by A ið Þ or A :; :; ið Þ.
The Frobenius norm of X is defined as kXkF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ijkjxijkj2

q
[26].

The l0 norm of X is defined as kXk0 ¼ # i; j; k : X i; j; kð Þ – 0f g. The
l1 norm of X is defined as kXk1 ¼ maxijkjxijkj [26]. The identity ten-
sor can be denoted as I 2 Rn�n�n3 .

The related notations of t-SVD and tubal rank are introduced.
We denote �X as the tensor generated by the Discrete Fourier Trans-
formation (DFT) on each tube of X , i.e., �X ¼ fft X ; ½�;3ð Þ. The
inverse of �X is X , i.e., X ¼ ifft �X ; ½�;3ð Þ. We can define the block
diagonal matrix �X of �X [26], i.e.,

�X ¼ bdiag �Xð Þ ,

�X 1ð Þ

�X 2ð Þ

. .
.

�X n3ð Þ

0BBBB@
1CCCCA; ð4Þ

where the i-th block is the i-th frontal slice of �X , and we define the
block circulant matrix [26] as bcirc(X), i.e.,
bcirc Xð Þ ,

X 1ð Þ X n3ð Þ � � � X 2ð Þ

X 2ð Þ X 1ð Þ � � � X 3ð Þ

..

. ..
. . .

. ..
.

X n3ð Þ X n3�1ð Þ � � � X 1ð Þ

0BBBB@
1CCCCA: ð5Þ

The bcirc Xð Þ admits the following decomposition, i.e.,

Fn3 � In1
� � � bcirc Xð Þ � F�1

n3
� In2

� �
¼ �X; ð6Þ

where � is the Kronecker product and Fn3 is the DFT matrix.
Now we can define the tensor-tensor product and the corre-

sponding tensor operations as follows:

Definition 1. (Tensor-tensor product [26]) For X 2 Rn1�n2�n3 and
Y 2 Rn2�l�n3 , the product of them can be represented as

X 	 Y ¼ fold bcirc Xð Þ � unfold Yð Þð Þ; ð7Þ
where the new tensor is of the size n1 � l� n3. For X 2 Rn1�n2�n3 , the
unfold operator maps X to the matrix of the size n1n2 � n3 and
fold is the inverse operator of unfold, i.e.,

unfold Xð Þ ¼

X 1ð Þ

X 2ð Þ

..

.

X n3ð Þ

0BBBB@
1CCCCA and X ¼ fold unfold Xð Þð Þ: ð8Þ
Definition 2. (Identity tensor) The identity tensor I 2 Rn�n�n3 is the
tensor whose first frontal slice is the n� n identity matrix, and
whose other frontal slices are all zeros.
Definition 3. (Inverse of tensor [26]) We denote X�1 2 Rn�n�n3 as
the inverse tensor of X 2 Rn�n�n3 , which satisfies
X�1 	 X ¼ X 	 X�1 ¼ I .
Definition 4. (Orthogonal tensor [26]) The orthogonal tensor
X 2 Rn1�n2�n3 satisfies XH 	 X ¼ X 	 XH ¼ I , where XH is the con-
jugate transpose of the orthogonal tensor of the size n2 � n1 � n3.
The conjugate transpose of X is obtained by conjugate transposing
each frontal slice and then reversing the order of transposed frontal
slices 2 through, i.e.,

XH :; :;1ð Þ ¼ X :; :;1ð Þð ÞH;
XH :; :;n3 þ 2� ið Þ ¼ X :; :; ið Þð ÞH; i ¼ 2; . . . ;n3:

ð9Þ

Based on the tensor-tensor product, we can define the t-SVD.
Definition 5. (T-SVD [26]) For X 2 Rn1�n2�n3 , the t-SVD operation
decomposes X as

X ¼ U 	 F 	 VH; ð10Þ
where U and V are orthogonal tensors of the size n1 � n1 � n3 and
n2 � n2 � n3, respectively, and F is an f-diagonal tensor of the size
n1 � n2 � n3 satisfying that all frontal slices are diagonal.

By the t-SVD, we have the tensor multi-rank and tensor tubal
rank.

Definition 6. (Tensor multi-rank [26]) The multi-rank of tensor
X 2 Rn1�n2�n3 is a vector r of the size n3, whose i-th element is the
rank of the i-th frontal slice of �X , i.e., ri ¼ rank �X ið Þ� �

.
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Definition 7. (Tensor tubal rank [26]) The tensor tubal rank
rankt Xð Þ is defined as the number of non-zero singular tubes from
F . That is

rankt Xð Þ ¼ # i : F i; i; :ð Þ– 0f g ¼ max
i

ri: ð11Þ
Remark 1. For X 2 Rn1�n2�n3 , we have rankt Xð Þ 6 min n1;n2ð Þ and
rankt X 	 Yð Þ 6 min rankt Xð Þ; rankt Yð Þð Þ.

Here, we give the convex surrogate of the multi-rank.

Definition 8. (TNN [26]) The TNN of X 2 Rn1�n2�n3 can be repre-
sented as

kXkTNN ¼
Xn3
i¼1

k�X ið Þk	; ð12Þ

where k � k	 is the matrix nuclear norm.
Definition 9. (Tensor spectral norm [26]) The tensor spectral norm
of X 2 Rn1�n2�n3 is defined as kXk :¼ kbcirc Xð Þk and we have

kXk ¼ kbcirc Xð Þk ¼ k�Xk2; ð13Þ
where k � k2 is the matrix spectral norm.

Now, we briefly introduce the necessary PAM framework for
solving the CTSD model. PAM is an efficient algorithm framework
for solving the non-convex problem with multi-variables [43].
Let the integer p P 2, and let n1; . . . ;np be positive integers. The
vector x belongs to the space Rn1 � � � � � Rnp , denoted by
x ¼ x1; . . . ; xp

� �
, where each xi 2 Rni . The minimization of functions

f : Rn1 � � � � � Rnp ! R [ þ1f g has the following structure:

f xð Þ ¼ Q x1; . . . ; xp
� �þXp

i¼1

f i xið Þ; ð14Þ

where Q is a C1 function with locally Lipschitz continuous gradient,
and f i : R

ni ! R [ þ1f g is a proper lower semi-continuous func-
tion, i ¼ 1;2; . . . ;p. For each i ¼ 1;2; . . . ; p, a bounded sequence of
symmetric positive definite matrices Bt

i

� �
t2N of size ni. Then, the

update of xi is

xtþ1
i 2 argmin f xtþ1

1 ; . . . ; xtþ1
i�1 ; ui; xtiþ1; . . . ; . . . ; x

t
p

� �n
þ1
2

Bt
i ui � xti
� �

;ui � xki
	 


: ui 2 Rni

�
: ð15Þ
3. Exact PAM and Inexact PAM for CTSD

In this section, we develop the exact PAM and inexact PAM for
solving CTSD and establish corresponding theoretical guarantees.

First, we introduce indicator functions [44] of L and S. For
closed subsets C ¼ L : rankt Lð Þ 6 rf g and
D ¼ S : kSk0 6 q; kSk1 6 c

� �
, we denote dC and dD as indicator

functions, i.e.,

dC Lð Þ ¼ 0 if L 2 C ¼ L : rankt Lð Þ 6 rf g;
þ1 otherwise;

�
dD Sð Þ ¼ 0 if S 2 D ¼ S : kSk0 6 q; kSk1 6 c

� �
;

þ1 otherwise:

( ð16Þ
Algorithm 1 Exact PAM for solving CTSD.

Input: X ; r; q; c; k;l, and �.
bf Output L;S.
1: Initialize L0 ¼ S0 ¼ 0; t ¼ 0.
2: While not converged do
3: Update Ltþ1 via (20).
4: Update Stþ1 via (21).
5: Let t ¼ t þ 1.
6: Check the convergence condition:

7: kLtþ1 � Ltk2F=kLtk2F 6 �.
8: End while

Then, we reformulate (3) as the following unconstrained mini-
mization, i.e.,

min
L;S

dC Lð Þ þ dD Sð Þ þ 1
2
kX � L � Sk2F : ð17Þ

By minimizing (17), we have dC and dD to be zero. If dC and dD
are zero, L and S belong to the constrained sets C and D, respec-
tively. Thus, the unconstrained minimization (17) is equal to the
CTSD model (3).

3.1. Exact PAM for CTSD and its convergence analysis

Now, we design the exact PAM to solve CTSD and establish the
theoretical convergence. Under the PAM framework (15), L and S
are iteratively updated as follows:

Ltþ1 ¼ arg min
U2C

1
2
kX � U � Stk2F þ

1
2k

kU � Ltk2F
� �

; ð18Þ

Stþ1 ¼ arg min
V2D

1
2
kX � Ltþ1 � Vk2F þ

1
2l

kV � Stk2F
� �

: ð19Þ

Thus, we obtain the following sub-problems and alternately
solve them until convergence, i.e.,

Ltþ1 ¼ PC
k�1Lt � St þ X

I þ k�1I

 !
; ð20Þ

Stþ1 ¼ PD
l�1St � Ltþ1 þ X

I þ l�1I

 !
; ð21Þ

where PC and PD are projections onto C ¼ L : rankt Lð Þ 6 rf g and
D ¼ S : kSk0 6 q; kSk1 6 c

� �
[44], respectively. We summarize

the exact PAM for CTSD in Algorithm 1.
For L subproblem (20), we solve it by computing the first-r

truncated t-SVD of k�1Lt � St þX� �
= I þ k�1I� �

. The following the-
orem guarantees the best tubal rank-r approximation.

Theorem 1. [45] For a given tensor X 2 Rn1�n2�n3 , if

X r ¼ argmineX2CkX � eXkF and C ¼ eX : rankt eX� �
6 r

n o
, the theo-

retical optimal error kX � X rkF can be given as

kX � X rkF ¼
1
n3

Xn3
i¼1

X
j>r

�r ið Þ
j

� �2 !1=2

; ð22Þ
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where X r ¼ Ur 	 F r 	 VH
r is the first-r truncated t-SVD of X and

�r ið Þ
j ¼ �F j; j; ið Þ is the j-th singular value in i-th frontal slice in the Four-

ier domain.

For S subproblem (21), we solved it by the entry-wise hard
thresholding operator and projection onto

D ¼ S : kSk0 6 q; kSk1 6 c
� �

. Specifically, for l�1St�Ltþ1þX
Iþl�1I , the

entry-wise hard thresholding operator Hq l�1St�Ltþ1þX
Iþl�1I

� �
sets all

but the largest q elements of j l�1St�Ltþ1þX
Iþl�1I j to zero and the i; j; kð Þ-

th entry of the tensor from Hq l�1St�Ltþ1þX
Iþl�1I

� �
can be denoted as

Hq
ijk

l�1St�Ltþ1þX
Iþl�1I

� �
. Thus, the projection onto

D ¼ S : kSk0 6 q; kSk1 6 c
� �

is solved as

Stþ1
ijk ¼

c Hq
ijk

l�1St�Ltþ1þX
Iþl�1I

� �
> c;

Hq
ijk

l�1St�Ltþ1þX
Iþl�1I

� �
j Hq

ijk
l�1St�Ltþ1þX

Iþl�1I

� �
j 6 c;

�c Hq
ijk

l�1St�Ltþ1þX
Iþl�1I

� �
< �c:

8>>>>>><>>>>>>:
ð23Þ

� The convergence analysis of exact PAM for CTSD

Now, denoting dC Lð Þ þ dD Sð Þ þ 1
2 kX � L � Sk2Fby MC;D Lt ;St� �

and 1
2 kX � L � Sk2F by N L;Sð Þ, we are ready to establish the theo-

retical guarantee of the convergence for the exact PAM.

Theorem 2. The sequence Lt;St� �
generated by Algorithm 1 con-

verges to a critical point of MC;D Lt ;St� �
.

For the proof of Theorem 2, the following conditions are
required [43]:

� MC;D L;Sð Þ has the K� Ł property at each Lt ;St� �
.

� MC;D L;Sð Þ is a proper lower semi-continuous function.
� L and S are bounded and satisfy the sufficient decrease condi-
tion and relative error condition.
Proof. The three conditions are dividedly proven as follows.
Firstly, we show that MC;D L;Sð Þ has the K� Ł property

at each Lt;St� �
by proving that MC;D L;Sð Þ is a semi-algebraic

function. Since the multi-rank is defined in the Fourier domain
actually, we reformulate the CTSD in the Fourier domain, i.e.,

min
�L;�S

k�X � �L� �Sk2F ; s:t: �L 2 �C ¼ �L : rank �L ið Þ� �
6 r

� �
;

�S 2 �D ¼ �S : k F�1
n3

� In1
� �

�S Fn3 � In2
� �k0n

6 q; k F�1
n3

� In1
� �

�S Fn3 � In2
� �k1 6 c

o
; ð24Þ

where rank �ð Þ is the rank of a matrix. The subset �C guarantees that
each element of the multi-rank of �L is less than r. Since
�S ¼ F�1

n3
� In1

� �
�S Fn3 � In2
� �

, the subset �D is equal to the subset

D ¼ S : kSk0 6 q; kSk1 6 c
� �

. We denote d�C �L
� �

and d�D �S
� �

as the
indicator functions of �C and �D, i.e.,

d�C �L
� � ¼ 0 if �L 2 �C;

þ1 otherwise;

(

d�D �S
� � ¼ 0 if �S 2 �D;

þ1 otherwise:

( ð25Þ

Then, we consider the equivalent unconstrained optimization of
the CSTD model in the Fourier domain, i.e.,
min
�L;�S

d�C �L
� �þ d�D �S

� �þ 1
2
k�X � �L� �Sk2F : ð26Þ

Since the low-rankmatrices set is semi-algebraic, the subset �C is
semi-algebraic. Constraint sets of the l0 norm and the l1 norm are
semi-algebraic [46]. The intersection set of semi-algebraic sets is
semi-algebraic [46]. Indicator functions of semi-algebraic sets are
semi-algebraic functions [46], and the Frobenius norm is a semi-
algebraic function [46]. Thus, MC;D L;Sð Þ is a semi-algebraic func-
tion. Since the semi-algebraic real-valued function is the K� Ł
function [46], MC;D L;Sð Þ has the K� Ł property at each Lt ;St� �

.
Secondly, we show that MC;D L;Sð Þ is a proper lower semi-

continuous function. It can verify that N L;Sð Þ is a C1 function with
locally Lipschitz continuous gradient, and dC Lð Þ and dD Sð Þ are
proper lower semi-continuous. Therefore, MC;D L;Sð Þ is a proper
lower semi-continuous function.

Thirdly, we show that L and S are bounded and satisfy the
sufficient decrease condition and relative error condition. We have
jkXkF � kLkF � kSkF j 6 kX � L � SkF and kLkF 6 kX � L � SkF þ
kXkF � kSkF by the triangle inequality. Since the objective function
MC;D monotonically decreases and kSkF is bounded by
kSk1 6 c; kLkF is bounded. Thus, L and S are bounded. The process
of Algorithm 1 is a special instance of the PAM framework (15)
when Bi = kI = lI (k;l > 0) from Remark 6.1 of [43]. Thus, L and S
generated by Algorithm 1 satisfy the sufficient decrease condition
and relative error condition.

In summary, the sequence Lt;St� �
converges to a critical point

of MC;D L;Sð Þ. �.

Algorithm 2 Inexact t-SVD.

Input: X 2 Rn1�n2�n3 and Randomized tensor A1 2 Rn2�r�n3 .
Output: XBRP

1; �X ¼ fft X ; ½�;3ð Þ; �A1 ¼ fft A1; ½�;3ð Þ;
2: for i ¼ 1 : n3 do

3: �Y ið Þ
1 ¼ �X ið Þ�A ið Þ

1 ; �A ið Þ
2 ¼ �Y ið Þ

1 ; �Y ið Þ
2 ¼ �XH ið Þ�A ið Þ

2 ; �Y ið Þ ¼ �X ið Þ�Y ið Þ
2 ;

4: �XBRP :; :; ið Þ ¼ �X ið Þ
BRP ¼ �Y ið Þ �AH ið Þ

2
�Y ið Þ
1

h i�1
�YH ið Þ
2 ;

5: end for
6: XBRP ¼ ifft �XBRP; ½�;3ð Þ.
3.2. Inexact PAM for CTSD and its accuracy analysis

Since the t-SVD is computationally expensive especially for
large HSIs, we further develop an efficient inexact PAM algorithm
and establish the accuracy guarantee. Based on the tensor-tensor
product, we suggest the inexact t-SVD to obtain the tubal rank-r
approximation for (20) by designing the t-BRP.

Definition 10. (T-BRP) For X 2 Rn1�n2�n3 (n1 > n2), the t-BRP of X
can be constructed, i.e., Y1 ¼ X 	 A1and Y2 ¼ XH 	 A2, wherein
A1 2 Rn2�r�n3 and A2 2 Rn1�r�n3 are random tensors.

The tubal rank-r approximation of X can be calculated as

XBRP ¼ Y1 	 AH
2 	 Y1

� ��1
	 YH

2 ; ð27Þ

where XBRP is the solution of (20) by the inexact t-SVD and the
parameter r directly governs the tubal rank of XBRP by Remark 1.
For the accuracy of the inexact t-SVD, we consider A1 as the stan-
dard Gaussian tensor, denote the Y1 ¼ X 	 A1 as A2, update
Y2 ¼ XH 	 A2, and replace the left Y1 of (27) by X 	 Y2, i.e.,



Table 1
Computational complexity of different methods.

Method Computational complexity (r � min n1;n2;n3f g)
LRMR [18] h2n3r
LRMA [21] min h2n2

3; h
4B

n o
þ Jn3 þ 2h2n3

LRTR [32] n1n2n3 logn3 þmin n1;n2ð Þn1n2n3

CTSD n1n2n3 logn3 þmin n1;n2ð Þn1n2n3

R-CTSD n1n2n3 logn3 þ rn1n2n3
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XBRP ¼ X 	 XH 	 X 	 A1 	 AH
1 	 XH 	 X 	 A1

� ��1
	 AH

1 	 XH 	 X :

ð28Þ
The inexact t-SVD can be efficiently calculated by (6) and (7).

For i ¼ 1; . . . ;n3, let �A ið Þ
1 2 Cn2�r is the standard Gaussian matrix

[47,48]. The rank-r approximation of �X ið Þ is obtained by

�X ið Þ
BRP ¼ �X ið Þ �XH ið Þ �X ið Þ�A ið Þ

1
�AH ið Þ
1

�XH ið Þ �X ið Þ�A ið Þ
1

� ��1
�AH ið Þ
1

�XH ið Þ �X: ð29Þ

Thus, we have that

�XBRP ¼ �X�XH �X�A1
�AH
1
�XH �X�A1

� ��1 �AH
1
�XH �X: ð30Þ

Then, we have XBRP ¼ F�1
n3

� In1
� �

�XBRP Fn3 � In2
� �

. The inexact t-

SVD is summarized as Algorithm 2.
By the construction of the inexact t-SVD, we can observe that

the computational complexity of the inexact t-SVD O rn1n2n3ð Þð Þ
is lower than that of the exact t-SVD O min n1;n2ð Þn1n2n3ð Þð Þ in
the Fourier domain for r � min n1;n2ð Þ. Now, we denote the
exact PAM-based method as CTSD, which utilizes the exact t-
SVD to solve (20), and we denote the inexact PAM-based
method as R-CTSD, which solves (20) via the inexact t-SVD.
Table 1 gives the computational complexity comparison of dif-
ferent algorithms, including CTSD, R-CTSD, and other comparing
methods.

Since the estimated k�1Lt � St þX� �
= I þ k�1I� �

at each itera-
tion may not be accurate enough, it is not necessary to calculate
the exact solution of the subproblem (20). For computational effi-
ciency, we can consider the accelerated Algorithm 2.

� The accuracy analysis of inexact PAM for CTSD
Now, we establish the accuracy guarantee of the inexact PAM.

The error in the inexact PAM mainly arises from the subproblem
(20) at each iteration. Thus, we need to discuss the error
between the inexact solution and the exact solution of the sub-
problem (20).

We firstly have the t-SVD of X 2 Rn1�n2�n3 as

X ¼ U 	 F 	 VH ¼ Ur 	 F r 	 VH
r þ Up 	 F p 	 VH

p : ð31Þ

We denote the exact solution of (20) generated by first-r trun-
cated t-SVD as X r ¼ Ur 	 F r 	 VH

r and the inexact solution of (20)
generated by the inexact t-SVD as XBRP.

Theorem 3. For a tensor X 2 Rn1�n2�n3 and a standard Gaussian
tensor A1 2 Rn2�r�n3 , the error between the inexact solution XBRP and
the exact solution X r is theoretically bounded by

kX r � XBRPk2 6 k�F2
p

�VH
p
�A1

� �
�VH
r
�A1

� �y�F�1
r k22; ð32Þ

where k � k is the tensor spectral norm (Def. 8) and k � k2 is the matrix
spectral norm.
Remark 2. Since the singular values of each frontal slice �X ið Þ decay
fast for the clean HSI, the singular values except the first r-th sin-
gular values are tiny numbers. Thus, the error bound is very small,
and the tubal rank-r approximation by the inexact t-SVD is suffi-
ciently accurate.

For the proof of Theorem 3, we need to introduce some lemmas
and propositions as follows:

Lemma 1. [49]. Suppose that �G 
 0. For every A, the matrix

ATGA 
 0. Especially,

G � B ) ATGA � ATBA: ð33Þ
Proposition 1. [49]. Suppose that range Bð Þ � range Gð Þ. For each A, it
holds that kPBAk2 6 kPGAk2 and k I � PBð ÞAk2 6 k I � PGð ÞAk2.
Proposition 2. [49]. Suppose that �G 
 0. Thus,

I � I þ Gð Þ�1 � G: ð34Þ
Proposition 3. [49]. There is kGk2 6 kAk2 þ kCk2 for each parti-
tioned positive semi-definite matrix

G ¼ A B

BT C

 �
: ð35Þ

Now, we give the proof of Theorem 3.
Proof. We consider the theoretical error between the inexact solu-
tion XBRP and the exact solution X r of the subproblem (20) as the
following tensor spectral norm, i.e.,

kX r � XBRPk ¼ kUr 	 F r 	 VH
r � Y1 	 AH

2 	 Y1

� ��1
	 YH

2 k: ð36Þ

From the tensor spectral norm (Def. 8), we have that

kX r � XBRPk ¼ kbcirc X r � XBRPð Þk ¼ k�Xr � �XBRPk2
¼ k�Ur

�Fr
�VH
r � �Y1

�AH
2
�Y1

� ��1�YH
2 k2

¼ k�Ur
�Fr
�VH
r � �X�A1

�AH
2
�X�A1

� ��1�AH
2
�Xk2: ð37Þ

The unitary invariance of the spectral norm leads to

kX r � XBRPk ¼ k�Xr � �XBRPk2
¼ k�UH

r
�Ur
�Fr
�VH
r � �X�A1

�AH
2
�X�A1

� ��1�AH
2
�X

h i
�Vk2

¼ k �Fr 0
� �� �Fr 0

� �
�VH�A1

�AH
2
�X�A1

� ��1�AH
2
�U�Fk2

¼ k
�Fr 0
0 0

 !
�

�Fr 0
0 0

 !
�VH�A1

�AH
2
�X�A1

� ��1�AH
2
�U�Fk2

¼ k�F	 I � �VH�A1
�AH
2
�X�A1

� ��1�AH
2
�U�F

h i
k2;

ð38Þ

where

�F	 ¼
�Fr 0
0 0

 !
: ð39Þ

From (28), we have A2 ¼ Y1 ¼ X 	 A1 ¼ U 	 F 	 VH 	 A1 and
A1 ¼ Y2 ¼ XH 	 A2 ¼ XH 	 X 	 A1 ¼ U 	 F 	 F 	 VH 	 A1. Thus,
�A2 ¼ �U�F �VH�A1 and �A1 ¼ �V�F2 �VH�A1. Then, we have that

kX r � XBRPk ¼ k�F	 I � �F2 �VH�A1
�AH
1
�V�F4 �V�A1

� ��1�AH
1
�V�F2

h i
k2: ð40Þ

We define the orthogonal projector of a given G as

PG ¼ G GHG
� ��1

GH , which projects a given matrix to the column

space (range) of G. Then, we have

kX r � XBRPk ¼ k�F	 I � PGð Þk2;G ¼ �F2 �VH�A1: ð41Þ
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Since range G �VH
r
�A1

� �y�F�2
r

� �
� range Gð Þ, we have the following

inequality from Proposition 1 (k I � PBð ÞAk2 6 k I � PGð ÞAk2), i.e.,

kX r � XBRPk ¼ k�F	 I � PGð Þk2 6 k�F	 I � PBð Þk2; ð42Þ
where

B ¼
�F2
r
�VH
r
�A1

�F2
p
�VH
p
�A1

 !
�VH
r
�A1

� �y�F�2
r ¼ I

M

 �
: ð43Þ

We rewrite I � PB as

I � PB ¼ I � I þMHM
� ��1 � I þMHM

� ��1MH

�M I þMHM
� ��1 I �M I þMHM

� ��1MH

 !
: ð44Þ

On the one hand, the top-left block of (44) has

I � I þMHM
� ��1 � MHM from Proposition 2 (I � I þ Gð Þ�1 � G). On

the other hand, the bottom-right block of (44) has

I �M I þMHM
� ��1MH � I from Lemma 1 (G � B ) ATGA � ATBA).

Together, we have

I � PB ¼ MHM � I þMHM
� ��1MH

�M I þMHM
� ��1 I

 !
: ð45Þ

Then, we have the following formula by Lemma 1, i.e.,

�F	 I � PBð Þ�F	 ¼
�FH
r M

HM�Fr ��FH
r I þMHM
� ��1MH0

�0M I þMHM
� ��1 0

 !
:

ð46Þ
By applying Proposition 3, we have that (46) is bounded by

kX r � XBRPk2 ¼ k�F	 I � PBð Þ�F	k 6 k�F2
p

�VH
p
�A1

� �
�VH
r
�A1

� �y�F�1
r k22: ð47Þ

The proof is completed. �.
Remark 3. The accuracy of randomized algorithms receives con-
sidered attention [50–52]. Zhou et al. [52] discussed the error
between the matrix X and its matrix rank-r approximation, i.e.,
kX � XBRPk. In this work, we are interested in the error between
the exact solution via the exact t-SVD and the inexact solution
via the inexact t-SVD for subproblem (20), i.e., kX r �XBRPk, instead
of the tensor X and its tubal rank-r approximation.
1 http://lesun.weebly.com/hyperspectral-data-set.html.
4. Experiments

To verify the effectiveness and efficiency of the proposed meth-
ods, comprehensive experiments of the synthetic and real data are
conducted. We denote the exact PAM-based method as CTSD and
the inexact PAM-based method as R-CTSD. The compared methods
consist of LRTA [35], BM4D [53], LRMR [18], LRMA [21], and LRTR
[32]. LRTA is a low-Tucker-rank-based method, which performs
both spatial and spectral low-rank approximation. BM4D considers
the spatial-spectral self-similarity and searches similar 3-D cubes
to remove noise collaboratively. LRMR is a well-established
matrix-based method for mixed noise removal by the Godec algo-
rithm [19]. LRMA is a low-matrix-rank-based method via the non-
convex weighted Schatten p-norm. LRTR characterizes the clean
HSI via the TNN and the sparse noise via the l1 norm. We select
the parameters of the compared methods as suggested in the ref-
erence papers.

Parameters settings of CTSD and R-CSTD: We discuss the
parameters settings of CTSD and R-CTSD in the synthetic and real
data experiments. For the CTSD and the R-CTSD, the parameters
settings are the same. Parameters k and l are the weight of
proximal term, which can be determined from the candidate set

10�5;10�4;10�3;10�2;10�1;1
n o

. The parameter c is fixed to be

1 to constrain the pixel values of the sparse noise in the interval
[-1, 1]. The parameters r and qgovern the tubal-rank of the targeted
HSI and the sparsity of the sparse noise part, respectively. The
specific settings of r and q are listed in Table 2.

All the tests are implemented on the Windows 10 system and
Matlab (2017b) with the CPU Intel Core i7-8700 k 3.70 GHz and
16 GB RAM. All the methods are run once for all experiments.

4.1. Synthetic data

In the simulated experiments, two HSIs data were tested,
including Washington DC Mall1 of the size 256� 256� 191 and
Pavia University1 of the size 610� 340� 103. The two HSIs were
band-wisely normalized to be in the range [0, 1]. Three metrics
served as the quantitative evaluation, including the peak signal-to-
noise ratio (PSNR) [54], the structural similarity index (SSIM) [55]
in the range [0,1], and the spectral angle mapping (SAM) [56] in
the range [0,1] (degree). The mean PSNR (MPSNR) and mean SSIM
(MSSIM) are generated by averaging these values of PSNR and SSIM
from all bands, respectively. Generally, better denoising perfor-
mances are reflected by higher MPSNR, MSSIM, and lower SAM
values.

We simulated the additional noise as the following three cases:
Case 1: Synthetic data was with Gaussian noise, fixed impulse

noise, and different stripes and deadlines noise. The zero-mean
Gaussian noise was added to all bands with different variances,
which randomly distributed between [0.02, 0.04]. The impulse
noise affecting 20% of pixels was added to each band. Stripes and
deadlines were added to selected 11 bands, and the width ran-
domly ranged from one line to three lines.

Case 2: Synthetic data was with fixed Gaussian noise and differ-
ent impulse noise. The zero-mean Gaussian noise with the fixed
variance as 0.02 was added to all bands. The impulse noise was
added to each band, and the percentages of pixels affected by
impulse noise were respectively set to 10%, 20%, and 30%.

Case 3: Synthetic data was with different Gaussian noise and
fixed impulse noise. The zero-mean Gaussian noise was added to
all bands, and the variances of Gaussian noise were respectively
set to 0.02, 0.04, and 0.06. The impulse noise was added to each
band, and the percentage of impulse noise was fixed at 20%.

Quantitative Evaluation: Tables 3–5 list the quantitative compar-
isons of competing methods in different cases. Specifically, our
methods significantly outperform other competing methods for
all the evaluation metrics in most cases, e.g., in Table 3, CTSD
and R-CTSD achieve around 4:5 dB and 4 dB gain in MPSNR beyond
the third-best method (LRMA) on Pavia University. In Table 4,
when the impulse noise affects 30% pixels of Washington DC Mall,
the proposed methods still achieve around 40 dB in MPSNR, while
LRMR, LRMA, and LRTR achieve around 35 dB in MPSNR. As Gaus-
sian noise increases to 0:06 in Table 5, the proposed methods rank
the first and the second place in terms of the MPSNR and SAM.
Comparing the running time in Tables 3–5, we can observe that
R-CTSD is the fastest. Although CTSD is the third-fast in running
time and slower than BM4D, it achieves the best quantitative met-
rics in most cases. Thus, our methods are both of high efficiency in
mixed noise removal.

Moreover, we compare the quantitative performance of CTSD
and R-CTSD. We can observe that the performance of R-CTSD is
close to that of CTSD for all the evaluation metrics. In Table 5, when
Gaussian noise is 0.04 and 0.06, R-CTSD even exceeds CTSD in
terms of MSSIM. Thus, the accuracy of R-CTSD is sufficient for HSIs

http://lesun.weebly.com/hyperspectral-data-set.html


Table 2
The parameters setting in CTSD and R-CTSD for the synthetic and real data experiments.

Experiments Case Data r q

Synthetic Case1 Washington DC Mall 5 2:7� 106

Pavia University 4:0� 106

Case2 Washington DC Mall 5 1:5� 106 Sparsenoise : 10%ð Þ
2:5� 106 Sparsenoise : 20%ð Þ
3:5� 106 Sparsenoise : 30%ð Þ

Case3 Washington DC Mall 5 2:5� 106

Real – HYDICE Urban 3 1:5� 106

Hyperion Australia 5 1:5� 106

Table 3
The quantitative evaluation of competing methods in case 1. The best values and the second-best values are respectively highlighted by bold fronts and underlines.

Data Metrics Noisy LRTA [35] BM4D [53] LRMR [18] LRMA [21] LRTR [32] CTSD R-CTSD

Washington DC Mall MPSNR 11.32 21.25 22.68 35.42 37.55 36.89 41.06 40.61
MSSIM 0.118 0.577 0.508 0.950 0.970 0.959 0.984 0.989

SAM 47.47 15.39 13.69 5.70 4.05 5.03 3.98 2.37

Time (s) – 54.12 166.21 289.11 5974.56 147.43 91.25 36.65

Pavia University MPSNR 11.40 21.87 24.31 33.71 35.27 34.71 39.72 39.29
MSSIM 0.076 0.453 0.536 0.915 0.927 0.912 0.971 0.969
SAM 48.69 15.45 11.18 6.13 5.24 7.27 2.91 2.94

Time (s) – 76.51 207.13 597.32 13451.67 274.61 153.24 58.89

Table 4
The quantitative evaluation of competing methods in case 2. The best values and the second-best values are respectively highlighted by bold fronts and underlines.

Data Sparse Noise Metrics Noisy LRTA [35] BM4D [53] LRMR [18] LRMA [21] LRTR [32] CTSD R-CTSD

Washington DC Mall 10% MPSNR 14.35 22.55 25.43 39.51 40.06 40.25 42.84 41.97
MSSIM 0.252 0.535 0.616 0.986 0.982 0.980 0.999 0.999

SAM 41.69 18.61 11.32 3.48 3.32 3.25 2.30 2.33

20% MPSNR 11.36 20.30 22.78 35.25 37.59 38.80 41.34 40.83
MSSIM 0.120 0.464 0.517 0.966 0.975 0.973 0.981 0.980
SAM 47.36 18.11 14.51 6.52 3.42 3.76 3.27 3.42

30% MPSNR 9.61 18.98 19.38 34.34 35.72 35.93 40.75 39.86
MSSIM 0.071 0.532 0.403 0.927 0.944 0.940 0.970 0.972

SAM 49.67 15.50 17.16 6.95 5.17 5.52 4.38 4.25

Average time (s) – 52.39 168.35 285.21 5928.76 148.01 87.08 33.65

Table 5
The quantitative evaluation of competing methods in case 3. The best values and the second-best values are respectively highlighted by bold fronts and underlines.

Data Gaussian noise Metrics Noisy LRTA [35] BM4D [53] LRMR [18] LRMA [21] LRTR [32] CTSD R-CTSD

Washington DC Mall 0.02 MPSNR 11.36 20.30 22.78 35.25 37.59 38.80 40.42 39.60
MSSIM 0.120 0.464 0.517 0.966 0.975 0.973 0.981 0.980
SAM 47.36 18.11 14.51 6.52 3.42 3.76 3.27 3.42

0.04 MPSNR 11.31 20.40 22.70 35.14 35.67 35.80 37.82 37.05
MSSIM 0.117 0.476 0.512 0.947 0.951 0.957 0.956 0.963

SAM 47.51 17.69 14.64 5.80 5.16 4.70 4.49 4.54

0.06 MPSNR 11.22 21.45 22.56 32.19 34.70 33.04 35.02 34.86
MSSIM 0.112 0.606 0.507 0.915 0.928 0.921 0.927 0.929

SAM 47.72 14.16 14.85 7.83 6.62 6.40 6.31 6.52

Average time (s) – 54.47 173.47 263.17 6108.35 141.32 135.27 33.96
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Fig. 2. The denoising images by different methods for Washington DC Mall with mixed noise in case 1. The first row is the result in band 77 of Washington DC Mall and the
second row is the result in band 79 of Washington DC Mall.

Fig. 3. The denoising images by different methods for Pavia University with mixed noise in case 1. The first row is the results in band 10 of Pavia University and the second
row is the results in band 79 of Pavia University.

Fig. 4. The denoising images by different methods for Washington DC Mall with 30% sparse noise in case 2. The first row is the results in band 70 of Washington DC Mall and
the second row is the results in band 82 of Washington DC Mall.
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denoising. Additionally, for the running time in Tables 3–5, R-CTSD
is about twofold faster than CTSD. Therefore, R-CTSD compromises
between accuracy and efficiency.

Visual Quality Evaluation: Figs. 2–5 show the denoising images
by different methods. Specifically, Figs. 2 and 3 show some denois-
ing bands of Washington DC Mall and Pavia University in case 1.
We can observe that the proposed CTSD and R-CTSD remove the
mixed noise completely and preserve the details well. The denois-
ing results of compared methods can be summarized as follows,
i.e., remaining apparent noise and losing some details. For instance,
BM4D removes almost all of the noise but blurs the images in
Figs. 2 and 3. Notably, there exist apparent stripes and deadlines
in the results of LRMR, LRMA, and LRTR in Fig. 3. The following pos-
sible reasons maybe cause this noise to remain. For LRMR and
LRMA, since stripes and deadlines could simultaneously be sparse
and low-rank, matrix-based methods can not separate the low-
rank part and the sparse noise part well. For LRTR, TNN is the con-
vex surrogate of the tensor tubal rank, resulting in the sub-optimal
performance in vision. In contrast, our methods directly optimize
the tubal rank and separate the clean HSI and noise well. Thus,
CTSD and R-CTSD significantly outperform compared methods
visually.



Fig. 5. The denoising images by different methods for Washington DC Mall with 0.04 noise variance in case 3. The first row is the results in band 76 of Washington DC Mall
and the second row is the results in band 77 of Washington DC Mall.

406 X.-L. Zhao et al. / Neurocomputing 413 (2020) 397–409
Figs. 4 and 5 show some denoising bands of Washington DC
Mall in case 2 and 3. In summary, the compared methods remove
almost all of the noise. Zooming in an area of denoising images, we
can observe that LRTA and BM4D remove noise but cause details
missing. In Figs. 4 and 5, LRMR, LRMA, LRTR, and our methods
achieve good visual performance in most denoising images, except
that LRMA contains little sparse noise in Fig. 5. This indicates that
these low-rank-based methods can effectively remove Gaussian
noise with the existence of impulse noise.
4.2. Real data

Two real corrupted HSIs are considered for the real data exper-
iment, including HYDICE urban data2 and Earth Observing(EO)-1
Hyperion L1R-level Australia data.3

HYDICE urban data: The original size of this real data is
304� 304� 210. Fig. 6. shows the denoising results of bands
103 and 206, which are severely corrupted by Gaussian noise
and stripes. We can observe that BM4D, LRMR, LRMA, LRTR,
and the proposed methods obtain similar visual results and
remove almost all of the noise, while the result of LRTA con-
tains much Gaussian noise. From the zoomed-in area, we can
find that the result of BM4D loses some details, and the results
of LRMR, LRMA, LRTR still contain a small number of stripes. It
is easy to see that our methods remove stripes completely and
preserve the details well.

EO-1 Hyperion Australia data: The original size of this real
data is 256� 400� 150. Fig. 7 shows the denoising results of
bands 44 and 48. From the zoomed-in area, we can observe
that our methods remove the noise well while compared meth-
ods remain visible stripes or Gaussian noise. The results of
BM4D contain fewer stripes than those of LRMR, LRMA, and
LRTR, but some details are blurred. The proposed CTSD and R-
CTSD effectively remove the mixed noise and finely preserve
the details.
4.3. Discussion

The influence of parameters r and q: The parameters r and q
govern the solution of the CTSD model. The value r directly con-
strains the tubal rank of the clean HSI, and q denotes the sparsity
of the sparse noise part, i.e., the number of pixels contaminated
by impulse noise, stripes, and deadlines. Fig. 8 displays the influ-
ence of the parameters r and q in different cases using the inexact
PAM. We can observe that the performance is affected by the
parameters r and q.
2 http://www.tec.army.mil/hypercube.
3 http://remote-sensing.nci.org.au/.
The comparison between CTSD and R-CTSD: Finally, we com-
pare the performance of the CTSD and the R-CTSD. Fig. 9 displays
the curves of the running time, the relative error of the decompo-
sition [19], and the PSNR at each iteration from CTSD and R-CTSD.
Specifically, the relative error at each iteration is defined as

kX � Lt � StkF=kXkF : ð48Þ
In Fig. 9, as the iteration increases, the relative error and PSNR

of the CTSD are better than those of R-CTSD, because CTSD obtains
the low-tubal-rank tensor by the exact t-SVD. In contrast, R-CTSD
obtains the low-tubal-rank tensor via the inexact t-SVD. Since
the computational complexity of the inexact t-SVD is lower than
that of the exact t-SVD, the running time of R-CTSD is about two-
fold faster than that of CTSD in Fig. 9. Therefore, R-CTSD compro-
mises between accuracy and efficiency.
5. Conclusion

In this paper, we considered the CTSD model for HSIs denoising.
Due to the tubal-rank constraint and the l0 and l1 norm con-
straints, the CTSD model was challenging to solve. To tackle the
CTSD model, we developed the exact PAM algorithm via the exact
t-SVD and established the theoretical convergence. We further
suggested an efficient inexact PAM algorithm via designing an
inexact t-SVD for large HSIs and establish its accuracy guarantee.
The comprehensive experimental examples of the synthetic and
real data demonstrated that both exact PAM and inexact PAM
achieved excellent performance on HSIs noise removal. Moreover,
the quantitative evaluation metrics and visual effects of the inexact
PAM were close to those of the exact PAM, while the running time
of the inexact PAM was significantly less than that of the exact
PAM. Thus, the inexact PAM can compromise between accuracy
and efficiency.
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Fig. 6. The denoising images by different methods for HYDICE urban. The first row is the results in band 103 of HYDICE urban and the second row is the results in band 206 of
HYDICE urban.

Fig. 7. The denoising images by different methods for EO-1 Hyperion Australia. The first row is the results in band 44 of EO-1 Hyperion Australia and the second row is the
results in band 48 of EO-1 Hyperion Australia.

Fig. 8. Recovery results under different values of the parameters r and q. (a) is the change of the PSNR and SSIM from case 1 in the Washington DC Mall; (b) is the change of
the PSNR and SSIM from case 1 in the Pavia University; (c) is the change of the PSNR and SSIM from case 2 with 30% sparse noise; (c) is the change of the PSNR and SSIM from
case 3 with 0.04 Gaussian noise.
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Fig. 9. The curves of running time, the relative error, and the PSNR of the CTSD and the R-CTSD with the change of iteration for Washington DC Mall in case 1. (a) is the change
of the running time (s); (b) is the change of the relative error (kX � St � LtkF=kXkF ); (c) is the change of the PSNR (dB).
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