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Framelet Representation of Tensor Nuclear Norm
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Abstract— The main aim of this paper is to develop a framelet
representation of the tensor nuclear norm for third-order tensor
recovery. In the literature, the tensor nuclear norm can be com-
puted by using tensor singular value decomposition based on the
discrete Fourier transform matrix, and tensor completion can be
performed by the minimization of the tensor nuclear norm which
is the relaxation of the sum of matrix ranks from all Fourier
transformed matrix frontal slices. These Fourier transformed
matrix frontal slices are obtained by applying the discrete Fourier
transform on the tubes of the original tensor. In this paper,
we propose to employ the framelet representation of each tube so
that a framelet transformed tensor can be constructed. Because
of framelet basis redundancy, the representation of each tube
is sparsely represented. When the matrix slices of the original
tensor are highly correlated, we expect the corresponding sum
of matrix ranks from all framelet transformed matrix frontal
slices would be small, and the resulting tensor completion can
be performed much better. The proposed minimization model is
convex and global minimizers can be obtained. Numerical results
on several types of multi-dimensional data (videos, multispectral
images, and magnetic resonance imaging data) have tested and
shown that the proposed method outperformed the other testing
methods.

Index Terms— Tensor nuclear norm, framelet, alternating
direction method of multipliers (ADMM), tensor completion,
tensor robust principal component analysis.

I. INTRODUCTION

AS a high order extension of matrix, the tensor is an
important data format for multi-dimensional data appli-

cations, such as color image and video processing [1]–[3],
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hyperspectral data recovery and fusion [4]–[6], personalized
web search [7], [8], high-order web link analysis [9], magnetic
resonance imaging (MRI) data recovery [10], and seismic data
reconstruction [11]. Owing to the objective restrictions, for
example, the imaging condition for the visual data acquir-
ing and the limitation of the transmission bandwidth, the
multi-dimensional data in many applications are incomplete
or grossly corrupted. This motivates us to perform tensor
completion [3] or tensor robust principal component analysis
(RPCA) [12], in which how to characterize and utilize the
internal structural information of these multidimensional data
is of crucial importance.

For the matrix processing, low-rank models can handle
two-dimensional data of various sources [13], [14]. Gen-
eralized from matrix format, a tensor is able to contain
more essentially structural information, being a powerful tool
for dealing with multi-modal and multi-relational data [15].
Unfortunately, it is not easy to directly extend the low-rankness
from the matrix to tensors. More precisely, the definition of the
tensor’s rank is still not unique. In the past decades, the most
popular rank definitions are the CANDECOMP/PARAFAC
(CP)-rank [16], [17] and the Tucker-rank [18], [19] (or denoted
as “n-rank” in [20]). The CP-rank is based on the CP decom-
position, however, computing the CP-rank of a given tensor
is NP-hard [21]. The Tucker-rank is based on the Tucker
decomposition, in which the tensor is unfolded along each
mode unavoidably destroying the intrinsic structures of the
tensor.

In this paper, we investigate the newly emerged tensor rank
definitions, i.e., the tensor multi-rank and the tensor tubal-
rank, which are computable and induced from the tensor
singular value decomposition (t-SVD). The t-SVD is initially
proposed by Braman et al. [22] and Kilmer et al. [23], based
on the tensor-tensor product (denoted as t-prod), in which
the third-order tensors are operated integrally avoiding the
loss of information inherent in matricization or flattening
of the tensor [24]. Meanwhile, the t-SVD has shown its
superior performance in capturing the spatial-shifting corre-
lation that is ubiquitous in real-world data [22], [23], [25].
Although the t-SVD is initially designed for third-order ten-
sors, it has been extended to high order tensors with arbitrary
dimensions [25], [26].

In [27], Kernfeld et al. note that the t-prod is based on a
convolution-like operation, which can be implemented using
the discrete Fourier transform (DFT). Then, given a third-order
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tensor X ∈ Rn1×n2×n3 , its Fourier transformed (along the
third mode) tensor is denoted as �X ∈ Rn1×n2×n3 and its
tensor multi-rank is a vector with the i -th element equal to
the rank of i -th frontal slice of �X [28]. The tensor nuclear
norm (TNN) of X is subsequently defined and it equals to
the sum of the nuclear norm of �X ’s frontal slices. TNN is
the relaxation of the sum of matrix ranks from all �X ’s slices.
By minimizing the TNN, Zhang et al. [28] build the low-rank
tensor completion model and provided theoretical performance
bounds for third-order tensor recovery from limited sampling.
Lu et al. [29] utilize the TNN1 for the tensor RPCA. Similar
researches, which adopt the TNN for multi-dimensional data
recovery, can be found in [30]–[32].

Other than the Fourier transform, Kernfeld et al. find that
the t-prod, together with the tensor decomposition scheme,
can be defined via any invertible transform, for instance,
the discrete cosine transform (DCT). Namely, the t-prod can
be implemented by the matrices’ product after the invertible
transformation along the third mode. Xu et al. [33] validate
that, when minimizing the DCT based TNN for the tensor
completion problem, the DCT is superior to the DFT in terms
of the preservation of the head and the tail frontal slices,
because of its mirror boundary condition. Corroborative results
can be found in [34], [35], which demonstrates that any
invertible linear transform can be applied to induce the TNN
for the tensor completion task. Coincidentally, Song et al. [36]
find that the corresponding transformed tubal-rank could be
approximately smaller with an appropriate unitary transform,
for instance, the Haar wavelet transform, and they prove that
one can recover a low transformed tubal-rank tensor exactly
with overwhelming probability provided that its transformed
tubal rank is sufficiently small and its corrupted entries are
reasonably sparse.

The tensor data recovery within the t-SVD framework can
be viewed as finding a low-rank approximation in the trans-
formed domain. Therefore, if the transformed tensor could
be approximately lower-rank, minimizing the corresponding
TNN, namely the TNN defined based on the transformation,
would be more effective for the recovery [36]. In [34]–[36],
the authors establish elegant theoretical results based on the
unitary transform or the invertible linear transform. How-
ever, the requirement of the invertibility prevents their results
from other non-invertible (or semi-invertible) transformations,
which could bring in redundancy. We note that redundancy
in the transformation is important as such transformed coeffi-
cients can contain information of missing data in the original
domain, see for example the work by Cai et al. [37].

In this paper, we suggest to use the tight wavelet
frame (framelet) as the transformation within the t-SVD frame-
work. Because of framelet basis redundancy, the representation
of each tube is sparsely represented. We expect when the
matrix slices of the original tensor are correlated, the corre-
sponding sum of matrix ranks from all framelet transformed
matrix slices would be small. As an example, we illustrate this
motivation by using magnetic resonance image (MRI) of size
142×178×121, multispectral image (MSI) of size 512×512×

1In [29], the TNN is defined with a factor 1/n3.

TABLE I

THE MEAN VALUE OF ALL THE TRUNCATED TRANSFORMED MATRIX
SLICES RANKS BY USING THE FFT AND THE FRAMELET TRANSFORM

FOR MRI, MSI AND VIDEO DATA SETS

31 and video data of size 144×176×100 to demonstrate their
rank reduction via the framelet transformation2 compared to
the Fourier transformation. Note that for real imaging data,
each transformed matrix frontal slice is not an exact low-rank
matrix, but it is close to a low-rank matrix. There are many
small singular values of each transformed matrix frontal slice.
We show in Table I that the mean value of the matrix ranks
of X (:, :, i) (the i -th transformed matrix frontal slice). Here
we discard the singular values of transformed matrix frontal
slice when they are smaller than the truncation parameter, and
the truncated rank of transformed matrix slice is obtained. It
is clear that the mean value of such truncated matrix ranks by
using framelet transformation is lower than that by using the
Fourier transformation. When a framelet transformed tensor is
close to a low-rank tensor compared with the use of the Fourier
transform, it is expected that the resulting tensor completion
can be performed much better in practice. The framelet
based TNN (F-TNN) minimization models are subsequently
formulated for the low-rank tensor completion (LRTC) and
tensor RPCA. The proposed minimization models are convex
and global minimizers can be obtained via the alternating
direction multipliers method (ADMM) [38] with a theoretical
convergence guarantee. We conduct numerical experiments
on various types of multi-dimensional imaging data and the
results verify that our framelet based method outperforms the
compared methods.

A. Contributions

The main contributions can be summarised as follows.
(i) We suggest the framelet transform within the t-SVD
framework and proposed a tensor completion model, which
minimizes the framelet representation of the tensor nuclear
norm. (ii) To tackle the non-invertible framelet transform
based models, we develop alternating direction multipliers
method (ADMM) based algorithms with guaranteed con-
vergence, and we test our method on various types of
multi-dimensional data. The outperformance of our method
further corroborates the usage of framelet.

The outline of this paper is given as follows. In Section II,
some preliminary background on tensors and the framelet is
given. The main results, including the proposed model and
algorithm, are presented in Section III. Experimental results

2The piece-wise cubic B-spline is used to generate the framelet system.
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are reported in Section IV. Finally, Section V draws some
conclusions.

II. PRELIMINARIES

This section provides the basic ingredients to induce the
proposed method. We firstly give the basic tensor notations and
then introduce the t-SVD framework, which has been proposed
in [23], [24], [28], [29]. We restate them here at the readers’
convenience. Next, the basics of framelet are briefly presented.

A. Tensor Notations and Definitions

Generally, a third-order tensor is denoted as X ∈ Rn1×n2×n3 ,
and xi, j,k is its (i, j, k)-th component. We use X (k) or
X (:, :, k) to denote the k-th frontal slice of a third-order tensor
X ∈ Rn1×n2×n3 .

Definition 1 (Tensor Mode-3 Unfolding and Folding [39]):
The mode-3 unfolding of a tensor X ∈ Rn1×n2×n3 is denoted
as a matrix X(3) ∈ Rn3×n1n2 , where the tensor’s (i, j, k)-th
element maps to the matrix’s (k, l)-th element satisfying l =
( j − 1)n1 + i . The mode-3 unfolding operator and its inverse
are respectively denoted as unfold3 and fold3, and they
satisfy X = fold3(unfold3(X )) = fold3(X(3)).

Definition 2 (mode-3 tensor-matrix product [39]): The
mode-3 tensor-matrix product of a tensor X ∈ Rn1×n2×n3

with a matrix A ∈ Rm×n3 is denoted by X ×3 A and is of
size n1 × n2 × m. Elementwise, we have

(X ×3 A)i, j,k =
n3�

n=1

xi, j,n · ak,n. (1)

The mode-3 tensor-matrix product can also be expressed in
terms of the mode-3 unfolding

Y = (X ×3 A) ⇔ Y(3) = A · unfold3(X ).
The one-dimensional DFT on a vector x ∈ Rn , denoted as

x̄, is given by x̄ = Fnx ∈ C
n , where Fn ∈ C

n×n is the DFT
matrix. In this paper, we use �X to denote the transformed
tensor by performing one-dimensional DFT along the mode-3
fibers (tubes) of X . By using the DFT matrix Fn3 ∈ Cn3×n3 ,
we have�X = X ×3 Fn3 = fold3

�
Fn3unfold3(X )

� ∈ C
n1×n2×n3 .

Definition 3 (tensor conjugate transpose [24]): The conju-
gate transpose of a tensor A ∈ Cn1×n2×n3 is denoted as AH ∈
Cn2×n1×n3 , which can be obtained by conjugate transposing
each of the frontal slice and then reversing the order of
transposed frontal slices 2 through n3, i.e.,

�AH
�(1) = �A(1)

�H

and
�AH

�(i) = �A(n3+2−i)
�H

(i = 2, · · · , n3).
Definition 4 (t-prod [24]): The tensor-tensor-product (t-

prod) C = A ∗ B of A ∈ Rn1×n2×n3 and B ∈ Rn2×n4×n3

is a tensor of size n1 × n4 × n3, where the (i, j)-th tube ci j :
is given by

ci j : = C(i, j, :) =
n2�

k=1

A(i, k, :) ∗ B(k, j, :) (2)

where ∗ denotes the circular convolution between two tubes
of same size.

Fig. 1. The t-SVD of an n1 × n2 × n3 tensor.

Definition 5 (identity tensor [24]): The identity tensor I ∈
Rn1×n1×n3 is the tensor whose first frontal slice is the n1 ×n1
identity matrix, and whose other frontal slices are all zeros.

Definition 6 (orthogonal tensor [24]): A tensor Q ∈
Cn1×n1×n3 is orthogonal if it satisfies

QH ∗ Q = Q ∗ QH = I. (3)

Definition 7 (f-diagonal tensor [24]): A tensor A is called
f-diagonal if each frontal slice A(i) is a diagonal matrix.

Theorem 1 (t-SVD [23], [24]): For A ∈ Rn1×n2×n3 , the
t-SVD of A is given by

A = U ∗ S ∗ VH (4)

where U ∈ Rn1×n1×n3 and V ∈ Rn2×n2×n3 are orthogonal
tensors, and S ∈ Rn1×n2×n3 is an f-diagonal tensor.
The t-SVD is illustrated in Figure 1.

Definition 8 (tensor tubal-rank and multi-rank [28]): The
tubal-rank of a tensor A ∈ Rn1×n2×n3 , denoted as rankt (A),
is defined to be the number of non-zero singular tubes of S,
where S comes from the t-SVD of A: A = U ∗ S ∗ V�. That
is

rankt (A) = #{i : S(i, :, :) �= 0}. (5)

The tensor multi-rank of A ∈ Rn1×n2×n3 is a vector, denoted
as rankr (A) ∈ Rn3 , with the i -th element equals to the rank
of i -th frontal slice of �A.

Definition 9 (block diagonal form [28]): Let A denote the
block-diagonal matrix of the tensor �A in the Fourier
domain, i.e.,

A � blockdiag( �A)
�

⎡⎢⎢⎢⎣
�A(1) �A(2)

. . . �A(n3)

⎤⎥⎥⎥⎦ ∈ C
n1n3×n2n3 , (6)

where �A(k) = �A(:, :, k) is the k-th slice of �A for k =
1, 2, · · · , n3.

It is not difficult to find that AH = AH
, i.e., the block

diagonal form of a tensor’s conjugate transpose equals to
the matrix conjugate transpose of the tensor’s block diagonal
form. Further more, for any tensor A ∈ Rn1×n2×n3 and
B ∈ R

n2×n4×n3 , we have

A ∗ B = C ⇔ A · B = C,

where · is the matrix product.
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TABLE II

TENSOR NOTATIONS

Definition 10 (tensor-nuclear-norm (TNN) [28]): The ten-
sor nuclear norm of a tensor A ∈ Rn1×n2×n3 , denoted as
�A�TNN, is defined as

�A�TNN � �A�∗, (7)

where � · �∗ refers to the matrix nuclear norm. For a matrix
X ∈ C

m×n , �X�∗ = �min{m,n}
i σi , where σi is the i -th singular

value of X. The TNN can be computed via the summation of
the matrix nuclear norm of Fourier transformed tensor’s slices,

which are also the blocks of A. That is �A�TNN =
n3�

i=1
� �A(i)�∗.

We summary the frequent used notations in Table II.

B. Framelet

A tight frame is defined as a countable set X ⊂ L2(R)
with the property that ∀ f ∈ L2(R), f = �

g∈X

 f, g�. This is

equivalent to that ∀ f ∈ L2(R), we have

� f �2
L2(R)

=
�
g∈X

|
 f, g�|2,

where 
·, ·� is the inner product in L2(R), and � · �L2(R) =

·, ·� 1

2 .
For given � := {ψ1, ψ2, · · · , ψr } ⊂ L2(R), the affine (or

wavelet) system is defined by the collection of the dilations
and the shifts of � as X (�) := {ψl, j,k : 1 ≤ l ≤
r; j, k ∈ Z}, where ψl, j,k := 2 j/2ψl (2 j · -k). When X (�)
forms a tight frame of L2(R), it is called a tight wavelet
frame, and ψl , l = 1, 2, · · · , r are called the (tight) framelets.
In the numerical scheme of image processing, the framelet
transform (decomposition operator) of a vector v ∈ Rn can
be represented by a matrix W ∈ Rwn×n is the framelet
transform matrix constructed with n filters and l levels and
w = (n − 1)l + 1. The processes of generating such matrices
have been detailed in many literatures such as [37], [40]. We
omit them here for readability. Then the framelet transform of
a discrete signal v ∈ Rn , can be written as u = Wv ∈ Rwn .
Besides, the unitary extension principle (UEP) [41] asserts
that W�Wv = v, where W� indicates the inverse framelet
transform. However, WW�u �= u.

III. MAIN RESULTS

In this section, we replace the Fourier transform by the
framelet transform. The starting point of our idea is that
the framelet transform would bring in redundancy and the
transformed data is of lower multi-rank. Then, we build the
LRTC model and tensor RPCA model based on the framelet
representation of the tensor nuclear norm and propose the
ADMM based algorithms to optimize these models.

A. From DFT to the Framelet Transform

For a three way tensor X ∈ Rn1×n2×n3 , owing to the circular
convolution in Def. 4, its t-SVD can be efficiently computed
via the DFT. Computing the one-dimensional DFT of a vector
of length n by using the DFT matrix costs O(n2), and the
computational cost can be reduced to O(n log n) by employing
the fast Fourier transform (FFT) technique [42]. Using the
DFT matrix, for a tensor X ∈ Rn1×n2×n3 , we can obtain its
Fourier transformed tensor as�X = fold3

�
Fn3X(3)

� ∈ C
n1×n2×n3 ,

where X(3) is the mode-3 unfolding of X
Next, we will adopt the framelet transform as a substitute for

the Fourier transform, and give the definition of the framelet
representation of the tensor nuclear norm. For simplicity,
we denote the tensor after framelet transform along the third
mode as

XW = fold3
�
WX(3)

� ∈ R
n1×n2×wn3 ,

where W ∈ Rwn3×n3 is the framelet transform matrix con-
structed with n filters and l levels and w = (n − 1)l + 1.
Considering the UEP property of the framelet transform,
we have X = fold3(W�[XW](3)), where [XW](3) =
unfold3 (XW) .

Recalling Def. 8, the tensor multi-rank is defined as a vector
of the ranks of the frontal slices in the Fourier transform
domain. Therefore, the framelet based multi-rank is defined
in the same manner as follows.

Definition 11 (Framelet based multi-rank): The framelet
based multi-rank of a tensor X ∈ Rn1×n2×n3 is
defined as a vector rw ∈ Rwn3 with the i -th elements
rw(i) = rank(XW(:, :, i)) for i = 1, 2, · · · , wn3.

Here we have replaced the Fourier transform by the framelet
and defined the framelet based multi-rank. As mentioned
before, the framelet transformed tensor can be of lower
(framelet based) multi-rank. To understand this in-depth,
we give some empirically numerical analyses on the singular
values of the frontal slices of the transformed tensors. Here,
taking the video data “news”3 as an example, the original
video data is denoted as X ∈ R144×176×100 and its Fourier,
DCT, and framelet transformed tensors are denoted as �X ,
XDCT,4 and XW, respectively. In Figure 2, we exhibit the
distributions of the singular values of the frontal slices of
X , the Fourier transformed tensors �X , the DCT transformed

3Data available at http://trace.eas.asu.edu/yuv/
4XDCT is obtained by replacing the DFT with DCT, being similar to XW.
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Fig. 2. The distribution of singular values. Here, the singular values are
obtained by conducting SVD on each frontal slice of the original tensor data
or the transformed tensors.

tensor XDCT, and the framelet transformed tensors XW.5 In
Figure 2, we show the proportion of the number of singular
values of transformed matrix frontal slices in each magnitude
interval. It can be found in the figure that a large proportion of
the singular values of the framelet transformed data appears in
the interval of [0, 10−2] compared with the original video data,
the Fourier transformed tensor �X , and the DCT transformed
tensor XDCT. This phenomenon brings in an advantage that
the data can be better approximated with lower rank via the
framelet representation. In Section IV, we will illustrate tensor
completion and tensor RPCA can be obtained by using the
framelet representation.

B. Framelet Based TNN

Using the DFT matrix Fn3 , the tensor nuclear norm in (7)
of a tensor X ∈ Rn1×n2×n3 can be expressed as

�X�TNN = �X�∗ =
n3�

i=1

� �X (i)�∗

=
n3�

i=1

� 
fold3

�
Fn3X(3)

��
(:, :, k)�∗, (8)

where X(3) is the mode-3 unfolding of X .
Definition 12 (Framelet based TNN (F-TNN)): Similarly,

the framelet representation of the tensor nuclear norm can be
formulated as

�X�F-TNN = �blockdiag(XW)�∗ =
wn3�
k=1

�XW(:, :, k)�∗

=
wn3�
k=1

� 
fold3

�
WX(3)

��
(:, :, k)�∗, (9)

where W ∈ Rwn3×n3 is the framelet transform matrix.
It is not difficult to obtain that the F-TNN is a convex

envelope of the �1 norm of the framelet based multi-rank.

5The piece-wise cubic B-spline is used to generate framelet system.

C. Tensor Completion via Minimizing F-TNN

Based on the proposed framelet based TNN, our tensor
completion model, which is convex, is formulated as

min
X

�X�F-TNN

s.t. X� = O�, (10)

where O ∈ Rn1×n2×n3 is the incomplete observed data, and
� is the set of indexes of the observed entries. X� = O�

constrains that the entries of X should agree with O in �.
The next part gives the solving algorithm for our tensor

completion model (10). Let

I�(X ) =
�

0, X ∈ �,
∞, otherwise,

(11)

where � := {X ∈ Rn1×n2×n3 ,X� = O�}.
Thus, the problem (10) can be rewritten as

min
X

I�(X )+
wn3�
k=1

�XW(:, :, k)�∗ (12)

Then, the minimization problem (12) can be efficiently solved
via ADMM [38].

After introducing the auxiliary variable V ∈ R
n1×n2×wn3 ,

the problem (12) can be rewritten as the following unconstraint
problem

min
X

I�(X )+
wn3�
k=1

�V(:, :, k)�∗

s.t. V = XW. (13)

The augmented Lagrangian function of (13) is given by

Lβ(X ,V,	) = I�(X )+
wn3�
k=1

�V(:, :, k)�∗

+β
2

�XW − V + 	

β
�2

F (14)

where 	 ∈ Rn1×n2×wn3 is the Lagrangian multiplier, β is the
penalty parameter for the violation of the linear constraints. In
the scheme of the ADMM, we update each variable alternately.
V sub-problem: The V at t-th iteration is

V t+1 =arg min
V

wn3�
k=1

�V(:, :, k)�∗+ β

2
�X t

W−V+	
t

β
�2

F (15)

Then, (15) can be decomposed into wn3 subproblems and it is
easy to obtain the closed form solution of these sub-problems
with the singular value thresholding (SVT) operator [43].
Hence, we update V as

V t+1(:, :, k) = SVT 1
β

�
X t

W(:, :, k)+ 	t (:, :, k)

β

�
, (16)

where k = 1, 2 · · · , wn3. The complexity of computing V at
each iteration is O(wn1n2n3 min(n1n2)).
X sub-problem: For convenience, the subproblem of opti-

mizing Lβ with respect to X at t-th iteration is written in the
matrix format as (recalling that XW = fold3

�
WX(3)

�
)

Xt+1 =arg min
X

I�(X )+ β
2

�WX−Vt+1
(3) +	

t
(3)

β
�2

F , (17)
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Algorithm 1 Tensor Completion via Minimizing F-TNN

where Vt+1
(3) = unfold3(V t+1) and 	t

(3) = unfold3(	
t ).

To optimize (17), we first solve the following equation

W�WX(3) = W�
�

Vt+1
(3) − 	t

(3)

β

�
. (18)

Thus, considering that W�WX(3) = X(3) (the UEP property
of the framelet transformation), we have

X t+1 =P�C

�
fold3(W�(Vt+1

(3) −	t
(3)

β
))

�
+P� (O) , (19)

where P�(·) is the projection function that keeps the
entries of · in � while making others be zeros, and �c

denotes the complementary set of �. Meanwhile, we have
X t+1

W = fold3(WXt+1
(3) ). The complexity of computing X is

O(wn1n2n2
3) at each iteration.

Updating the Multiplier: The multiplier 	 can be updated
by

	t+1 = 	t + β
�
X t+1

W − V t+1
�
. (20)

Updating 	 costs O(wn1n2n3) at each iteration.
Finally, our algorithm is summarized in Algorithm 1.

The total complexity of Algorithm 1 at each iteration is
O(wn1n2n3(n3 + min(n1, n2))). The objective function of the
proposed model in (10) is convex. Our algorithm fits the stan-
dard ADMM framework and its convergence is theoretically
guaranteed [38].

D. Tensor Robust Principal Components Analysis

As aforementioned, another typical tensor recovery problem
is the tensor RPCA problem, which aims to recover the tensor
from grossly corrupted observations. Adopting the F-TNN to
characterize the low-rank part, our tensor RPCA model is
formulated as

min
L,S

�L�F-TNN + λ�E�1

s.t. L + E = O, (21)

where O ∈ R
n1×n2×n3 is the observed data, E indicates the

sparse part, �E�1 = �
i j k |Ei, j,k |, and λ is a non-negative

parameter.
For convenience, we introduce an auxiliary variable V ∈

Rn1×n2×wn3 , and reformulate (22) as

min
L,S,V

wn3�
k=1

�V(:, :, k)�∗ + λ�E�1

s.t. L + E = O, V = LW, (22)

where LW = fold3
�
WL(3)

� ∈ Rn1×n2×wn3 and W ∈
R
wn3×n3 is the framelet transform matrix constructed with n

filters and l levels (w = (n − 1)l + 1).
Similarly, we adopt ADMM to solve (22). The augmented

Lagrangian function of (22) is given as

Lβ(L,V, E,	) =
wn3�
k=1

�V(:, :, k)�∗ + β

2
�LW − V + 	1

β
�2

F

+ λ�E�1 + β

2
�O − L − E + 	2

β
�2

F (23)

where 	1 ∈ Rn1×n2×wn3 and 	2 ∈ Rn1×n2×n3 are the
Lagrangian multiplier, and β is a nonnegative parameter. In
the scheme of the ADMM, we update each variable alternately
as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V t+1 =arg min
V

wn3�
k=1

�V(:, :, k)�∗+ β
2

�Lt
W−V+	

t
1

β
�2

F ,

Lt+1 = arg min
L
β

2
�LW − V t+1

+	
t
1

β
�2

F + β

2
�O−L − E t +	

t
2

β
�2

F ,

E t+1 =arg min
E
λ�E�1 + β

2
�O−Lt+1−E+	

t
2

β
�2

F ,

	t+1
1 = 	t

1 + β
�
Lt+1

W − V t+1
�
,

	t+1
2 = 	t

2 + β
�
O − Lt+1 − E t+1

�
.

(24)

Specifically, the V subproblem in (24) can be solved by

V t+1(:, :, k) = SVT 1
β

�
Lt

W(:, :, k)+ 	t
1(:, :, k)

β

�
, (25)

for k = 1, 2, · · · , wn3. The complexity of updating V is
O(wn1n2n3 min(n1n2)) at each iteration. The L subproblem
is a least square problem and its solution can be obtained as

Lt+1 = 1

2
fold3

�
W�(Vt+1

(3) −
	t

1(3)

β
)

�
+ 1

2

�
O−E t +	

t
2

β

�
.

(26)

At each iteration, computing L costs O(wn1n2n2
3). The E

subproblem can be solved by

E t+1 = Soft λ
β

�
O − Lt+1 + 	t

2

β

�
, (27)

where Softτ (·) is the tensor soft-thresholding operator, and
Softτ (·) = sign(·)max(| · | − τ, 0). Computing E and
updating the multipliers 	1 cost O(wn1n2n3) at each iter-
ation. While the computation complexity of updating 	2 is
O(n1n2n3).
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Algorithm 2 Tensor RPCA via Minimizing F-TNN

The pseudo-code of our algorithm for tensor RPCA is
summarized in Algorithm 2. At each iteration of Algorithm 2,
it costs O(wn1n2n3(n3+min(n1, n2))). Likewise, Algorithm 2
fits the standard ADMM framework and its convergence is
theoretically guaranteed [38].

IV. NUMERICAL EXPERIMENTS

In this section, to illustrate the performance of the proposed
method, we will exhibit the tensor completion experimental
results on three typical kinds of third-order data, i.e., the MRI
data, the MSI data, and the video data. Meanwhile, we conduct
Three numerical metrics, consisting of the peak signal-to-
noise ratio (PSNR), the structural similarity index (SSIM) [44],
and the feature similarity index (FSIM) [45] are selected to
quantitatively measure the reconstructed results. On account
of that the data are third-order tensors, we report the mean
values of PSNR, SSIM, and FISM of all the frontal slices.

Experimental Settings: We generated the framelet system via
the piece-wise cubic B-spline. If not specified, the framelet
decomposition level l is set as 4 (l = 2 for the MSI
data), and the Lagrangian penalty parameter β = 1 for the
tensor completion task and β = 5 when dealing with the
tensor RPCA problems. The maximum iteration tmax and the
convergence tolerance � are chosen as (tmax, �) = (100, 10−2)
for the tensor completion and (tmax, �) = (200, 10−3) for
the tensor RPCA. All the methods are implemented on the
platform of Windows 10 and Matlab (R2017a) with an Intel(R)
Core(TM) i5-4590 CPU at 3.30GHz and 16 GB RAM.

A. Tensor Completion

We compare our F-TNN based tensor completion method
with six methods, including a baseline low-rank matrix com-
pletion (LRMC) method [46], two Tucker-rank based methods
HaLRTC [3] and TMac [47], a TNN based method [48],
a non-convex method minimizing the partial sum of the TNN
(PSTNN) [49], the DCT based TNN method (denoted as
DCTNN) [34]. When employing LRMC, the input third-order
tensor data is unfolded to a matrix along the third dimension.

TABLE III

QUANTITATIVE COMPARISONS OF THE MRI DATA COMPLETION RESULTS
BY LRMC [46], HALRTC [3], TMAC [47], TNN [48], PSTNN [49],

DCTNN [34] AND THE PROPOSED METHOD. THE BEST VALUES

AND THE SECOND BEST VALUES ARE RESPECTIVELY HIGH-
LIGHTED BY BOLDER FONTS AND UNDERLINES

1) MRI Data: We evaluate the performance of the proposed
method and the compared methods on the MRI data,6 which
is of size 142×178×121. As shown in Fig. 3, this is an MRI
of the brain, which consists of abundant textures of the gray
matter and the white matter. The sampling rates (SR) are set
as 10%, 20%, and 30%.

Table III shows the quantitative assessments of the results
recovered by different methods. Form Table III, it can be
found that the proposed method reaches the highest indices
for different sampling rates. The results by TMac and DCTNN
alternatively rank the second-best place. The margins between
the results by our method and the second-best results are more
than 1.3dB considering the PSNR, and 0.03 for the SSIM and
FSIM.

We illustrate one frontal slice of the results by different
methods with different random sampling rates in Fig. 3.
As shown in the top row of Fig. 3, when the sampling rate
is 10%, the proposed method accurately reconstructs the MRI
data, with a clear margin of the gray matter and the white
matter. When the sampling rate is 30%, all the methods get
good performances, and the white matter regions recovered by
the proposed method and TMac are the visually best.

2) MSI Data: In this subsection, we evaluate the perfor-
mance of our method and the compared methods on 32 MSIs7

from the CAVE databases [50]. The size of the MSIs is
512 × 512 × 31, where the spatial resolution is 512 × 512
and the spectral resolution is 31. The sampling rates (SR) are
set as 5%, 10%, and 20%.8

The average quantitative assessments of all the results by
different methods are listed in Table IV. We can find that
the proposed method achieves the best performance while
DCTNN obtains the second best-metrics. When the sampling
rate is 20%, TMac, TNN, PSTNN, DCTNN, and the proposed
method all have good performances.

The third dimension of the MSI represents the spectral
information and facilitates a fine delivery of more faithful
knowledge under real scenes [51]. Therefore, in Fig. 4,

6http://brainweb.bic.mni.mcgill.ca/brainweb/selection_normal.html
7http://www.cs.columbia.edu/CAVE/databases/multispectral/
8For the MSI data, when the sampling rate is higher than 20%, all the

methods achieve very high performances and the results are very close to the
ground truths. Therefore, we select the lower sampling rates to exhibit.
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Fig. 3. The visual illustration of the results on the MRI data by different methods with different sampling rates (SR). From left to right are the frontal slices
of observed incomplete data, results by different methods and the ground truth, respectively. From top to bottom are respectively corresponding to the 106-th
slice, the 110-th slice and the 115-th slice.

Fig. 4. The pseudo-color images (R-1 G-2 B-31) of the completion results on the MSI data “beads” (top row), “cd” (mid row), and “clay” (bottom row)
by different methods, respectively, with the sampling rate = 0.05. From left to right are the observed incomplete data, results by different methods and the
ground truth, respectively. For better visualization, the intensity of the pixels are adjusted.

TABLE IV

THE AVERAGE PSNR, SSIM AND FSIM OF THE COMPLETION RESULTS
ON 32 MSIs BY LRMC [46], HALRTC [3], TMAC [47], TNN [48],

PSTNN [49], DCTNN [34] AND THE PROPOSED METHOD WITH

DIFFERENT SAMPLING RATES. THE BEST VALUES AND THE

SECOND BEST VALUES ARE RESPECTIVELY HIGHLIGHTED
BY BOLDER FONTS AND UNDERLINES

we illustrate the pseudo-color images (Red-1 Green-2 Blue-
31) of the results on the MSI data “beads”, “cd”, and “clay”,
with the sampling rate = 0.05. From the similarity of the color
between the results and the ground truth, we can recognize the
spectral distortion. From the first row of Fig. 4, we can see
that, although DCTNN also obtains clear results on “beads”
as our F-TNN, the result by DCTNN is spectrally distorted.

TMac performs well on “clay”, however, undesirable artifacts
can be found. The superior of the proposed F-TNN is visually
obvious, considering the reconstruction of the image and
preservation of spectral information.

3) Video Data: In this subsection, 9 videos9 (respectively
named “foreman”, “hall”, “carphone”, “highway”, “container”,
“claire”, “news”, “coastguard” and “suzie”) with the size
144 × 176 × 100 are selected as the ground truth third-order
data. The contents of these videos are different, consisting
of humans, roads, rivers, cars, boats, bridges, walls and so
on. The scenarios in some videos (such as “foreman”, “coast-
guard”, “suzie”, and “highway”) are more dynamic while in
others are more static.

Table V lists the average MPSNR, MSSIM, and MFSIM
on these 9 videos with different sampling rates. For different
sampling rates, our F-TNN obtains the results with the best
quantitative metrics. When the sampling rates are 10% and 20,
the performances of PSTNN and DCTNN are comparable. The
DCTNN ranks second with the sampling rate of 30%. Fig. 5
exhibits the frames of the results on the videos, “news” with
sampling rates 10% and 20%. The video “news” is captured

9http://trace.eas.asu.edu/yuv/
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Fig. 5. The completion results on the video data “news” different methods with different sampling rates. From left to right are the observed incomplete
data, results by different methods and the ground truth, respectively. From top to bottom are respectively the 15-th frame and the 67-th frame.

TABLE V

THE AVERAGE PSNR, SSIM AND FSIM OF THE COMPLETION RESULTS

ON 9 videos BY LRMC [46], HALRTC [3], TMAC [47], TNN [48],
PSTNN [49], DCTNN [34] AND THE PROPOSED METHOD WITH

DIFFERENT SAMPLING RATES. THE BEST VALUES AND THE
SECOND BEST VALUES ARE RESPECTIVELY HIGHLIGHTED

BY BOLDER FONTS AND UNDERLINES

by a static camera in a stationary scenery, and there are two
dynamic parts, which are the two newscasters in the front
position and a playing screen in the back, in this video.
Thus, the scenario in this video contains both dynamic and
static components. Most compared methods can reconstruct
the static parts well while the proposed method obtains the
best recovering performances on both the two newscasters (see
their faces) and the dynamic screen.

To further illustrate the performance of all the methods
on different videos, in Fig. 6 we exhibit the PSNR, SSIM,
and FSIM on all the videos by all the methods when the
sampling rate is 10%. From Fig. 6, it can be found that
TMac is unstable with respect to different videos while
other methods maintain better metrics when the video is
more static. Although the scenario in “highway” is dynamic
along the temporal direction, the contents in this video are
not complicated. Therefore, many methods achieve good
performances. It can be observed that the proposed method
obtains the highest PSNR, SSIM, and FISM on all the videos.
This validates the robustness of our F-TNN.

B. Tensor Robust Principal Component Analysis

In this section, we test our F-TNN based TRPCA methods
on two problems, i.e., color images recovery from observations
corrupted by the salt-and-pepper noise, and the background
subtraction for surveillance videos. The compared methods
consist of one matrix nuclear norm minimization based RPCA
method (denoted as MRPCA) [14], a sum of the nuclear norm
minimization based tensor RPCA method (denoted as “SNN”)
[52], a TNN based tensor RPCA method [31], and a DCT

Fig. 6. The PNSR, SSIM, and FSIM of the results by different methods on
all the video data with the sampling rate 10%.

transformed TNN based tensor RPCA method [35]. The �1
norm is used to characterize the sparse component by all the
compared methods. The balance parameter λ, which is added
to the �1 term, is manually selected for the best performances
for all the methods. We list the settings of λ in Table VI
When implementing MRPCA, we unfold the observed data O
along the third mode and input O(3). For the image recovery,
since that the framelet transformation matrix W requires the
third dimension of the input data no less than 40, we shift
the dimension of the observed image as Ô ∈ Rn2×n3×n1 via
the Matlab command “shiftdim(·,1)”.

1) Color Image Recovery: We select 4 images,10 respec-
tively named “airplane”, “watch”, “fruits”, and “baboon”,

10The images named “airplane”, “fruits”, and “baboon” are of the size
512 × 512 × 3 and available at http://sipi.usc.edu/database/database.php,
while the image “watch” of the size 1024 × 768 × 3 is available at
https://www.sitepoint.com/mastering-image-optimization-in-wordpress/
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TABLE VI

THE SETTINGS OF THE PARAMETERλ FOR ALL THE METHODS, GIVEN THE

OBSERVATION O ∈ R
n1×n2×n3

TABLE VII

QUANTITATIVE COMPARISONS OF THE IMAGE RECOVERY RESULTS OF

MRPCA [14], SNN [52], TNN [31], DCTNN [35], AND THE PRO-
POSED METHOD. THE BEST VALUES AND THE SECOND BEST VAL-

UES ARE RESPECTIVELY HIGHLIGHTED BY BOLDER FONTS
AND UNDERLINES

as ground truth clean images. Then, the salt-and-pepper noise
is added to these images, affecting ρ pixels. The parameter
ρ varies from 5% to 10%. Table VII presents the averaged
PSNR, SSIM, and FSIM values of the results by different
methods for the color image recovery. We can find that the
performance of our method is the best with different ρs .
We exhibit the visual results on the images “airplane” and
“watch” in Fig. 7. It can be obtained that all the tensor-based
methods remove the salt-and-pepper noise while the perfor-
mance of MRPCA is unsatisfactory. The residual images,
which are absolute values of the difference between results and
clean images, are magnified with a factor 2 for better visual-
ization. From the residual images, we can see that our method
preserves the structure and details of the color images well.

2) Background Substraction: Four video sequences, respec-
tively named “Bootstrap1285”, “Escalator2805”, “Shopping-
Mall1535”, and “hall1368”, are selected from Li’s dataset.11

After transforming the color frames to gray level ones, each
video is of the size 130 × 160 × 40. Results by all of the
methods are displayed in Fig. 8. We can see that our method
and MRPCA perform well for the videos “Bootstrap1285” and
“ShoppingMall1535”, while some incorrectly extractions can
be found in the foreground results by other three methods,
the front desk in “Bootstrap1285” and the dot pattern of
the ground in “ShoppingMall1535” for examples. For videos
“Escalator2805” and “hall1368”, all the methods incorrectly
extract contents of the background to the foreground, more or
less. Overall, the foregrounds extracted by our method are the
purest.

C. Discussions

1) Framelet Setting: In this part, taking the completion
of MRI data (SR = 10%) as an example, we evaluate the
performance of the proposed method with different Framelet

11Data available at http://vis-www.cs.umass.edu/narayana/castanza/I2Rdataset/

Fig. 7. The top four rows are the image recovery results and residual images
on the image “airplane”, and the bottom 4 rows are corresponding to the image
“watch”.

Fig. 8. Background substraction results by different methods. The left column
lists one frame of the observed video. From top to bottom are respectively
separation results, i.e., the background and the foreground, of the video
“Bootstrap1285”, “Escalator2805”, “ShoppingMall1535”, and “hall1368”. For
better visualization, we add 0.5 to the foreground.

transformation settings. Firstly, including the piece-wise cubic
B-spline (denoted as “cubic”), we also adopted the Haar
wavelet (denoted as “Haar”) and the piece-wise linear B-spline
(denoted as “linear”) to generate the framelet transformation.
Meanwhile, we also set the decomposition levels from 1 to 5.
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TABLE VIII

THE PSNR, SSIM AND FSIM OF THE RECOVERY RESULTS ON THE MRI
DATA BY THE PROPOSED METHOD WITH DIFFERENT FRAMELET SET-

TINGS. THE BEST VALUES ARE HIGHLIGHTED BY BOLDER FONTS

Fig. 9. The convergence behaviours of Algorithm 1, with respect to different
sampling rates and different β.

The quantitative metrics of the results obtained by the pro-
posed method with different framelet settings are reported in
Table VIII. From Table VIII, we can find that the piece-wise
cubic B-spline is the best choice. As the decomposition level
arise, the performance of the proposed method becomes better
until level 5. Setting the level as 3 or 4 is a good choice.

2) Convergency Behaviours: Also, we take the completion
of MRI data as an example to illustrate the convergency
behaviours of our algorithm with respect to different
sampling rates and different parameters. In the framework
of ADMM, the parameter β, which is brought in by
the augmented Lagrangian function, mainly affects the
convergency behaviour of our method. Thus, we test our
algorithm with β = 10−1, 1, 10. We plot �Vk+1 − Vk�∞ and
�X k+1 − X k�∞ of each iteration in Fig. 9. It can be seen
that when β = 10−1 and 1 our algorithm steadily converges.
Although the behaviour of �X k+1 − X k�∞ is not that stable
when β = 10, our algorithm also converges rapidly.

V. CONCLUSION

In this paper, we propose to replace the Fourier transform
by the framelet in the t-SVD framework. Then, we formu-
late the framelet representation of the tensor multi-rank and
tensor nuclear norm. A low-rank tensor completion model
and a tensor robust principal component analysis model are
proposed by minimizing the framelet based tensor nuclear
norm. We develop ADMM based algorithms to solve these
convex models with guaranteed convergence. We compare
the performance of the proposed method with state-of-the-art
methods via numerical experiments on the magnetic resonance
imaging data, videos, color images, and multispectral images.
Our method outperforms many state-of-the-art methods quan-
titatively and visually.
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