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a b s t r a c t

In this paper, we investigate tensor recovery problems within the tensor singular value
decomposition (t-SVD) framework. We propose the partial sum of the tubal nuclear
norm (PSTNN) of a tensor. The PSTNN is a surrogate of the tensor tubal multi-rank. We
build two PSTNN-based minimization models for two typical tensor recovery problems,
i.e., the tensor completion and the tensor principal component analysis. We give two
algorithms based on the alternating direction method of multipliers (ADMM) to solve
proposed PSTNN-based tensor recovery models. Experimental results on the synthetic
data and real-world data reveal the superior of the proposed PSTNN.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The tensor, a multi-dimensional extension of the matrix, is an important data format and has been applied in lots
of real-world applications, for example, the video data recovery [1], the hyperspectral data recovery and fusion [2,3], the
personalized web search [4], and seismic data reconstruction [5]. Among these applications, how to accurately characterize
and rationally utilize the inner structure of these multi-dimensional data is of crucial importance [6].

In the matrix processing, low-rank models can robustly and efficiently handle two-dimensional data of various sources,
and the solutions are generally theoretically guaranteed in many applications [7,8]. However, how to extend the low-rank
definition from matrices to tensors is still an open problem. The most two popular tensor rank definitions in the past
decade are the CANDECOMP/PARAFAC (CP)-rank, which is related to the CANDECOMP/PARAFAC decomposition [9], and
Tucker-rank (or denoted as ‘‘n-rank’’ in [10]), which is corresponding to the Tucker decomposition [11,12].

In this paper, we fix our attention on a newly emerged tensor decomposition paradigm, the tensor singular value
decomposition (t-SVD), and the notion of the tensor rank derived from t-SVD, i.e., the tubal multi-rank. The t-SVD was
been initially proposed in [13,14] and it allows new extensions of familiar matrix analysis to the tensor while avoiding the
loss of information inherent in matricization or flattening of the tensor [15]. The tubal nuclear norm, which is a convex
surrogate of the tubal multi-rank, is utilized to handle the tensor completion problem by Zhang et al. [16] and the tensor
completion from sparsely corrupted observations by Jiang et al. [17].
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The t-SVD is defined based on the tensor–tensor product (t-prod). Owing to its particular structure, the t-prod is
equivalent to the matrix–matrix product after the Fourier transform. Meanwhile, according to the definition, the TNN
is equivalent to the matrix nuclear norm of the block diagonal unfolding of the Fourier transformed tensor (See Eq. (31)
in the Appendix for details). However, in the matrix case, minimizing the nuclear norm would cause some unavoidable
biases [18,19]. For example, the variance of the estimated data would be smaller than the original data when equally shrink
every singular value. Similarly, the estimated results may be lower-rank than the original data. Therefore, following the
research path in [19–21], we consider minimizing the proposed partial sum of the tubal nuclear norm (PSTNN), which
only consists of the small singular values. On the one hand, minimizing the PSTNN would directly shrink the small singular
values without any actions on the large ones, resulting in low tubal multi-rank estimations without rank deficiency
situations. On the other hand, the corresponding minimization problem is easy to optimize with the proposed solver.

The main contributions are the following three aspects. First, we propose a surrogate of the tensor tubal multi-
rank, i.e., the PSTNN. Second, to optimize the PSTNN-based minimization Problem, we extend the partial singular
value thresholding (PSVT) operator, which was primarily proposed in [18], for the matrices in the complex field, and
demonstrate that it is the exact solution to the PSTNN-based minimization problem. Third, we propose two PSTNN-
based models to solve the typical tensor recovery problems, i.e., the tensor completion and the tensor robust principal
component analysis. Afterward, two alternating direction method of multipliers (ADMM) algorithms using the PSVT solver
are developed to optimize two PSTNN based models. Moreover, we conduct experiments on synthetic data and real-world
data. The results illustrate that proposed methods can effectively handle tensor recovery problems.

The organization of this paper is organized as follows. Section 2 presents some preliminaries. In Section 3, we give the
main results. Section 4 reports the experimental results. Finally, in Section 5, some conclusions are drawn.

2. Notation and preliminaries

Before giving the main results, we briefly introduce the basic tensor notations and exhibit the t-SVD algebraic
framework. The notations and definitions in this section are referred to [14–16,22,23].

Throughout this paper, lowercase letters, e.g., x, boldface lowercase letters, e.g., x, boldface upper-case letters, e.g., X,
and boldface calligraphic letters, e.g., X , are respectively used to denote scalars, vectors, matrices, and tensors. The
(i1, i2, . . . , iN )-th element of an N-mode tensor is denoted as xi1 i2···iN . The inner product of two tensors X and Y , of
the same size, is defined as ⟨X ,Y⟩ :=

∑
i1,i2,...,iN

xi1 i2···iN · yi1 i2···iN . Then, the tensor Frobenius norm of X is defined as

∥X∥F :=
√
⟨X ,X ⟩ =

√∑
i1,...,iN

x2i1i2···iN .
We denote the Fourier transform along the third mode of a third-order tensor X ∈ Rn1×n2×n3 as X̂ = fft(X , [], 3).

Meanwhile, the inverse transformation is denoted as X = ifft(X̂ , [], 3). As shown in [23], ∥X∥F = 1
√
n3
∥X̂∥F . To save

space, the definitions related to the t-SVD framework are given in Appendix A.1. We list all the notations in Table 1.

3. Main results

Minimizing the rank surrogate to enhance the low-dimensionality of the underlying target data is an effective way
to recover the multidimensional imaging data, which is naturally in the tensor format, from incomplete or corrupted
observed data. The tubal nuclear norm (TNN) is minimized to enhance the low tubal multi-rank property of the multi-
dimensional visual data for the tensor completion problem in [16,24]. The tensor nuclear norm, which is similar to the TNN
but defined with a factor 1

n3
in [23], is also minimized to promote the low-rankness for handling the RPCA problem [23]

and the outlier-RPCA problem [25].
In this section, the definition of the PSTNN is given at first. Then the PSVT-based solver for the PSTNN-based

minimization problem is presented. Subsequently, we propose the PSTNN-based tensor completion model and Tensor
RPCA model and their corresponding algorithms, respectively.

3.1. Partial sum of the tubal nuclear norm (PSTNN)

Our PSTNN is extended from the partial sum of singular values (PSSV) [18,19]. The PSTNN of a three way tensor
A ∈ Rn1×n2×n3 is given as

∥A∥PSTNN ≜

n3∑
i=1

∥Â(i)
∥p=N . (1)

In (1), ∥ · ∥p=N is the PSSV [18,19], which is defined as ∥X∥p=N =
∑min(m,n)

i=N+1 σi(X) for a matrix X ∈ Cn1×n2 , where σi(X)
(i = 1, . . . ,min(m, n)) denotes its ith largest singular value. It can be observed from Fig. 1 that the proposed PSTNN is
a high order extension of PSSV and the definition of PSTNN maintains an explicit meaning within the t-SVD algebraic
framework, i.e., the sum of the red tubes in Fig. 1.

It noteworthy that, according to Definition A.7, the ith element of the tubal multi-rank of a tensor A is rank(Â(i)), and
Definition A.5 implies

∑n3
i=1 rank(Â

(i)) = rank(A). Thus the l1 norm (sum of the absolute values of a vector) of A’s tubal
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Table 1
Tensor notations.
Notation Explanation

X ,X, x, x Tensor, matrix, vector, scalar.
xi1 i2 ···iN The (i1, i2, . . . , iN )-th element of an N-mode tensor X .
⟨X ,Y⟩ The inner product of two same-sized tensors X and Y .
∥X∥F The Frobenius norm of a tensor X .
Â The Fourier transformed tensor of A.
A The block-diagonal form unfolding of Â. (Definition A.5)
rankr (A) The tubal multi-rank of a tensor A ∈ Rn1×n2×n3 . (Definition A.7)
∥A∥TNN The tubal nuclear norm (TNN) of a tensor A ∈ Rn1×n2×n3 . (Definition A.8)

Fig. 1. The illustration of the distinction and the connection between PSSV of a matrix (first row) and PSTNN of a tensor (second row). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

multi-rank equals to the rank of its block-diagonal unfolding of A. That is

∥rankr (A)∥1 = rank(A). (2)

More precisely, the TNN (defined in Definition A.8) is a convex relaxation of the l1 norm of a three order tensor’s tubal
multi-rank. Thus, the proposed PSTNN is also a surrogate of ∥rankr (A)∥1.

3.2. The PSTNN-based minimization problem

In this subsection, we introduce the general solving scheme for the PSTNN-based minimization problem, which is
fundamental for solving the PSTNN-based tensor completion and PSTNN-based robust principal component analysis
problems in the subsequent two subsections. The PSTNN-based minimization problem aims at restoring a tensor from
its observation under PSTNN regularization. For an observed tensor Y , the PSTNN-based minimization problem is:

X ∗ = arg
{
min
X

(
λ∥X∥PSTNN +

1
2
∥X − Y∥2F

)}
, (3)

where X and Y ∈ Rn1×n2×n3 , and λ is non-negative parameter, which controls the balance between the PSTNN
regularization and the distance to the observation.

Considering the linearity of the Fourier transform and the property that ∥A∥2F =
1
n3
∥Â∥2F for any X ,Y ∈ Rn1×n2×n3 ,

we have 1
2∥X − Y∥2F =

1
2n3
∥X̂ − Ŷ∥2F =

1
2n3

∑n3
k=1 ∥X̂

(k)
− Ŷ (k)

∥
2
F . Meanwhile, since ∥X∥PSTNN =

∑n3
i=1 ∥X̂

(i)
∥p=N and

X = ifft(X̂ , [], 3), the minimization problem in Eq. (3) is equivalent to

{X̂ (1)∗
,X̂ (2)∗

, . . . , X̂ (n3)∗
}

= arg

{
min

X̂ (1)
,X̂ (2)

,...,X̂ (n3)

(
λ

n3∑
i=1

∥X̂ (i)
∥p=N +

1
2n3

n3∑
k=1

∥X̂ (k)
− Ŷ (k)

∥
2
F

)}
.

(4)

Thus, the minimization problem in (4) can be decoupled into n3 matrix minimization problems with respect to , i.e.,

X̂ (k)∗
= arg

{
min
X̂ (k)

(
λ∥X̂ (k)

∥p=N +
β

2
∥X̂ (k)

− Ŷ (k)
∥
2
F

)}
, (5)

where X̂ (k)
, Ŷ (k)

∈ Cn1×n2 , β = 1/n3, and k = 1, 2, . . . , n3. The tensor optimization problem (3) is herein transformed to
n3 matrix optimization problems in (5) in the Fourier transform domain. It should be note that, Oh et al. have proposed
the exact solution of (5), which is indeed a PSSV-based minimization problem, in [18,19] for real matrices. Hence, the
solving scheme in [18,19] should be generalized to the complex matrices.
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Before extending the PSVT operator for the matrices in the complex field, we first restate the von Neumann’s
lemma [26–28].

Lemma 3.1 (von Neumann [26]). If A,B are complex m× n matrices with singular values

σ A
1 ≥ · · · ≥ σ A

min(m,n), σ B
1 ≥ · · · ≥ σ B

min(m,n)

respectively, then

|⟨A,B⟩| = |Tr(AHB)| ≤
min(m,n)∑

r=1

σ A
r σ B

r . (6)

Moreover, equality holds in (6)⇐⇒ A and B maintains the same right and left singular vectors, i.e.,

A = Udiag(σ (A))VH and B = Udiag(σ (B))VH, (7)

where σ (A) = [σ X
1 , . . . , σ A

min(m,n)] and σ (B) = [σ B
1 , . . . , σ B

min(m,n)].
Then, we restate the corresponding theorem, which utilized the von Neumann’s lemma, in [18,19] and extend it to the

complex matrices case in the meantime.

Theorem 3.1 (PSVT). Let A,B ∈ Cn1×n2 , which are two complex matrices, τ > 0, and l = min(n1, n2). B can be written as the
linear superposition of two items, i.e., B = B1+B2 = UB1DB1V

H
B1
+UB2DB2V

H
B2
, where UB1 , VB1 are the singular vector matrices

corresponding to the N largest singular values, and UB2 , VB2 from the (N + 1)-th to the last singular values. A complex matrix
PSSV minimization problem is

A∗ = arg
{
min
A

(
λ∥A∥p=N +

β

2
∥A− B∥2F

)}
. (8)

Then, the matrix PSSV minimization in (8) can be optimized by the PSVT operator as

A∗ = PN,τ (B) = UB(DB1 + Sτ [DB2 ])V
H
B = B1 + UB2 (Sτ [DB2 ])V

H
B2 , (9)

where DB1 = diag(σ B
1 , . . . , σ B

N , 0, . . . , 0), DB2 = diag(0, . . . , 0, σ B
N+1, . . . , σ

B
l , ), and Sτ [·] = sign(·) · max(|·| − τ , 0)

(τ = λ
β
) is the soft-thresholding operator.

The proof of Theorem 3.1 is exhibited in Appendix A.2. Then, the solution of (5) can be obtained as

X̂ ∗(k) = PN,τ

(
Ŷ (k)

)
. (10)

We summarize the steps to solve (3) in Algorithm 1.

Algorithm 1: Solving (3) using PSVT

Input: Y ∈ Rn1×n2×n3 , λ, the given tubal multi-rank rankr
Initialization: X̂ = zeros(n1 × n2 × n3), β = 1

n3
1: Ŷ ← fft(Y, [], 3), τ ← λ

β

2: for k = 1 : n3 do
3: N ← the k-th element of rankr
4: X̂ (k)

← PN,τ

(
Ŷ (k)

)
5: end for
6: X ← ifft(X̂ , [], 3)
Output: X ∈ Rn1×n2×n3

In the following subsections, based on the proposed rank approximation, we can easily give our proposed tensor
completion model and tensor RPCA model.

3.3. Tensor completion using PSTNN

A tensor completion model using PSTNN is given as
min
X
∥X∥PSTNN

s.t. PΩ (X ) = PΩ (O),
(11)

where O,X , Ω ∈ Rn1×n2×n3 are respectively the observed data and the underlying recover result, a binary support
indicator tensor. Zeros in Ω indicate the missing entries in the observed tensor. PΩ (O) = Ω ⊙ O is the elementwise
multiplication (Hardamard product) between the support tensor Ω and the observed tensor Y . The constraint implies
that the estimated tensor X agrees with the observed tensor O in the observed entries.
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Let

IΦ (X ) =
{
0, if X ∈ Φ,

∞, otherwise,
proc (12)

where Φ := {X ∈ Rn1×n2×n3 : PΩ (X ) = PΩ (O)}. Thus, the tensor completion model in (11) can be rewritten as:

min
X

IΦ (X )+ ∥X∥PSTNN. (13)

After introducing a auxiliary tensor, the problem (13) is equivalent to

min
X

IΦ (Y)+ ∥X∥PSTNN

s.t. Y = X .
(14)

The augmented Lagrangian function of (14) is given as:

Lβ (X ,Y,M) =IΦ (Y)+ ∥X∥PSTNN + ⟨M,X − Y⟩ +
β

2
∥X − Y∥2F

=IΦ (Y)+ ∥X∥PSTNN +
β

2
∥X − Y +

M
β
∥
2
F + C,

(15)

where M is the Lagrangian multiplier, β is the Lagrange penalty parameter, and C = − β

2 ∥
M
β
∥
2
F is constant with respect to

X and Y . Following the framework of ADMM [29], which has shown its effectiveness for solving large scale optimization
problems [30–32], we then iteratively update the variables X , Y by solving corresponding subproblems and the multiplier
M.

Step 1: updating X . The X -subproblem is

X k+1
= arg

{
min
X

(
∥X∥PSTNN +

β

2
∥X − Yk

+
Mk

β
∥
2
F

)}
, (16)

the solution of which can be exactly calculated by Algorithm 1.

Step 2: updating Y . The Y-subproblem is

Yk+1
= arg

{
min
Y

(
IΦ (Y)+

β

2
∥X k+1

− Y +
Mk

β
∥
2
F

)}
. (17)

By minimizing the Y-subproblem, we have 1Φ (Y) = 0, i.e., Y ∈ Φ . Thus, the solution of the Y-subproblem is given as
follows:⎧⎨⎩

PΩ (Yk+1) = PΩ (O),

PΩC (Yk+1) = PΩC (X k+1
+

Mk

β
),

(18)

where ΩC denotes the complementary set of Ω .

Step 3: updating multiplier. According to the standard ADMM, the multiplier is updated as follows:

Mk+1
=Mk

+ β(X k+1
− Yk+1). (19)

Finally, Algorithm 2 presents the pseudocode for solving the proposed PSTNN-based tensor completion (TC) model.

Algorithm 2: The pseudocode for solving the PSTNN-based TC model (11) by ADMM

Input: The observed tensor O ∈ Rn1×n2×n3 , the support of the observed entries Ω , the given tubal multi-rank rankr ,
stopping criterion ϵ, the Lagrange penalty parameter β .

Initialization: X 0
= rand(n1 × n2 × n3), PΩ (X 0) = PΩ (O), Y0

= X 0, M0
= zeros(n1 × n2 × n3).

1: while not converged do
2: update X k+1 with

(
Yk
−

Mk

β

)
and τ =

n3
β

by Algorithm 1

3: Yk+1
← PΩ (O)+ PΩC (X k+1

+
Mk

β
)

4: Mk+1
←Mk

+ β(X k+1
− Yk+1)

5: Check the convergence conditions ∥X k+1
− X k
∥∞ ≤ ϵ, ∥Yk+1

− Yk
∥∞ ≤ ϵ, ∥X k+1

− Yk+1
∥∞ ≤ ϵ

6: end while
Output: The completed tensor X ∈ Rn1×n2×n3 .
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3.4. Tensor RPCA using PSTNN

As mentioned previously, the goal of the tensor RPCA problems is to recover the low-rank tensors from sparsely
corrupted observations. A tensor RPCA model using PSTNN can be formulated as

min
L,E

∥L∥PSTNN + λ∥E∥1

s.t. O = L+ E,
(20)

where O,L, E ∈ Rn1×n2×n3 are the observed data, the low-rank part, and the sparse corruptions, respectively, and λ is a
non-negative parameter. Here, we minimize ∥E∥1, which is the ℓ1 norm of E , i.e., the sum of absolute values of entries in
E , to enhance the sparsity of E .

The augmented Lagrangian function of (20) is

Lβ (L, E,M) =∥L∥PSTNN + λ∥E∥1 + ⟨M,O − L− E⟩ +
β

2
∥O − L− E∥2F

=∥L∥PSTNN + λ∥E∥1 +
β

2
∥O − L− E +

M
β
∥
2
F + C,

(21)

where β is the Lagrange parameter, M is the Lagrangian multiplier, and C = − β

2 ∥
M
β
∥
2
F is constant with respect to L

and E .
Similar to the updating scheme in the previous section, we then iteratively update the variables L, E by solving

corresponding subproblems and the multiplier M, using ADMM [29].

Step 1: updating L. The L-subproblem is exhibited as follows:

Lk+1
= arg

{
min
L

(
∥L∥PSTNN +

β

2
∥O − L− Ek

+
Mk

β
∥
2
F

)}
. (22)

Again, we utilize Algorithm 1 to solve this subproblem.

Step 2: updating E . The E-subproblem is

Ek+1
= arg

{
min
E

(
λ∥E∥1 +

β

2
∥O − Lk+1

− E −
Mk

β
∥
2
F

)}
. (23)

The solution of (23) can be obtained with the soft-thresholding operator as:

Ek+1
= S λ

β

[
O − Lk+1

+
Mk

β

]
. (24)

Step 3: updating multiplier. The multiplier is updated as follows:

Mk+1
=Mk

+ β(O − Lk+1
− Ek+1). (25)

Algorithm 3 shows the pseudocode for solving the proposed PSTNN-based tensor robust component analysis (TRPCA)
model.

Algorithm 3: The pseudocode for solving the PSTNN-based TRPCA model (20) by ADMM

Input: The observed tensor O ∈ Rn1×n2×n3 , the given tubal multi-rank rankr , parameter λ, stopping criterion ϵ, the
Lagrange penalty parameter β .

Initialization: L0
= O, E0

=M0
= zeros(n1 × n2 × n3).

1: while not converged do
2: update X k+1 with

(
O − L− Ek

−
Mk

β

)
and τ =

n3
β

by Algorithm 1

3: Ek+1
← S λ

β

[
O − Lk+1

+
Mk

β

]
4: Mk+1

←Mk
+ β(O − Lk+1

− Ek+1)
5: Check the convergence conditions ∥Lk+1

− Lk
∥∞ ≤ ϵ, ∥Ek+1

− Ek
∥∞ ≤ ϵ, ∥Lk+1

+ Ek+1
− O∥∞ ≤ ϵ

6: end while
Output: The low PSTNN tensor L and the sparse tensor E
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4. Experiments

To examine the performance of the proposed methods, we compare the proposed methods1 with the TNN-based
methods2 on the simulated data and different real-world data3 We adopt two quantitative assessments to accurately
measure the quality of the reconstructions. The first one is the peak signal-to-noise ratio (PSNR), which can be computed
by PSNR is defined as

PSNR = 10 log10
Ȳ2

GT
1
n2
∥Y − YGT∥

2
F

,

where YGT, ȲGT, and Y are respectively the ground truth tensor, the maximum pixel value of the ground truth tensor,
and the reconstructed tensor. The second one is the structural similarity index (SSIM) [35]. The larger values of PSNR and
SSIM are corresponding to the higher quality of the results. All the numerical experiments are conducted on a PC with a
3.30 GHz CPU and 16 GB RAM.

Throughout our experiments, we assume that the N in (1) is known. We directly use the ground truth N in the synthetic
experiments, while we estimate N by counting the number of the largest 1% singular values of the first slice of the
clean tensor after fast Fourier transform along the third direction. When the clean data is unavailable, we recommend
the heuristic strategies proposed in [36], i.e., the rank-decreasing scheme and the rank-increasing scheme. These two
strategies start to form an overestimated or an underestimated N , and then dynamically adjust the estimation by QR
decomposition. The effectiveness of these two strategies has also been validated in [37,38].

4.1. Synthetic data

To synthesize the ground-truth tensor, we perform a t-prod A = P ∗ Q, where P ∈ Rn1×r×n3 and Q ∈ Rr×n2×n3

are independently sampled from an i.i.d. Gaussian distribution N (0, 1
√
n1×n3

). Then, the tubal multi-rank of tensor A ∈
Rn1×n2×n3 is [r, r, . . . , r]⊤.

4.1.1. Tensor completion
For the tensor completion task, we try to recover A from the partial observation which is randomly sampled m entries

of A. To verify the robustness of the TNN-based TC method and the proposed PSTNN-based TC method, we conducted
the experiments with respect to data sizes, the tubal multi-rank rankr , the sampling rate, i.e. m

n1×n2×n3
, respectively. We

examine the performance by counting the number of successes. If the relative square error of the recovered Â and the
ground truth A, i.e. ∥A−Â∥

2
F

∥A∥2F
, is less than 10−3, then the recovery is counted as a successful one. We repeat each case 10

times, and each cell in Fig. 2 reflects the success percentage, which is computed by the successful times dividing 10. Fig. 2
illustrates that the proposed PSTNN-based TC method is more robust than the TNN-based TC method, because of bigger
brown areas.

4.1.2. Tensor robust principal components analysis
For the tensor robust principal components analysis task, A is corrupted by a sparse noise with sparsity ρs and uniform

distributed values. We try to recover A using Algorithm 3 and the TNN-based tensor completion method. The setting of
the experiments in this part is similar to that in Section 4.1.1. We conducted the experiments with respect to data sizes,
the tubal multi-rank, sparsity ρs, respectively. We report the exact recovery results in Fig. 3. We repeat each case 10 times,
and each cell in Fig. 3 reflects the success percentage, which is computed by the successful times dividing 10. From Fig. 3,
we can find that our PSTNN TC method is more robust than the TNN-based TC method, because of the smaller blue areas.

4.1.3. Sensitivity to initialization
The converged solution may be different with different initializations, on account of that the proposed objective

function is non-convex. It is necessary to examine the sensitivity of the proposed method against different initializations.
In this subsection, to recover a 25 × 25 × 30 tensor with tubal multi-rank 5 and with 10% missing entries in the TC
task, we randomly initialize the tensor for 1000 times. The distribution of the rooted relative squared errors is shown in
Fig. 4. Although the convergence the proposed algorithms has not been proved with the theoretical guarantee, we can
observe from Fig. 4 that the distribution of the solutions with different initializations concentrates on the near region of
the ground truth.

1 Our Matlab code is available at https://github.com/TaiXiangJiang/PSTNN.
2 Corresponding codes can be downloaded at https://sites.google.com/site/canyilu/ and https://sites.google.com/site/jamiezeminzhang/.
3 In this paper, we only conduct experiments on the third-order tensors. However, as the t-SVD framework, which is originally suggested for

third-order tensors, has been extended for tensors with arbitrary dimensions [33,34]. Therefore, the proposed methods can be generalized for high
order tensors.

https://github.com/TaiXiangJiang/PSTNN
https://sites.google.com/site/canyilu/
https://sites.google.com/site/jamiezeminzhang/
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Fig. 2. Success ratio for synthetic data of two different size and varying tubal multi-ranks with varying sampling rate. The left figures illustrate the
empirical recovery rate by minimizing the TNN while the right figures by minimizing the PSTNN. Each entry in the figures reflects the proportion of
the successful recoveries when conducting 10 independent experiments. The white dashed lines are placed on the diagonal line for easier comparison.

4.2. Tensor completion for the real-world data

In this subsection, we conduct experiments on the real-world data, including three video data (‘‘pedestrian’’,4 ‘‘news’’,
and ‘‘hall’’5), the MRI data6 and the multispectral image (MSI) data.7 The compared methods consist of HaLRTC [6], the
TNN-based TC method [16], and our PSTNN-based TC method. The ratio of the missing entries is set as 80%. Fig. 5 exhibits
one frame/band/slice of the completion results. From Fig. 5, we can conclude that the visual quality of the results obtained
by our PSTNN-based TC method is higher than those by HaLRTC and TNN. The quantitative comparisons are shown in
Table 2, our method obtained the best results with respect to PSNR and SSIM. The outstanding performance of the PSTNN
method on varied real-world data illustrates that the PSTNN is a more precise characterization of the low tubal multi-rank
structure.

4 http://www.changedetection.net.
5 http://trace.kom.aau.dk/yuv/index.html.
6 http://brainweb.bic.mni.mcgill.ca/brainweb/selection_normal.html.
7 http://www1.cs.columbia.edu/CAVE/databases/multispectral.

http://www.changedetection.net
http://trace.kom.aau.dk/yuv/index.html
http://brainweb.bic.mni.mcgill.ca/brainweb/selection_normal.html
http://www1.cs.columbia.edu/CAVE/databases/multispectral
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Fig. 3. The exact recovery results when sparsity and the tubal multi-rank are varying. Each entry in the figures reflects the proportion of the
successful recoveries when conducting 10 independent experiments. The white dashed lines are placed on the diagonal line for easier comparison.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. The histogram of rooted relative squared errors when the initializations are randomly set for the TC task.
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Table 2
Quantitative comparisons of the completion results by HaLRTC, TNN and PSTNN on the real-world data.
Data Size Index Observed HaLRTC TNN PSTNN

Video

‘‘pedestrian’’ 158× 238× 24 PSNR 7.1475 22.6886 26.2793 26.7292
SSIM 0.0459 0.6786 0.8187 0.8288

‘‘news’’ 158× 238× 24 PSNR 9.7447 29.9569 31.9288 32.7566
SSIM 0.0618 0.9100 0.9236 0.9296

‘‘hall’’ 158× 238× 24 PSNR 5.5882 31.6016 33.4691 34.0856
SSIM 0.0244 0.9585 0.9605 0.9744

MRI 181× 217× 40 PSNR 10.3162 24.3162 26.9626 27.9680
SSIM 0.0887 0.7175 0.8144 0.8236

MSI 256× 256× 31 PSNR 13.8113 24.0003 28.9523 30.8586
SSIM 0.1353 0.6703 0.8695 0.9026

Fig. 5. Results for the tensor completion for the real-world data. From top to bottom: one frame of the video data (‘‘pedestrian’’, ‘‘news’’, and ‘‘hall’’),
one slice of the MRI data, one band of the MSI data.

4.3. Tensor robust principal components analysis for the color image recovery

In this subsection, we test the TRPCA methods on the task of the color image recovery. Each image is corrupted by the
sparse noise with sparsity 0.2. We compare our PSTNN-based TRPCA method with the sum of nuclear norm [6](SNN)-based
TRPCA method and TNN-based TRPCA method [39] on the 4 high quality color images from the Kodak PhotoCD Dataset8
and the homepage9 of the author of [39].

The results are shown in Fig. 6. From Fig. 6, we can find the results obtained by our PSTNN-based TRPCA method is
of higher visual quality, considering the preservation of the image details and textures. The SNN-based TRPCA method
tends to output blurry results. As for quantitative comparisons exhibited in Table 3, our method obtained the best results

8 http://r0k.us/graphics/kodak/.
9 https://github.com/canyilu/LibADMM.

http://r0k.us/graphics/kodak/
https://github.com/canyilu/LibADMM
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Table 3
Quantitative comparisons of the image recovery results of SNN, TNN and PSTNN on the image data.
Image Size Index Observed SNN TNN PSTNN

‘‘starfish’’ 481× 321× 3 PSNR 14.8356 25.8286 26.411 28.8492
SSIM 0.5085 0.9440 0.9495 0.9596

‘‘door’’ 256× 256× 3 PSNR 14.9029 27.9449 31.4588 33.4505
SSIM 0.6200 0.9777 0.9882 0.9918

‘‘hat1’’ 256× 256× 3 PSNR 15.7203 23.7104 26.3266 28.5517
SSIM 0.4649 0.8993 0.9498 0.9559

‘‘hat2’’ 256× 256× 3 PSNR 15.3731 28.1310 31.4964 32.1626
SSIM 0.4086 0.9654 0.9789 0.9810

Fig. 6. Results for the image recovery task.

with respect to PSNR and SSIM while The TNN-based TRPCA method achieves the second-best place. The comparison
in this subsection illustrates that our PSTNN-based TRPCA method is more efficient and robust than the SNN-based and
TNN-based TRPCA methods.

Meanwhile, as the objective function in Eq. (20) is non-convex, our algorithm based on ADMM should be considered as
a local optimization method [29]. To show its effectiveness of minimizing the objective function, we exhibit the changing
of the objective function value, as well as the value of the augmented Lagrangian function in Eq. (21), with respect
to iterations in Fig. 7. The decaying curves illustrate that our algorithm effectively minimizes the objective function
value.

5. Conclusions

In this paper we propose a novel surrogate of the tensor tubal multi-rank, i.e., PSTNN, within the t-SVD framework.
We extend the PSVT operator for the matrices in the complex field to solve the proposed PSTNN-based minimization
problem, which is fundamental for solving the subsequent PSTNN-based tensor recovery models. Two PSTNN-based
minimization models for tensor completion and tensor robust principal component analysis are proposed. Two efficient
ADMM algorithms, using the PSVT solver, have been developed to solve the models. The effectiveness of the proposed
PSTNN-based methods is illustrated by the experiments on the data of various types.
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Fig. 7. The objective function value in Eq. (20) and the value of the augmented Lagrangian function in Eq. (21) with respect to iterations when
dealing with the image ‘‘starfish’’. (Parameters: β = 1, λ = 1/

√
max(n1, n2) ∗ n3 = 0.0263, and ϵ = 10−7 .)
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Appendix

A.1. The definitions in the t-SVD framework

Definition A.1 (t-Product [14]). The t-product C = A∗B of A ∈ Rn1×n2×n3 and B ∈ Rn2×n4×n3 is a tensor of size n1×n4×n3,
where the (i, j)-th tube cij: is given by

cij: = C(i, j, :) =
n2∑
k=1

A(i, k, :) ⊛ B(k, j, :) (26)

where ⊛ denotes the circular convolution between two tubes of same size.

Interpreted in another way, a 3-D tensor of size n1× n2× n3 can be viewed as a n1× n2 matrix with treating the basic
units as a tube. In the t-prod of two tensors, the interaction of the two basic units is the circular convolution instead of
the multiplication.

Definition A.2 (Tensor Conjugate Transpose [14]). The conjugate transpose of a tensor A ∈ Rn2×n1×n3 is tensor AH
∈

Rn1×n2×n3 obtained by conjugate transposing each of the frontal slice and then reversing the order of transposed frontal
slices 2 through n3:(

AH)(1)
=
(
A(1))H and(

AH)(i)
=
(
A(n3+2−i)

)H
, i = 2, . . . , n3.

Definition A.3 (Identity Tensor [14]). The identity tensor I ∈ Rn1×n1×n3 is defined as a tensor whose first frontal slice is
the n1 × n1 identity matrix, and the other frontal slices are zero matrices.

Definition A.4 (Orthogonal Tensor [14]). A tensor Q ∈ Rn1×n1×n3 is an orthogonal tensor if

QH
∗Q = Q ∗QH

= I. (27)

Definition A.5 (Block Diagonal Form [14]).A is used to denote the block-diagonal form unfolding of the Fourier transformed
tensor of A, i.e., Â. That is

A ≜ blockdiag(Â)

≜

⎡⎢⎢⎢⎣
Â(1)

Â(2)

. . .

Â(n3)

⎤⎥⎥⎥⎦ ∈ Cn1n3×n2n3 .
(28)
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Fig. 8. The t-SVD of an n1 × n2 × n3 tensor.

It is not difficult to find thatAH = AH, i.e., the block diagonal form of a tensor’s conjugate transpose equals to the matrix
conjugate transpose of the tensor’s block diagonal form. Further more, for any tensor A ∈ Rn1×n2×n3 and B ∈ Rn2×n4×n3 ,
we have

A ∗ B = C ⇔ A · B = C,

where · is the matrix product.

Definition A.6 (f-Diagonal Tensor [14]). We call a tensor A ∈ Rn1×n2×n3 f-diagonal if all of its frontal slices are the diagonal
matrices.

Theorem A.1 (t-SVD [14]). For A ∈ Rn1×n2×n3 , the t-SVD of A is as the following form

A = U ∗ S ∗ VH (29)

where U ∈ Rn1×n1×n3 and V ∈ Rn2×n2×n3 are both orthogonal tensors, and S ∈ Rn1×n2×n3 is an f-diagonal tensor.

The t-SVD is illustrated in Fig. 8 and can be efficiently computed by the frontal slice wise singular value decomposition
(SVD) after Fourier transform.

Definition A.7 (Tubal Multi-Rank [40]). For a three way tensor A ∈ Rn1×n2×n3 , its tubal multi-rank, denoted as rankr (A),
is defined as a vector, whose ith (i = 1, 2, . . . , n3) element represents the rank of the ith frontal slice of Â i.e.,

rankr (A) = [rank(Â(1)), rank(Â(2)), . . . , rank(Â(n3))]⊤. (30)

Definition A.8 (Tubal Nuclear Norm (TNN) [40]). The tubal nuclear norm of a tensor A ∈ Rn1×n2×n3 , denoted as ∥A∥TNN,
is defined as the sum of singular values of all the frontal slices of A.

In particular,

∥A∥TNN ≜ ∥A∥∗ =
n3∑
i=1

∥Â(i)
∥∗. (31)

A.2. The proof to Theorem 3.1

Proof to Theorem 3.1. Let us consider A = UADAVH
A =

∑l
i=1 σi(A)uivHi , where UA = [u1, . . . ,um] ∈ (U)m, VA =

[v1, . . . , vm] ∈ (V)n and DA = diag(σ (A)), where the singular values σ (·) = [σ1(·), . . . , σl(·)] ⩾ 0 are sorted in a non-
increasing order. Also we define the function J(A) as the objective function of (8). The first term of (8) can be derived as
follows:

1
2
∥A− B∥2F =

1
2

(
∥B∥2F − 2⟨A,B⟩ + ∥A∥2F

)
=

1
2

(
∥B∥2F − 2

l∑
i=1

σi(A)uH
i Bvi +

l∑
i=1

σi(A)2
) (32)

In the minimization of (32) with respect to A, ∥B∥2F is regarded as a constant and thus can be ignored. For a more detailed
representation, we change the parameterization of A to (UA,VA,DA) and minimize the function:

J(UA,VA,DA) =
1
2

l∑
i=1

(
−2σi(A)uH

i Bvi + σi(A)2
)
+ τ

l∑
i=N+1

σi(A) (33)
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From von Neumann’s lemma, the upper bound of uH
i Bvi is given as σi(B) = max{uH

i Bvi} for all i when UA = UB and
VA = VB. Then (33) becomes a function depending only on DA as follows:

J(UB,VB,DA) =
1
2

l∑
i=1

(
−2σi(A)σi(B)+ σi(A)2

)
+ τ

l∑
i=N+1

σi(A)

=
1
2

N∑
i=1

(
−2σi(A)σi(B)+ σi(A)2

)
+

1
2

l∑
i=N+1

(
−2σi(A)σi(B)+ σi(A)2 + 2τσi(A)

)
.

(34)

Since (34) consists of simple quadratic equations for each σi(A) independently, it is trivial to show that the minimum
of (34) is obtained at D̂A = diag

(
σ̂ (A)

)
by derivative in a feasible domain as the first-order optimality condition, where

σ̂ (A) is defined as

σ̂ (A) =
{

σi(B), if i < N + 1,
max (σi(B)− τ , 0) , otherwise.

(35)

Hence, the solution of (8) is A∗ = UBD̂AVH
B . This result exactly corresponds to the PSVT operator where a feasible

solution A∗ = UB(DB1 + Sτ [DB2 ])V
H
B exists. □
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