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Mixed Noise Removal in Hyperspectral Image
via Low-Fibered-Rank Regularization

Yu-Bang Zheng , Ting-Zhu Huang , Xi-Le Zhao , Tai-Xiang Jiang , Tian-Hui Ma , and Teng-Yu Ji

Abstract— The tensor tubal rank, defined based on the tensor
singular value decomposition (t-SVD), has obtained promis-
ing results in hyperspectral image (HSI) denoising. However,
the framework of the t-SVD lacks flexibility for handling dif-
ferent correlations along different modes of HSIs, leading to
suboptimal denoising performance. This article mainly makes
three contributions. First, we introduce a new tensor rank named
tensor fibered rank by generalizing the t-SVD to the mode-k
t-SVD, to achieve a more flexible and accurate HSI character-
ization. Since directly minimizing the fibered rank is NP-hard,
we suggest a three-directional tensor nuclear norm (3DTNN) and
a three-directional log-based tensor nuclear norm (3DLogTNN)
as its convex and nonconvex relaxation to provide an efficient
numerical solution, respectively. Second, we propose a fibered
rank minimization model for HSI mixed noise removal, in which
the underlying HSI is modeled as a low-fibered-rank component.
Third, we develop an efficient alternating direction method of
multipliers (ADMMs)-based algorithm to solve the proposed
model, especially, each subproblem within ADMM is proven to
have a closed-form solution, although 3DLogTNN is nonconvex.
Extensive experimental results demonstrate that the proposed
method has superior denoising performance, as compared with
the state-of-the-art competing methods on low-rank matrix/tensor
approximation and noise modeling.

Index Terms— Alternating direction method of multipliers
(ADMMs), hyperspectral image (HSI), log-based function, tensor
fibered rank, tensor nuclear norm.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) provide wealthy spa-
tial and spectral information of real scenes and have been

widely used in many applications [1], [2], such as mineral
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detection, earth observation, and environmental monitoring.
However, due to imaging limitations, HSIs inevitably suffer
from various noises, such as Gaussian noise, salt and pepper
noise, and stripe noise. HSI denoising aims at estimating the
clean HSI from its degraded observation, which is a critical
preprocessing step for many subsequent applications, such as
target detection [3]–[6], classification [7]–[9], and unmixing
[10]–[13]. The central issue of HSI denoising is to exploit
the spatial and spectral prior knowledge of HSIs. Generally,
a typical HSI priors include piecewise smoothness, nonlocal
self-similarity, and low rankness [14]–[26].

The piecewise smoothness focuses on the local continuity
of HSIs along both the spatial and spectral modes. To exploit
this prior, many HSI denoising models are built on the
total variation (TV) regularization, such as spatial–spectral
TV (SSTV) [27], spectral–spatial adaptive TV [28], tensor
decomposition-based SSTV [29], and enhanced 3-D TV [30].
Not limited to the above-mentioned methods that constrain
the HSI directly, Chen et al. [31] incorporated the spatial
piecewise smoothness prior of HSIs into a low-rank matrix
factorization (LRMF) framework, where one of the factor
matrices is characterized by framelet-based regularization.

The nonlocal self-similarity means that HSIs contain many
similar 2-D patches/3-D cubes at different locations. Early
methods treat each band of HSIs as a gray-level image
and impose the spatial nonlocal self-similar prior to remove
the noise band-by-band, such as the nonlocal means filter-
based method [32], dictionary learning-based method [33],
BM3D [34], and weighted nuclear norm minimization-based
method [35]. However, this practice ignores the correla-
tions between different spectral bands, and thus, usually
cannot exhaust the estimation potential of the nonlocal
self-similar prior. To tackle this issue, many denoising meth-
ods considered the spatial–spectral nonlocal self-similar prior
of HSIs, i.e., consider similar 3-D cubes, rather than 2-D
patches, as the basic unit of denoising, such as BM4D [36],
MSPCA-BM3D [37], nonlocal tensor dictionary learning-
based method [38], and intrinsic tensor sparsity regularization-
based method [39].

The low rankness reflects the global correlation in the
spectral–spatial domain of HSIs. The main idea of low-matrix-
rank-based methods [40]–[48] is that unfold the target HSI as a
matrix by vectorizing each band as a column and then promote
the low rankness of the unfolding matrix. However, the unfold-
ing operator destroys the spatial information of HSIs. Recently,
many denoising methods consider the tensor low rankness of
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HSIs, based on tensor decompositions and the corresponding
tensor rank. Two typical tensor decompositions are the Tucker
decomposition and PARAFAC decomposition. Representative
methods based on Tucker decomposition include the low-
rank tensor approximation (LRTA) [49], the multidimensional
filtering [50], the Tucker rank and TV minimization [51], and
the nonlocal-based low-Tucker-rank approximation [52]. Rep-
resentative methods based on the PARAFAC decomposition
include the PARAFAC decomposition [53] and the rank-1
tensor decomposition [54].

To highlight the contributions and the innovations of the
proposed method, we give a detailed review of related works
on an HSI-mixed noise removal based on low-rank modeling.

A. Related Work

Based on the success of low-rank matrix recovery (LRMR),
Zhang et al. [43] developed a mixed noise removal method
for HSI. This method first divides the HSI into full-band 3-D
cubes, then unfolds each 3-D cube to a matrix by vectorizing
each band as a column, and finally removes the mixed noise
by promoting the low rankness of the unfolding matrix and
the sparsity of the non-Gaussian noise. To better promote the
low rankness, Xie et al. [44] applied the weighted Schatten
p-norm to relax the rank of the unfolding matrix. Since
different bands are usually degraded by noises with different
intensity in real HSIs, He et al. [45] proposed a patchwise
low-rank matrix approximation-based method, which designs a
noise-adjusted iteration framework based on the noise intensity
of each band to remove the mixed noises. Not limited to
exploring the priors of the target HSIs, several works utilize
flexible distributions to model the noise. For example, under
the framework of LRMF, Cao et al. [47] employed a mixture
of independent and identically distributed (i.i.d.) exponential
power distributions assumption and Chen et al. [55] utilized
non-i.i.d. mixture of Gaussian noise assumption to model the
noises, respectively. However, the unfolding operator, involved
in the above-mentioned matrix-based methods, will destroy
the spatial information of HSIs, thus making these methods
difficult to preserve the intrinsic structure of the target HSI.
As HSIs can be regarded as three-way tensors, the tensor
low-rankness characterization for HSIs is expected to explore
the global correlation and preserve the intrinsic structure
information.

The recent tensor tubal rank, defined based on the ten-
sor singular value decomposition (t-SVD), obtains promis-
ing results in LRTA, such as tensor completion [56], [57]
and tensor robust principal component analysis (TRPCA)
[58], [59]. TRPCA has shown its effectiveness to remove the
sparse noise, while it is incapable of removing the Gaussian
noise. To tackle the mixed noise in HSIs, Fan et al. [60]
proposed an HSI mixed noise removal model based on low-
tubal-rank tensor recovery (LRTR), which decomposes the
noisy HSI into three parts, i.e., a low-tubal-rank part (the clean
HSI), a Gaussian noise part, and a sparse noise part. However,
the t-SVD and the induced tubal rank lack of flexibility for
handling different correlations along different modes of HSIs.
For instance, when setting the band of an HSI to be the frontal

Fig. 1. Illustration of the mode-k t-SVD of X for k = 1, 2, 3.

slice of a three-way tensor, the t-SVD characterizes its spatial
correlations via SVDs, while describes its spectral correlation
by the embedded circular convolution. This inflexible HSI
characterization usually results in suboptimal denoising per-
formance. Naturally, treating each mode flexibly is expected
to remedy this defect.

B. Contributions

This article mainly has three contributions.
First, we propose a novel tensor decomposition by gener-

alizing the t-SVD to the mode-k t-SVD, which achieves a
more flexible and accurate HSI low-rankness characterization.
Mathematically, the mode-k t-SVD factorizes a three-way
tensor X ∈ R

n1×n2×n3 tensors as

X = Uk ∗k Sk ∗k VTk
k , k = 1, 2, 3

where ∗k is the mode-k t-product, Uk and Vk are the mode-k
orthogonal tensors, (·)Tk is the mode-k conjugate transposition,
and Sk ∈ R

n1×n2×n3 is the mode-k diagonal tensor, the tensor
whose mode-k slices are diagonal matrices (see details in
Section III-A); see Fig. 1 for an illustration for the mode-k
t-SVD scheme. Based on this novel decomposition, we pro-
pose a new tensor rank, termed tensor fibered rank, which
is defined as a vector whose kth element is the number of
nonzero mode-k fibers of Sk . Taking the HSI Washington DC
Mall, shown in Fig. 2 as an example, we observe that slices
along all modes are approximately low rank, which suggests
that both spatial and spectral correlations can be evidently
observed both quantitatively and visually. And such correla-
tions can be exactly shown by the proposed fibered rank.

Second, we incorporate the proposed low-fibered-rank prior
into a novel HSI denoising model, which can estimate the
underlying HSI from its observation degraded by a mix of
various noises. Mathematically, the proposed model is formu-
lated as

min
X ,N ,S

rankf(X )+ λ1�N�2F + λ2�S�1
s.t. Y = X +N + S

where X is the underlying HSI, Y is the observed HSI, N
is the Gaussian noise, S is the sparse noise, and λ1 and
λ2 are regularization parameters. Since directly minimizing
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Fig. 2. Illustration of low-rank (tensor fibered rank) priors of an HSI. (a) HSI Washington DC Mall of size 256 × 256 × 150. (b) Generated tensor X̄k by
performing the DFT along each mode-k fiber of X . (c) Singular value curves from the second to the end mode-k slices of X̄k . (d) Singular value curves of
the first mode-k slices of X̄k .

the proposed fibered rank is NP-hard, we introduce a three-
directional tensor nuclear norm (3DTNN) as its convex relax-
ation to provide an efficient numerical solution. In addition,
we also suggest a three-directional log-based tensor nuclear
norm (3DLogTNN) as its nonconvex relaxation to better
promote the low rankness of the solution.

Third, we design an efficient alternating direction method of
multipliers (ADMMs)-based algorithm [61], [62] to solve the
proposed 3DTNN and 3DLogTNN-based models. Extensive
experiments carried out on simulated and real-world noisy
HSIs demonstrate the efficiency of the proposed algorithm and
the superiority of the proposed method over the related state-
of-the-art ones.

The significant feature of the proposed method is the flexible
and accurate HSI low-rankness characterization. Since the
unfolding operation is not involved, the proposed method can
better preserve the intrinsic structure than the low-matrix-rank-
based methods. In addition, the proposed method achieves a
better denoising performance than the low-tubal-rank-based
methods, since it can directly and fully exploit both the spatial
and the spectral correlations.

This article is an extension of the material published
in [63]. The new materials are the following: 1) theoretical
results of the tensor fibered rank and its related concepts
are provided for better understanding, and a new nonconvex
relaxation 3DLogTNN is introduced to show the tensor fibered
rank more accurately and treat singular values differently;
2) a 3DLogTNN-based HSI mixed noise removal model
is proposed with an ADMM-based solver, especially each
subproblem within ADMM is proven to have a closed-form
solution; and 3) extensive experimental results demonstrate
that the 3DLogTNN-based model significantly outperforms the
compared ones, including the 3DTNN-based model.

C. Organization

The outline of this article is as follows. Section II presents
some notations. Section III generalizes some definitions,
designs the mode-k t-SVD, and defines the fibered rank.

Section IV proposes the 3DTNN-based HSI denoising model
and the 3DLogTNN-based HSI denoising model with an
ADMM-based solver. Section V evaluates the performance of
the proposed method. Section VI concludes this article.

II. NOTATIONS

We denote vectors as bold lowercase letters (e.g., x), matri-
ces as uppercase letters (e.g., X), and tensors as calligraphic
letters (e.g., X ). For a three-way tensor X ∈ R

n1×n2×n3 , with
the MATLAB notation, we denote its (i, j, s)th element as
X (i, j, s), its (i, j)th mode-1, mode-2, and mode-3 fibers as
X (:, i, j), X (i, :, j), and X (i, j, :), respectively. For the sake
of clarity, we use X (i)

1 ∈ R
n2×n3 , X (i)

2 ∈ R
n3×n1 , and X (i)

3 ∈
R

n1×n2 to denote the i th mode-1 (horizontal), mode-2 (lateral),
and mode-3 (frontal) slices of X , respectively. The Frobenius
norm of X is defined as �X�F := (

�
i, j,s |X (i, j, s)|2)1/2.

The �1 norm of X is defined as �X�1 := (
�

i, j,s |X (i, j, s)|).
We use X̄k to denote the tensor generated by performing
Discrete Fourier Transformation (DFT) along each mode-k
fibers of X , i.e., X̄k = fft(X , [], k). Naturally, we can
compute X via X = ifft(X̄k, [], k).

The mode-k unfolding of an N-way tensor X ∈
R

n1×n2×···×nN is denoted as X(k) ∈ R
nk×∏

i �=k ni , whose
(ik, j)th element maps to the (i1, i2, · · · , iN )th element of
X , where j = 1 + �N

s=1,s �=k(is − 1)Js with Js =�s−1
m=1,m �=k nm . The unfolding operator and its inversion are

denoted as “unfold” and “fold,” respectively, i.e., X(k) =
unfold(X , k) and X = fold(X(k), k).

III. MODE-k t-SVD AND FIBERED RANK

In this section, we generalize related definitions, design the
mode-k t-SVD, and define tensor fibered rank.

A. Generalized Definitions

To introduce our results, we generalize five block-based
operations and some definitions [56] related to this article.
Let X ∈ R

n1×n2×n3 be a three-way tensor, and the mode-k
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block circulation operation is defined as

bcirc(X , k) :=

⎛
⎜⎜⎜⎜⎝

X (1)
k X (nk )

k . . . X (2)
k

X (2)
k X (1)

k . . . X (3)
k

...
...

. . .
...

X (nk )
k X (nk−1)

k . . . X (1)
k

⎞
⎟⎟⎟⎟⎠

where X (i)
k denotes the i th mode-k slice of X .

The mode-k block diagonalization operation and its inverse
operation are defined as

bdiag(X , k) :=

⎛
⎜⎜⎜⎜⎝

X (1)
k

X (2)
k

. . .

X (nk )
k

⎞
⎟⎟⎟⎟⎠

bdfold(bdiag(X , k), k) := X .

The mode-k block vectorization operation and its inverse
operation are defined as

bvec(X , k) :=

⎛
⎜⎜⎜⎜⎝

X (1)
k

X (2)
k
...

X (nk )
k

⎞
⎟⎟⎟⎟⎠ , bvfold(bvec(X , k), k) := X .

Definition 1 (Mode-k t-Product): The mode-1 t-product
between X ∈ R

n1×n2×n3 and Y ∈ R
n1×n3×n4 is defined as

X ∗1Y :=bvfold(bcirc(X , 1)bvec(Y, 1), 1)∈R
n1×n2×n4 .

The mode-2 t-product between X ∈ R
n1×n2×n3 and Y ∈

R
n4×n2×n1 is defined as

X ∗2Y :=bvfold(bcirc(X , 2)bvec(Y, 2), 2)∈R
n4×n2×n3 .

The mode-3 t-product between X ∈ R
n1×n2×n3 and Y ∈

R
n2×n4×n3 is defined as

X ∗3Y :=bvfold(bcirc(X , 3)bvec(Y, 3), 3)∈R
n1×n4×n3 .

Indeed, the mode-k t-product can be regarded as a matrix–
matrix multiplication, except that the multiplication operation
between scalars is replaced by circular convolution between
the mode-k fibers, that is,

F = X ∗1 Y ⇔ F(:, j, s) =
n3	

t=1

X (:, j, t) � Y(:, t, s)

F = X ∗2 Y ⇔ F(i, :, s) =
n1	

t=1

X (t, :, s) � Y(i, :, t)

F = X ∗3 Y ⇔ F(i, j, :) =
n2	

t=1

X (i, t, :) � Y(t, j, :)

where � denotes the circular convolution between two fibers.
Note that the circular convolution in the spatial domain is
equivalent to the multiplication in the Fourier domain, and
the mode-k t-product between two tensors F = X ∗k Y is
equivalent to

F̄k = bdfold(bdiag(X̄k, k)bdiag(Ȳk , k), k).

Fig. 3. Illustration of the mode-k permutation of an n1 × n2 × n3 tensor.

Definition 2 (Mode-k Conjugate Transpose): Assuming
that X ∈ R

n1×n2×n3 is a three-way tensor. the mode-k
conjugate transpose of it, denote as X Tk , is the tensor
obtained by conjugate transposing each of the mode-k slices
and then reversing the order of transposed mode-k slices
2 through nk .

Definition 3 (Mode-k Identity Tensor): The mode-k iden-
tity tensor Ik ∈ R

n1×n2×n3 is the tensor whose first mode-
k slice is an identity matrix and other mode-k slices are all
zeros.

Definition 4: [Mode-k Orthogonal Tensor] A three-way
tensor Q is mode-k orthogonal if

Q ∗k QTk = QTk ∗k Q = Ik .

Definition 5 (Mode-k Diagonal Tensor): A three-way ten-
sor S is mode-k diagonal if each of its mode-k slices is a
diagonal matrix.

Definition 6 (Tensor Mode-k Permutation): Assuming that
X ∈ R

n1×n2×n3 is a three-way tensor. The mode-k permutation
of X , denoted as �X k , is defined as the tensor whose i th
mode-3 slice is the i th mode-k slice of X ., i.e., X (i, j, s) =
�X 1( j, s, i) = �X 2(s, i, j) = �X 3(i, j, s). We define the corre-

sponding operation as �X k := permute(X , k) and its inverse
operation as X := ipermute( �X k , k).

Fig. 3 shows the mode-k permutation of an n1 × n2 × n3
tensor. With the above-mentioned definitions, we introduce
Theorem 1 for the design of the mode-k t-SVD.

Theorem 1: Assuming that X and Y are two three-way
tensors. Then, the properties hold as follows.

1) bcirc( �X k, 3) = bcirc(X , k).
2) bvec( �X k, 3) = bvec(X , k).
3) �X k = bvfold(bvec(X , k), 3).

4)
−−−→
(X Tk )k = ( �X k)T3 .

5) X is the mode-k identity tensor if and only if �X k is the
mode-3 identity tensor.

6) X is the mode-k diagonal tensor if and only if �X k is
the mode-3 diagonal tensor.

7) F = X ∗k Y if and only if �Fk = �X k ∗3 �Yk .
8) X is the mode-k orthogonal tensor if and only if �X k is

the mode-3 orthogonal tensor.

Proof: The first six properties can be directly derived by
the above-mentioned definitions. Now, we prove the last two
properties.

For property (7), let F = X ∗k Y , that is

F = bvfold(bcirc(X , k)bvec(Y, k), k)

= bvfold(bcirc( �X k , 3)bvec( �Yk, 3), k).
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Algorithm 1 Mode-k t-SVD for Three-Way Tensors

Input: X ∈ R
n1×n2×n3 and k.

1: X̄k ← fft(X , [], k).
2: for i = 1 to nk do
3: [U, S, V ] = svd



(X̄k)

(i)
k

�
.

4: (Ūk)
(i)
k ← U ; (S̄k)

(i)
k ← S; (V̄k)

(i)
k ← V .

5: end for
6: Uk ← ifft(Ūk, [], k).
7: Sk ← ifft(S̄k, [], k).
8: Vk ← ifft(V̄k, [], k).

Output: Uk , Sk , Vk .

Thus, bvec(F , k) = bcirc( �X k, 3)bvec( �Yk, 3), and with
property (4), we can obtain

�Fk = bvfold(bvec(F , k), 3)

= bvfold(bcirc( �X k, 3)bvec( �Yk , 3), 3)

= �X k ∗3 �Yk .

Conversely, if �Fk = �X k ∗3 �X k , we can obtain F = X ∗k Y .
For property (8), if X is the mode-k orthogonal tensor, that

is,

X ∗k X Tk = X Tk ∗k X = Ik

with property (7), we can obtain

�X k ∗3
−−−→
(X Tk )k = −−−→(X Tk )k ∗3 �X k = −−→(Ik)

k

which can be rewritten as

�X k ∗3 ( �X k)T3 = ( �X k)T3 ∗3 �X k = −−→(Ik)
k .

Note that Ik is the mode-k identity tensor, so
−−→
(Ik)

k is the
mode-3 identity tensor. Thus, �X k is a mode-3 orthogonal
tensor. Conversely, if �X k is the mode-3 orthogonal tensor,
we can obtain that X is a mode-k orthogonal tensor. �

B. Mode-k t-SVD and Fibered Rank

As mentioned in Section I, the t-SVD lacks the flexibility
to handle different correlations along different modes of HSIs,
leading to inadequate characterization for the spectral mode.
To tackle this defect, we design the following mode-k t-SVD.

Theorem 2 (Mode-k t-SVD): A three-way tensor X ∈
R

n1×n2×n3 has the factorization

X = Uk ∗k Sk ∗k VTk
k , k = 1, 2, 3

where Uk and Vk are the mode-k orthogonal tensors and Sk ∈
R

n1×n2×n3 is the mode-k diagonal tensor.
Proof. When k = 3, the mode-3 t-SVD is actually the

t-SVD, according to [58, Definition 2.7], X can be factored
as X = U3 ∗3 S3 ∗3 VT3

3 . Now, we prove the cases of k = 1
and k = 2. For the tensor �X k (k = 1, 2), it can be factored as

�X k = −−→(Uk)
k ∗3
−−→
(Sk)

k ∗3

−−→
(Vk)

k�T3 .

With property (4) in Theorem 1, we obtain that

�X k = −−→(Uk)
k ∗3
−−→
(Sk)

k ∗3
−−−−−→

(Vk)

Tk
�k .

TABLE I

RANK ESTIMATION OF TWO HSIs

Let

−−→
(Fk)

k = −−→(Uk)
k ∗3
−−→
(Sk)

k

then

�X k = −−→(Fk)
k ∗3
−−−−−→
((Vk)

Tk )k .

With property (7) in Theorem 1, we obtain that

X = Fk ∗k VTk
k and Fk = Uk ∗k Sk .

Thus, X = Uk ∗k Sk ∗k VTk
k (k = 1, 2). Note that

−−→
(Uk)

k

and
−−→
(Vk)

k are mode-3 orthogonal tensors and
−−→
(Sk)

k is the
mode-3 diagonal tensor, according to properties (6) and (8)
in Theorem 1, and Uk and Vk are mode-k orthogonal tensors
and Sk is the mode-k diagonal tensor. �

The mode-k t-SVD can be efficiently obtained by com-
puting a series of matrix SVDs in the Fourier domain, see
Algorithm 1. Now, we give the definition of the corresponding
tensor mode-k fibered rank and mode-k multirank.

Definition 7 (Mode-k Tensor Fibered Rank and Multirank):
Let X ∈ R

n1×n2×n3 be a three-way tensor. The mode-k fibered
rank of X , denote as rankfk (X ), is defined as the number
of nonzero mode-k fibers of Sk , where Sk comes from the
mode-k t-SVD of X : X = Uk ∗k Sk ∗k VTk

k . The tensor
mode-k multirank of X is a vector rankmk (X ) ∈ R

nk , whose
i th element is the rank of i th mode-k slice of X̄k , where
X̄k = fft(X , [], k). That is, rankfk (X ) = max



rankmk (X )

�
.

Actually, the tensor tubal rank/multirank is the tensor mode-
3 fibered rank/multirank. We define the following tensor
fibered rank to combine all mode-k (k = 1, 2, 3) fibered rank.

Definition 8 (Tensor Fibered Rank): The fibered rank of a
three-way tensor X ∈ R

n1×n2×n3 , denoted as rankf(X ),
is defined as a vector, whose kth element is the mode-k tensor
fibered rank.

Table I gives the rank estimation1 of two HSIs, where
the bands of HSIs correspond to the frontal slices of three-
way tensors. As observed, the rank of the mode-3 unfolding
matrix is much lower than the size of the third mode (spectral
mode), which implies a strong correlation along the third
mode. According to the tensor fibered rank, such a strong
correlation is inadequately shown by the third element (the
tubal rank), which can be exactly shown by the other two
elements. It demonstrates that compared with the tensor tubal
rank, the novel tensor fibered rank achieves a flexible and
simultaneous representation for the correlations along different
modes.

1The rank is approximated by the numbers of the singular values which are
larger than 0.01 of the largest one.
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IV. PROPOSED HSI DENOISING MODELS AND

SOLVING ALGORITHM

A. Proposed HSI Denoising Models

Considering an observation degraded by a mix of various
noises, the proposed HSI denoising model based on low-
fibered-rank prior is formulated as

min
X ,N ,S

rankf(X )+ λ1�N�2F + λ2�S�1
s.t. Y = X +N + S (1)

where X ∈ R
n1×n2×n3 is the underlying HSI, Y is the observed

HSI, N is the Gaussian noise, S is the sparse noise, and λ1
and λ2 are regularization parameters.

As directly minimizing the tensor fibered rank is NP-hard,
we define the following 3DTNN as the convex relaxation of
the proposed fibered rank.

Definition 9 (Mode-k TNN): The mode-k tensor nuclear
norm of a tensor X ∈ R

n1×n2×n3 , denoted as �X�TNNk ,
is defined as the sum of singular values of all the mode-k
slices of X̄k , that is,

�X�TNNk :=
nk	

i=1

��(X̄k)
(i)
k

��∗.
Definition 10 (3DTNN): The 3DTNN of a tensor X ∈

R
n1×n2×n3 , denoted as �X�3DTNN, is defined as

�X�3DTNN :=
3	

k=1

αk�X�TNNk

where αk ≥ 0 (k = 1, 2, 3) and
�3

k=1 αk = 1.
With the mode-k permutational operation, we can obtain
�X�TNNk = � �X k�TNN3. It implies that 3DTNN numerically
equals the triple-tubal nuclear norm proposed in [64].

As the convex relaxation of the fibered rank, 3DTNN
can provide an efficient numerical solution. However, it has
two shortcomings. First, it measures the �1-norm of nonzero
singular values, which is not a good approximation to the
fibered rank. Second, it treats each singular value equally, and
thus, may not well preserve the major information. This is
because the larger singular values usually correspond to the
major information, such as contour, sharp edges, and smooth
zones, thus should be shrinking less than small singular values
[35], [65]–[69]. Therefore, we suggest a 3DLogTNN as a
nonconvex relaxation of the proposed fibered rank to overcome
the above-mentioned two shortcomings.

Definition 11 (Mode-k LogTNN): The mode-k log-based
tensor nuclear norm of a tensor X ∈ R

n1×n2×n3 is defined
as

LogTNNk(X , ε) :=
nk	

i=1

LogMNN


(X̄k)

(i)
k , ε

�

where (X̄k)
(i)
k denotes the i th mode-k slice of X̄k with X̄k =

fft(X , [], k) and

LogMNN(X, ε) :=
m	

i=1

log(σi (X)+ ε).

Fig. 4. Comparison of the �0-norm, the �1-norm, and the log-function for
scalars.

Here σi (X) is the i th singular values of X and ε > 0 is a
constant.

Definition 12 (3DLogTNN): The 3DLogTNN of a tensor
X ∈ R

n1×n2×n3 is defined as

3DLogTNN(X , ε) :=
3	

k=1

αkLogTNNk(X , ε)

where αk ≥ 0 (k = 1, 2, 3) and
�3

k=1 αk = 1.
Compared to 3DTNN, 3DLogTNN has two advantages.

First, it is a closer approximation to the fibered rank than
3DTNN. Fig. 4 shows a comparison of the �0-norm, the
�1-norm, and the log-function for scalars. We can see that
the log-function can better approximate the �0-norm than the
�1-norm. Thus as the sum of the log-function of singular
values, 3DLogTNN can better approximate to the fibered rank
than 3DTNN. Second, the tensor singular value thresholding
(t-SVT) induced by 3DLogTNN treats singular values differ-
ently, by shrinking less the larger ones to keep the major
information while shrinking more the smaller ones to sup-
press noise (detailed theoretical proof will be provided in
Section IV-B).

With the definitions of 3DTNN and 3DLogTNN,
the proposed 3DTNN-based HSI denoising model and
3DLogTNN-based HSI denoising model are commonly
formulated as

min
X ,N ,S

3	
k=1

αkFk(X )+ λ1�N�2F + λ2�S�1
s.t. Y = X +N + S (2)

where the function Fk(X ) are set to be �X�TNNk and
LogTNNk(X , ε) in 3DTNN-based HSI denoising model and
3DLogTNN-based HSI denoising model, respectively.

B. Proposed ADMM-Based Solving Algorithm

We use ADMM to solve (2). We introduce three auxiliary
variables Zk (k = 1, 2, 3) and reformulate (2) as

min
X ,N ,S

3	
k=1

αkFk(Zk)+ λ1�N�2F + λ2�S�1

s.t.



Y − (X +N + S) = 0

X − Zk = 0, k = 1, 2, 3.
(3)
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The augmented Lagrangian function of (3) is

Lμk ,β(Zk,X ,N ,S,Mk ,P)

=
3	

k=1

�
αkFk(Zk)+�X−Zk,Mk�+μk

2
�X−Zk�2F

�
+λ1�N�2F

+ λ2�S�1 + �Y − (X +N + S),P�
+ β

2
�Y − (X +N + S)�2F (4)

where Mk (k = 1, 2, 3) and P are the Lagrange multipliers;
μk (k = 1, 2, 3) and β are the penalty parameters. Within
the framework of ADMM, Zk , X , N , S, Mk , and P are
alternately updated as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z p+1
k = arg minZk Lμk ,β


Zk,X p,N p,S p,Mp
k ,P p

�
X p+1 = arg minX Lμk ,β


Z p+1
k ,X ,N p,S p,Mp

k ,P p
�

N p+1=arg minN Lμk ,β


Z p+1
k ,X p+1,N ,S p,Mp

k ,P p
�

S p+1=arg minS Lμk ,β


Z p+1
k ,X p+1,N p+1,S,Mp

k ,P p
�

Mp+1
k =Mp

k + μk

X p+1 − Z p+1

k

�
P p+1 = P p + β(Y − X p+1 −N p+1 − S p+1)

.

(5)

The Zk (k = 1, 2, 3) subproblems are

Z p+1
k =arg min

Zk

αkFk(Zk)+ μk

2

����X p − Zk +Mp
k

μk

����
2

F
. (6)

To solve (6), we introduce the following t-SVT.
Theorem 3 (Mode-k TNN-Based t-SVT): Assuming that

Z ∈ R
n1×n2×n3 is a three-way tensor, a minimizer to

arg min
Z

τ�Z�TNNk +
1

2
�Z − Y�2F

is given by the mode-k TNN-based t-SVT

Z = Dτ
tnn(Y, k) := U ∗k Sτ

tnn ∗k VTk

where Y = U ∗k S ∗k VTk , (S̄k)
τ
tnn = max(S̄k − τ, 0), S̄k =

fft(S, [], k), and Sτ
tnn = ifft((S̄k)

τ
tnn, [], k).

Theorem 4 (Mode-k LogTNN-Based t-SVT): Assuming
that Z ∈ R

n1×n2×n3 is a three-way tensor, a minimizer to

arg min
Z

τLogTNNk(Z, ε)+ 1

2
�Z − Y�2F

is given by the mode-k LogTNN-based t-SVT

Z = Dτ,ε
lt (Y, k) := U ∗k Sτ,ε

lt ∗k VTk

where Y = U ∗k S ∗k VTk , Sτ,ε
lt = ifft((S̄k)

τ,ε
lt , [], k), and

(S̄k)
τ,ε
lt (i, j, s)=



0, if c2 ≤ 0

sign(S̄k(i, j, s))
�

c1+√c2
2

�
, if c2 > 0

where S̄k = fft(S, [], k), c1 = |(S̄k(i, j, s))| − ε, and c2 =
c2

1 − 4(τ − ε|(S̄k(i, j, s))|).
Theorem 4 can be easily proved by [39, Th. 2]. Especially,

according to Theorem 5, we can easily obtain that the mode-k
LogTNN-based t-SVT can make larger singular values shrunk
less than small singular values. This implies that 3DlogTNN
is able to better preserve the major information of the target
HSI.

Algorithm 2 ADMM Solver for the 3DTNN-Based and
3DLogTNN-Based HSI Denosing Models
Input: The noisy HSI Y , parameters α = (α1, α2, α3), μ =

(μ1, μ2, μ3), λ1, λ2, β and ρ = 1.2.
Initialization: p = 0, X 0 = 0, N 0 = 0, S0 = 0, Z0

k = 0,
M0

k = 0, and P0 = 0.
1: while not converged do
2: Update Z p+1

k via (7) or (8), k = 1, 2, 3.
3: Update X p+1 via (10).
4: Update N p+1 via (12).
5: Update S p+1 via (14).
6: Update Mp+1

k and P p+1 via (5).
7: Let μ = ρμ; β = ρβ; p = p + 1.
8: Check the convergence condition:

�X (p+1) − X (p)�F/�X (p)�F < 10−4.

9: end while
Output: The restored HSI X .

Theorem 5: Defining the function

f (x) = x − c1(x)+√c2(x)

2

where c1(x) = x−ε, c2(x) = c1(x)2−4(τ−εx), and ε > 0 and
τ > 0 are constants. Then, f (x) is a monotonically decreasing
function when x ∈ [0,+∞).

Proof. Simplifying f (x):

f (x) = x − c1(x)+√c2(x)

2

= x − (x − ε)+�(x − ε)2 − 4(τ − εx)

2

= (x + ε)−�(x + ε)2 − 4τ

2
.

The derivative of f (x) is

f �(x) = 1

2

�
1− x + ε�

(x + ε)2 − 4τ

�
< 0, when x ≥ 0.

Thus, f (x) is a monotonically decreasing function.
For the proposed 3DTNN-based HSI model, by using

Theorem 3, Zk (k = 1, 2, 3) subproblems can be solved as

Z p+1
k = D

αk
μk
tnn

�
X p +Mp

k

μk
, k

�
. (7)

For the proposed 3DLogTNN-based HSI model, by using
Theorem 4, Zk (k = 1, 2, 3) subproblems can be solved as

Z p+1
k = D

αk
μk

,ε

lt

�
X p +Mp

k

μk
, k

�
. (8)

The complexity of computing Zk (k = 1, 2, 3), in both
3DTNN-based solver and 3DLogTNN-based solver,
is O
n1n2n3



log(n1n2n3) + �3

i=1min(ni ,ni+1)
��

, where
we define n4 = n1.
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The X subproblem is

X p+1 = arg min
X

3	
k=1

μk

2

����X − Z p+1
k +Mp

k

μk

����
2

F

+ β

2

����Y − (X +N p + S p)+ P p

β

����
2

F
(9)

which has the following closed-form solution:

X p+1=
�3

k=1μk

�
Z p+1

k −Mp
k

μk

�
+β

�
Y−N p−S p+ P p

β

�
�3

k=1 μk + β
.

(10)

The complexity of computing X is O(n1n2n3).
The N subproblem is

N p+1 = arg min
N

λ1�N�2F

+ β

2

����Y − (X p+1 +N + S p)+ P p

β

����
2

F
(11)

which has the following closed-form solution:

N p+1 =
β
�
Y − X p+1 − S p + P p

β

�
2λ1 + β

. (12)

The complexity of computing N is O(n1n2n3).
The S subproblem is

S p+1 = arg min
S

λ2�S�1

+ β

2

����Y − (X p+1 +N p+1 + S)+ P p

β

����
2

F
(13)

which has the following solution:

S p+1 = shrink

�
Y − X p+1 −N p+1 + P p

β
,
λ2

β

�
(14)

where shrink(·, ξ) is the tensor soft thresholding operator with
threshold ξ , that is,

[shrink(X , ξ)]i j s = sgn(xi j s) max(|xi j s | − ξ, 0). (15)

The complexity of computing S is O(n1n2n3).
The computational cost at each iteration of the proposed

algorithms are O
n1n2n3


log(n1n2n3)+�3

i=1min(ni ,ni+1)
��

,
where we define n4 = n1. The pseudocode of the developed
ADMM-based solving algorithm is described in Algorithm 2.

V. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of the proposed
3DTNN and 3DLogTNN-based HSI denoising models on
both simulated and real-world HSIs. All the testing HSIs are
normalized to [0,1] band by band. The comparison methods
are listed below.

1) TRPCA+BM4D [36], [58] uses TRPCA to filter sparse
noise and then performs BM4D to remove Gaussian
noise.

2) LRMR [43] separates the target HSI as a series of full-
band cubes, unfolds each full-band cube as a matrix by

TABLE II

PARAMETERS SETTING IN THE PROPOSED 3DTNN-BASED AND
3DLogTNN-Based HSI Denoising Methods

for Simulated Data

vectorizing each band as a column, and then promotes
the low rankness of the unfolding matrix.

3) LRTR [60] formulates the target HSI as a low-tubal-
rank component and minimizes the tensor nuclear norm,
a convex relaxation of the tubal rank, of the target HSI.

4) LRTDTV [29] uses Tucker decomposition to exploit
the global correlation in an HSI and employs SSTV to
describe the piecewise smooth prior along both spatial
and spectral modes.

5) NMoG [55] employs LRMF to promote the low rankness
of the target HSI and uses a non-i.i.d. mixture of
Gaussian noise assumption to model the noise.

Parameters of all methods are set based on authors’
codes or suggestions in their articles. All tests are implemented
on the platform of Windows 10 and MATLAB (R2018b) with
an Intel Core i9-9900K 3.60 GHz and 32 GB RAM.

A. Mixed Noise Removal on Simulated Data

In this section, we adopt two HSIs, i.e., a subimage of
Washington DC Mall data set2 of size 256× 256× 191 and a
subimage of Pavia City Center data set3 of size 200×200×80
as the testing data. We employ the mean of peak signal-to-
noise rate (MPSNR) over all bands, the mean of structural
similarity (MSSIM) over all bands, and the spectral angle
mapping (SAM) to measure the quality of the recovered
results.

Real HSIs are usually degraded by a mix of various noises.
Thus, to simulate real-noise scenarios, we consider different
combinations of Gaussian noise with different standard devia-
tions σ , salt and pepper noise with different intensities υ, and
stripes with different proportions s.

Case 1 i.i.d. Gaussian Noise With Different Intensities +
i.i.d. Salt and Pepper Noise: This case includes three subcases.
All bands are corrupted by i.i.d. Gaussian noise with zero
mean and standard deviation σ = 0.05, 0.10, 0.15. In addition,

2http://lesun.weebly.com/hyperspectral-data-set.html.
3http: // www. ehu. eus / ccwintco / index .php ? title = Hyperspectral_ Remote_

Sensing_Scenes.
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TABLE III

PERFORMANCE COMPARISON OF SEVEN COMPETING METHODS WITH RESPECT TO DIFFERENT NOISE LEVELS

all bands are corrupted by i.i.d. salt and pepper noise with
proportion υ = 0.20.

Case 2 i.i.d. Gaussian Noise + i.i.d. Salt and Pepper Noise
With Different Intensities: This case includes two subcases. All
bands are corrupted by i.i.d. Gaussian noise with zero mean
and standard deviation σ = 0.10. In addition, all bands are
corrupted by i.i.d. salt and pepper noise with proportions υ =
0.10, 0.30.

Case 3 Non-i.i.d. Gaussian Noise With Different Intensi-
ties + i.i.d. Salt and Pepper Noise: This case includes two

subcases. All bands are corrupted by non-i.i.d. Gaussian noise
with zero mean and bandwise standard deviation σ randomly
sampled from uniform distribution U (0.05, 0.15) and U (0.10,
0.20). In addition, all bands are corrupted by i.i.d. salt and
pepper noise with proportion υ = 0.20.

Case 4 Non-i.i.d. Gaussian Noise + Non-i.i.d. Salt and
Pepper Noise + Stripes With Different Proportions: This
case includes two subcases. All bands are corrupted by non-
i.i.d. Gaussian noise with zero mean and bandwise standard
deviation σ randomly sampled from uniform distribution
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Fig. 5. Case 1: standard deviation σ of the Gaussian noise is 0.15 and the proportion υ of the salt and pepper noise is 0.20. (From Top to Bottom) 3-D
visualization of the denoising results for the HSI Washington DC Mall, the denoising results at band 71 of the HSI Washington DC Mall, the 3-D visualization
of the denoising results for the HSI Pavia City Center, and the denoising results at band 80 of the HSI Pavia City Center.

U (0.10, 0.20). All bands are corrupted by non-i.i.d. salt and
pepper noise and bandwise proportion υ randomly sampled
from uniform distribution U (0.10, 0.30). Ten bands from band
131 to 140 of the HSI Washington DC Mall are corrupted by
stripes with proportion s = 10%, 20%.

The proposed models involve the weight α, the regulariza-
tion parameters λ1 and λ2, and a constant ε for 3DLogTNN;
the ADMM solver (5) involves the threshold parameter
τ = α./μ and the penalty parameter β. We adjust these
parameters to achieve the highest PSNR value. In all the tests,
we set the parameter β to 1/mean(τ ) and the other parameters
setting are reported in Table II, where

λ= α1√
max(n2, n3)n1

+ α2√
max(n3, n1)n2

+ α3√
max(n1, n2)n3

.

All parameters setting are referring to their initial value. More
detailed parameter analysis will be discussed in Section V-C.

Table III lists the MPSNR, MSSIM, SAM, and average
running time (in seconds) of seven competing methods on
HSIs Washington DC Mall and Pavia City Center. The best
and the second-best results are highlighted by bold and
underline, respectively. We observe that the 3DLogTNN-based
method has an overall better performance than the compared
methods for both data sets and all noise cases. Although
in rare cases, the 3DLogTNN-based method obtains slightly
lower MPSNR than NMoG, it outperforms NMoG in terms of
MSSIM and SAM. The proposed 3DTNN-based method has a
better overall performance than the TRPCA+BM4D, LRMR,
LRTR, and LRTDTV. And in most cases, the 3DTNN-based
method underperforms NMoG in term of MPSNR, while
outperforming NMoG in term of SAM. Although the proposed
methods are not the fastest ones, their running times are
acceptable, considering that the proposed methods achieve
much better results.

We further visually compare the performance of seven
competing methods. For cases 1–3, we select two noise
settings and display the denoising results of the testing HSIs in
Figs. 5 and 6, respectively. As observed, the proposed meth-
ods produce visually superior results than the compared meth-
ods. Specifically, the proposed methods are capable of better
removing the Gaussian noise and salt and pepper noise while
finely preserving the structure of the underlying HSIs, while
the results obtained by LRMR, LRTR, and NMoG remain a
small amount of noise. The TRPCA+BM4D and LRTDTV
can perform comparatively better in noise removing, but their
results contain some evident blurry area, leading to some
details missing. Especially, the proposed 3DLogTNN-based
method is superior to the 3DTNN-based method, in the
recovery of both shape structure and texture information.
The main reason is that 3DLogTNN can better approximate
the tensor fibered rank than 3DTNN.

For case 4, it mainly tests the performance for stripes
removal. Fig. 7 shows the denoising results at band 131.
As observed, the proposed 3DLogTNN-based HSI denoising
method is capable of better removing the unexpected stripes
while finely preserving the details of the underlying HSI, while
the results obtained by LRTR and the proposed 3DTNN-based
method (s = 20%) contain a small number of stripes. The
TRPCA+BM4D and LRTDTV are able to remove all noises
better, but leading to some details missing. The LRMR and
NMoG can perform better in stripes removal, but their results
remain a small amount of other noise.

B. Mixed Noise Removal on Real Data

In this section, we adopt two HSIs, i.e., a subimage of
Indian Pines data set4 of size 128×128×220 and a subimage

4https://engineering.purdue.edu/ biehl/MultiSpec/hyperspectral.html.
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Fig. 6. Case 3: standard deviation σ of the Gaussian noise in each band follows U (0.10, 0.20) and the proportion υ of the salt and pepper noise is 0.20.
(From Top to Bottom) 3-D visualization of the denoising results for the HSI Washington DC Mall, the denoising results at band 71 of the HSI Washington
DC Mall, the 3-D visualization of the denoising results for the HSI Pavia City Center, and the denoising results at band 80 of the HSI Pavia City Center.

Fig. 7. Case 4: denoising results at band 131 of the HSI Washington DC Mall. The standard deviation σ of the Gaussian noise in each band follows U (0.05,
0.15), the proportion υ of the salt and pepper noise in each band follows U (0.10, 0.30), and the percent s of the stripe noise are 10% and 20%, respectively.

of Australian data set5 of size 200× 200× 150 as the testing
data. Especially, the HSI Indian Pines mainly contains the
Gaussian noise and the sparse noise and the HSI Australian
mainly contains the stripe noise. We adjust the parameters to
achieve the best visual result, and the parameter setting are
reported in Table IV.

Fig. 8 shows the visual results and the corresponding verti-
cal mean profiles of band 103 in HSI Indian Pines and band 50
in HSI Australian. We observe that the observed images
are affected by heavy noise, leading to rapid fluctuations
in the vertical mean profiles. The proposed 3DTNN-based
and 3DLogTNN-based methods are able to produce superior
results than the compared ones. Especially, the proposed
methods are capable of better removing the mixed noise,
only retaining a small number of inconspicuous stripes on
Australian, and the corresponding mean profiles reduce fluc-
tuations caused by noises and follow the basic trend of

5http://remote-sensing.nci.org.au/u39/public/html/index.shtml.

TABLE IV

PARAMETERS SETTING IN THE PROPOSED 3DTNN-BASED AND
3DLOGTNN-BASED HSI DENOISING METHODS FOR REAL DATA

the observed profiles. In comparison, the BM4D+TRPCA,
LRTR, and LRTDTV produce mean profiles deviating from
the basic trend of the observed profile on Indian Pines, and
their results on Australian contain obvious noises, resulting
in rapid fluctuations in corresponding mean profiles. LRMR
and NMoG perform comparatively better on HSI Indian Pines,
but their results on HSI Australian contain a large number of
noises, and the mean profiles of them are still rapid fluctuations
such as the observed one.
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Fig. 8. Denoising results of the real HSIs Indian Pines and Australian. The top two rows are the visual results and the vertical mean profiles of band 103 in
Indian Pines, respectively. The bottom two rows are the visual results and the vertical mean profiles of band 50 in Australian, respectively.

Fig. 9. PSNR values with respect to different values of θ (controls α).

C. Discussions

1) Parameter Analysis: We analyze the robustness of the
parameters involved in the proposed method on HSIs Wash-
ington DC Mall and Pavia City Center, i.e., the weight α,
the regularization parameters λ1 and λ2, the threshold para-
meter τ = α./μ, the penalty parameter β, and a constant ε
in 3DLogTNN. The standard deviation σ of Gaussian noise is
0.10 and the proportion υ of salt and pepper noise is 0.20.

The weight α controls the weight of the correlation along
each mode of HSIs. Since the correlation along the spectral
mode of HSIs should be much stronger than those along spatial
mode, we empirically choose the weights α as (1, 1, θ)/(2+θ),
where 0 ≤ θ ≤ 1 is a balance parameter. The robustness
analysis of θ is shown in Fig. 9. As observed, when θ ≤ 0.1,
the proposed methods achieve nearly identical PSNR values.
Especially, when θ = 0, i.e., α = (1/2, 1/2, 0), the PSNR
value is about 0.1 dB lower than the best results.

The regularization parameter λ1 controls the weight of
Gaussian noise term, which is set to ι/σ . The robustness
analysis of ι is shown in Fig. 10. For the 3DTNN-based
method, we observe that its performance is sensitive to ι.
Especially, the highest PSNR is achieved at ι = 0.002 for the

Fig. 10. PSNR values with respect to different values of ι (controls λ1).

HSI Washington DC Mall and ι = 0.004 for the HSI Pavia
City Center. For the 3DLogTNN-based method, the PSNR
curves are stable for ι ≥ 0.00005. Especially, we test the case
of very large ι (ι = 10000), in which case the Gaussian noise
term �N�2F tends to 0, i.e., the proposed model degenerates
to the TRPCA model

min
X ,S

rankf(X )+ λ2�S�1, s.t. Y = X + S.

It can be observed from Fig. 10 that in this case, the perfor-
mance of the 3DTNN-based method is greatly degraded, while
that of the 3DLogTNN-based method is only slightly affected.

The regularization parameter λ2 controls the weight of
sparse noise term. Defining

λ= α1√
max(n2, n3)n1

+ α2√
max(n3, n1)n2

+ α3√
max(n1, n2)n3

we set λ2 to �λ. The robustness analysis of � is
shown in Fig. 11. As observed, both the 3DTNN and the
3DLogTNN-based methods are sensitive to � . Specially,
the 3DTNN-based method obtains the highest PSNR value
when � = 1 and the 3DLogTNN-based method achieves the
highest PSNR value when � = 0.011.
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Fig. 11. PSNR values with respect to different values of � (controls λ2).

Fig. 12. PSNR values with respect to different values of ω (controls τ ).

The threshold parameter τ and the penalty parameter β
are used in the ADMM solver. The parameter τ is set to
ω × (1, 1, 1) and the parameter β is set to 1/mean(τ ). The
robustness analysis of ω is shown in Fig. 12. We observe that
small values of τ lead to poor results. The main reason is that
too little shrinkage of singular values results in insufficient
noise removal. Considering that too large shrinkage of singular
values result in detail missing, ω should be selected from a
moderate range.

The constant ε is involved in 3DLogTNN. The robustness
analysis of ε is presented in Fig. 13. As observed, too
large or too small ε output unfavorable results, while the
moderate values obtain the best results. Under the guidance
of this observation, the parameter ε is set to 60 in the tests on
the HSI Washington DC Mall and set to 80 in the tests on the
HSI Pavia City Center.

2) Convergence Analysis: We analyze the convergence of
the proposed ADMM-based algorithm on the testing HSIs
Washington DC Mall and Pavia City Center. The standard
deviation σ of Gaussian noise is set to 0.10. The proportion
of salt and pepper noise is set to 0.20.

For the proposed 3DTNN-based method, since the objec-
tive function is a convex function, the convergence of the
developed algorithm within the ADMM framework is guar-
anteed theoretically. To illustrate the convergence numeri-
cally, in Fig. 14, we display the RelCha, i.e., the relative
change of two successive reconstructed tensors, with respect
to the iteration. From Fig. 14(a), we observe that as the
number of iterations increases, the RelCha values obtained
by the 3DTNN-based method gradually tend to zero, which
clearly justifies the numerical convergence of the proposed
3DTNN-based method.

For the 3DLogTNN-based method, unfortunately, the the-
oretical convergence of the ADMM for a general nonconvex
problem is still an open problem. Instead, we give an empirical
analysis of the convergence. It can be observed from Fig. 14(b)
that the RelCha values obtained by the 3DLogTNN-based

Fig. 13. PSNR values with respect to the iteration for different values of ε.

Fig. 14. RelCha values with respect to the iteration. (a) Result of the 3DTNN-
based method. (b) Result of the 3DLogTNN-based method.

method are monotonically decreasing and rapidly tending to
zeros after 15 iterations, although there is a slight fluctua-
tion in the first 15 iterations. It implies the strong conver-
gence of the 3DLogTNN-based method within the ADMM
framework. Furthermore, we observe from Fig. 14 that the
3DLogTNN-based method converges slightly slower than the
3DTNN-based method on both Washington DC Mall and
Pavia City Center. But considering that the 3DLogTNN-based
method achieves much better denoising results, its convergence
rate is acceptable.

VI. CONCLUSION

In this article, we proposed a novel HSI mixed noise
removal model by generalizing the t-SVD to the mode-k
t-SVD and modeling the HSI as the corresponding low-
fibered-rank component. Noted that the fibered rank min-
imization problem is NP-hard, we introduced a 3DTNN
and a 3DLogTNN as its convex and nonconvex relaxations,
respectively. In particular, we showed that the 3DLogTNN is
a closer approximation to the proposed fibered rank than the
3DTNN and can preserve major information by treating singu-
lar values differently. To solve the proposed model, we devel-
oped an efficient ADMM-based algorithm with empirical
convergence analysis. By comparing with the state-of-the-art
competing methods on low-rank matrix/tensor approximation
and noise modeling, including TRPCA+BM4D [36], [58],
LRMR [43], LRTR [60], LRTDTV [29], and NMoG [55],
extensive experimental results demonstrated that the proposed
method has superiorities of better removing the mixed noise
and finely preserving the inherent structure.
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