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The recent popular tensor tubal rank, defined based on tensor singular value decomposi-
tion (t-SVD), yields promising results. However, its framework is applicable only to
three-way tensors and lacks the flexibility necessary tohandle different correlations along
different modes. To tackle these two issues, we define a new tensor unfolding operator,
named mode-k1k2 tensor unfolding, as the process of lexicographically stacking all
mode-k1k2 slices of an N-way tensor into a three-way tensor, which is a three-way exten-
sion of the well-known mode-k tensor matricization. On this basis, we define a novel ten-
sor rank, named the tensor N-tubal rank, as a vector consisting of the tubal ranks of all
mode-k1k2 unfolding tensors, to depict the correlations along different modes. To effi-
ciently minimize the proposed N-tubal rank, we establish its convex relaxation: the
weighted sum of the tensor nuclear norm (WSTNN). Then, we apply the WSTNN to low-
rank tensor completion (LRTC) and tensor robust principal component analysis (TRPCA).
The corresponding WSTNN-based LRTC and TRPCA models are proposed, and two efficient
alternating direction method of multipliers (ADMM)-based algorithms are developed to
solve the proposed models. Numerical experiments demonstrate that the proposed models
significantly outperform the compared ones.

� 2020 Elsevier Inc. All rights reserved.
1. Introduction

As a multidimensional array, the tensor [20] plays an increasingly significant role in many applications, such as color
image/video processing [13,26,32,45], hyperspectral/multispectral image (HSI/MSI) processing [7,22,47,38], background
subtraction [18,3], video rain streak removal [34,21], and magnetic resonance imaging (MRI) data recovery [15,17,37,6].
Many of these applications can be formulated as a class of tensor recovery problems, i.e., recovering an underlying tensor
from its corrupted observation. Particularly, as two typical examples, tensor completion aims to complete missing elements,
and tensor robust principal component analysis (TRPCA) aims to remove sparse outliers. The key to tensor recovery is to
explore the redundancy prior of the underlying tensor, which is usually formulated as low-rankness. Thus, low-rank mod-
eling has been widely studied and has achieved great success in the tensor recovery task.
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The traditional matrix recovery is a two-way tensor recovery problem. Since the matrix rank, measured by the number of
non-zero singular values, is powerful enough to capture the global information of a matrix, most matrix recovery methods
aim to minimize the matrix rank [2,1,30,5]. However, directly minimizing the matrix rank is NP-hard [11]. To tackle this
issue, the nuclear norm (k � k�), i.e., the sum of all non-zero singular values, has been proposed to approximate the matrix
rank, leading to great successes [2,1].

Tensor recovery can be viewed as an extension of matrix recovery. Inspired by the success of matrix rank minimization, it
seems natural to recover the underlying tensor by minimizing the tensor rank. Mathematically, a general low-rank tensor
recovery (LRTR) model can be written as
min
X

rank Xð Þ þ kL X ;Fð Þ; ð1Þ
where X is the underlying tensor, F is the observed tensor, and L X ;Fð Þ is the loss function between X and F , e.g., XX ¼ FX

for low-rank tensor completion (LRTC) and kF � Xk1 for TRPCA. A conclusive issue of LRTR is the definition of the tensor
rank. However, unlike the matrix rank, the definition of the tensor rank is not unique. Many research efforts have been
devoted to defining the tensor rank, and most of them are defined based on the corresponding tensor decomposition, such
as the CANDECOMP/PARAFAC (CP) rank based on CP decomposition [4,44], the Tucker rank based on Tucker decomposition
[8,24,23,46], and the tensor tubal rank based on tensor singular value decomposition (t-SVD) [19,14,43].

The CP rank and the Tucker rank are the two most typical definitions of the tensor rank. The CP rank is defined as the
minimum number of rank-one tensors required to express a tensor [20], i.e.,
rankcp Xð Þ :¼min rjX ¼
Xr
i¼1

a1
i � a2

i � � � � � aN
i ;a

k
i 2 Rnk

( )
; ð2Þ
where X is an N-way tensor and � denotes the vector outer product. Although the measure of the CP rank is consistent with
that of the matrix rank, it is difficult to establish a solvable relaxation form. The Tucker rank is defined as a vector, the k-th
element of which is the rank of the mode-k unfolding matrix [20], i.e.,
ranktc Xð Þ :¼ rank X 1ð Þ
� �

; rank X 2ð Þ
� �

; � � � ; rank X Nð Þ
� �� �

; ð3Þ

where X is an N-way tensor and X kð Þ k ¼ 1;2; � � � ;Nð Þ is the mode-k unfolding of X . To efficiently minimize the Tucker rank,
Liu et al. [24] considered its convex relaxation, defined as the sum of the nuclear norm (SNN) of unfolding matrices, i.e.,
kXkSNN :¼
XN
k¼1

akkX kð Þk�; ð4Þ
where ak P 0 k ¼ 1;2; � � � ;Nð Þ andPN
k¼1ak ¼ 1. Based on the SNN, Liu et al. [24] established an LRTC model with three solving

algorithms (SiLRTC, FaLRTC, and HaLRTC), and Goldfarb and Qin [9] proposed a TRPCA model. Although the SNN can flexibly
exploit the correlations along different modes by adjusting the weights ak [29], as noted in [19,35], when a tensor is unfolded
to a matrix along one mode, the structure information along other modes is inevitably destroyed. Thus, the SNN faces dif-
ficulty in preserving the intrinsic structure of the tensor. Moreover, Mu et al. [28] showed that the SNN based on standard
mode-k unfolding is substantially suboptimal and subsequently offered a generalized tensor unfolding to unfold an N-way
tensor to a more balanced (square) matrix, leading to promising results.

Recently, the tensor tubal rank and multi-rank, based on t-SVD, have received considerable attention
[19,43,14,16,12,48,25,36,31]. As a generalization of the matrix singular value decomposition (SVD), t-SVD regards a three-
way tensor X as a matrix, each element of which is a tube (mode-3 fiber), and then decomposes X as
X ¼ U � S � VT; ð5Þ

where U and V are orthogonal tensors, S is an f-diagonal tensor, VT denotes the conjugate transpose of V, and � denotes the t-
product (see details in Section 2). Mathematically, this decomposition is equivalent to a series of matrix SVDs in the Fourier
domain [43], i.e.,
X ið Þ ¼ U ið ÞS ið Þ V ið Þ� �T
; i ¼ 1;2; � � � ;n3; ð6Þ
where X ið Þ is the i-th frontal slice of X . X is generated by performing the discrete Fourier transformation (DFT) along each
tube of X . The multi-rank of X is defined as a vector whose i-th element is the rank of X ið Þ, i.e.,
rankm Xð Þ :¼ rank X 1ð Þ� �
; rank X 2ð Þ� �

; � � � ; rank X n3ð Þ� �
:

� ð7Þ

The tubal rank of X is defined as the number of non-zero tubes of S, i.e.,
rankt Xð Þ :¼ # i : S i; i; :ð Þ– 0f g: ð8Þ

Specifically, the tensor tubal rank is equal to the maximum value of the tensor multi-rank. Since directly minimizing the

tensor tubal/multi-rank is NP-hard [11], Semerci et al. [31] developed the tensor nuclear norm (TNN) as their convex surro-
gate, i.e.,
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kXkTNN :¼
Xn3
i¼1
kX ið Þk�: ð9Þ
Then, Zhang et al. [43] proposed the TNN-based LRTC model, Lu et al. [25] further proved the exactly-recover-property for
the TNN-based TRPCA model, and Hu et al. [12] proposed a twist tensor nuclear norm (t-TNN) for video completion.

Although the TNN has shown its effectiveness in preserving the intrinsic structure of a tensor [43,12], it has two obvious
shortcomings. One is that it cannot be applied to N-way tensors (N > 3). The other is that it lacks the flexibility necessary to
address different correlations along different modes, especially the third mode. Specifically, under the framework of t-SVD,
for a three-way tensor, the correlations along the first and second modes are characterized by matrix SVD, while that along
the third mode is encoded by an embedded circular convolution [43,25]. However, most real-world data always have differ-
ent correlations along different modes, e.g., the correlation of an HSI along its spectral mode should be much stronger than
those along its spatial modes. Thus, treating each mode flexibly similar to the SNN is expected to compensate for this defect.

To apply t-SVD to N-way tensors (N P3), in this paper, we define a three-way extension of the tensor matricization oper-
ator, named mode-k1k2 tensor unfolding (k1 < k2), as the process of lexicographically stacking the mode-k1k2 slices of an N-

way tensor X 2 Rn1�n2�����nN into the frontal slices of a three-way tensor X k1k2ð Þ 2 R
nk1�nk2�

Q
s–k1 ;k2

ns (see details in Section 3).
To characterize the correlations along different modes in a more flexible manner, we propose a new tensor rank, named

the tensor N-tubal rank, which is a vector consisting of the tubal ranks of all mode-k1k2 unfolding tensors, i.e.,
N � rankt Xð Þ :¼ rankt X 12ð Þ
� �

; rankt X 13ð Þ
� �

; � � � ; rankt X 1Nð Þ
� �

;
�

rankt X 23ð Þ
� �

; � � � ; rankt X 2Nð Þ
� �

; � � � ; rankt X N�1Nð Þ
� �Þ 2 RN N�1ð Þ=2:

ð10Þ
Table 1 compares the Tucker rank and the N-tubal rank of two HSIs.1 As observed, the Tucker rank suggests a strong cor-
relation along the third mode. According to the tensor N-tubal rank, this strong correlation is inadequately depicted by the first
element (the tubal rank), while it can be exactly depicted by the other two elements. This observation demonstrates that com-
pared with the tensor tubal rank, the proposed tensor N-tubal rank achieves a more flexible depiction for the correlations along
different modes.

To efficiently minimize the proposed tensor N-tubal rank, we establish its convex relaxation: the weighted sum of the
tensor nuclear norm (WSTNN), which can be expressed as the weighted sum of the TNN of each mode-k1k2 unfolding tensor,
i.e.,
kXkWSTNN :¼
X

16k1<k26N

ak1k2kX k1k2ð ÞkTNN; ð11Þ
where ak1k2 P 0 1 6 k1 < k2 6 N; k1; k2 2 Zð Þ and P16k1<k26Nak1k2 ¼ 1. Then, we apply the WSTNN to two typical LRTR prob-
lems, i.e., LRTC and TRPCA, and propose the corresponding WSTNN-based models. Meanwhile, two efficient alternating
direction method of multipliers (ADMM)-based algorithms are developed to solve the proposed models. Numerous numer-
ical experiments on synthetic and real-world data are conducted to illustrate the effectiveness and efficiency of the proposed
methods.

The rest of this paper is organized as follows. Section 2 presents some preliminary knowledge. Section 3 gives the defi-
nitions of the tensor N-tubal rank and its convex surrogate WSTNN. Section 4 proposes the WSTNN-based LRTC and TRPCA
models and develops two efficient ADMM-based solvers. Section 5 evaluates the performance of the proposed models and
compares the results with those of state-of-the-art competing methods. Section 6 concludes this paper.

2. Notations and preliminaries

In this section, we give some basic notations and briefly introduce some definitions used throughout the paper [20,43].
We denote vectors as bold lowercase letters (e.g., x), matrices as uppercase letters (e.g., X), and tensors as calligraphic

letters (e.g., X). Taking a three-way tensor X 2 Rn1�n2�n3 as an example, we denote its i; j; sð Þ-th element as X i; j; sð Þ or X i;j;s

and its i; jð Þ-th mode-1, mode-2, and mode-3 fibers as X :; i; jð Þ;X i; :; jð Þ, and X i; j; :ð Þ, respectively. We use X i; :; :ð Þ;X :; i; :ð Þ,
and X :; :; ið Þ to denote the i-th horizontal, lateral, and frontal slices of X , respectively. More compactly, X ið Þ is short for

X :; :; ið Þ. The Frobenius norm of X is defined as kXkF :¼
P

i;j;sjX i; j; sð Þj2
� �1=2

. The ‘1 norm of X is defined as

kXk1 :¼Pi;j;sjX i; j; sð Þj. We use �X to denote the tensor generated by performing DFT along each tube of X , i.e.,

X ¼ fft X ; ½�;3ð Þ. Naturally, we can compute X via X ¼ ifft X ; ½�;3� �
.

The vectorization of an N-way tensor X 2 Rn1�n2�����nN , denoted as x ¼ vec Xð Þ 2 Rn1n2 ���nN , is defined as
x jð Þ ¼ X i1; i2; � � � ; iNð Þ with j ¼ i1 þ
XN
s¼2

is � 1ð Þ
Ys�1
m¼1

nm

 !
:

rank is approximated by the numbers of singular values larger than 1% of the largest ones.



Table 1
The rank estimation of two HSIs.

Data Size Tucker rank N-tubal rank

Washington DC Mall 256� 256� 150 (107,110,6) (182,8,8)
Pavia University 256� 256� 87 (115,119,7) (137,8,8)
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The mode-k tensor matricization of an N-way tensor X 2 Rn1�n2�����nN is denoted as X kð Þ 2 R
nk�
Q

s–k
ns , the ik; jð Þ-th element

of which maps to the i1; i2; � � � ; iNð Þ-th element of X , where
j ¼ 1þ
XN

s¼1;s–k

is � 1ð ÞJswithJs ¼
Ys�1

m¼1;m–k

nm:
The corresponding operator and inverse operator are denoted as ‘‘unfold” and ‘‘fold”, respectively, i.e., X kð Þ ¼ unfold X ; kð Þ
and X ¼ fold X kð Þ; k

� �
.

For a three-way tensor X 2 Rn1�n2�n3 , the block circulation operation is defined as
bcirc Xð Þ :¼

X 1ð Þ X n3ð Þ . . . X 2ð Þ

X 2ð Þ X 1ð Þ . . . X 3ð Þ

..

. ..
. . .

. ..
.

X n3ð Þ X n3�1ð Þ . . . X 1ð Þ

0
BBBB@

1
CCCCA 2 Rn1n3�n2n3 :
The block diagonalization operation and its inverse operation are defined as
bdiag Xð Þ :¼

X 1ð Þ

X 2ð Þ

. .
.

X n3ð Þ

0
BBBB@

1
CCCCA 2 Rn1n3�n2n3 ; bdfold bdiag Xð Þð Þ :¼ X :
The block vectorization operation and its inverse operation are defined as
bvec Xð Þ :¼

X 1ð Þ

X 2ð Þ

..

.

X n3ð Þ

0
BBBB@

1
CCCCA 2 Rn1n3�n2 ; bvfold bvec Xð Þð Þ :¼ X :
Definition 1 (t-product). The t-product between two three-way tensors X 2 Rn1�n2�n3 and Y 2 Rn2�n4�n3 is defined as
X � Y :¼ bvfold bcirc Xð Þbvec Yð Þð Þ 2 Rn1�n4�n3 :

Indeed, the t-product can be regarded as a matrix–matrix multiplication, except that the multiplication operation

between scalars is replaced by circular convolution between the tubes, i.e.,
F ¼ X � Y () F i; j; :ð Þ ¼
Xn2
t¼1
X i; t; :ð ÞIY t; j; :ð Þ;
where I denotes the circular convolution between two tubes. Since that circular convolution in the spatial domain is equiv-
alent to multiplication in the Fourier domain, the t-product between two tensors F ¼ X � Y is equivalent to
�F ¼ bdfold bdiag �Xð Þbdiag �Yð Þð Þ:
Definition 2 (special tensors). The conjugate transpose of a three-way tensor X 2 Rn1�n2�n3 , denoted as XT, is the tensor obtained
by conjugate transposing each of the frontal slices and then reversing the order of transposed frontal slices 2 through n3. The
identity tensor I 2 Rn1�n2�n3 is a tensor whose first frontal slice is the identity matrix, and other frontal slices are all zeros. A three-
way tensor Q is orthogonal if Q �QT ¼ QT � Q ¼ I . A three-way tensor S is f-diagonal if each of its frontal slices is a diagonal
matrix.
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Fig. 1. Illustration of the t-SVD of an n1 � n2 � n3 tensor.

Algorithm1 The t-SVD for three-way tensors

Input X 2 Rn1�n2�n3 .
1: �X  fft X ; ½�;3ð Þ.
2: for i ¼ 1 to n3 do
3: U; S;V½ � ¼ svd X ið Þ� �

.

4: U ið Þ  U; S ið Þ  S; V ið Þ  V .
5: endfor
6: U  ifft �U; ½�;3ð Þ.
7: S  ifft �S; ½�;3� �

.
8: V  ifft �V; ½�;3ð Þ.
Output: U , S, V.
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Theorem 1 (t-SVD). Let X 2 Rn1�n2�n3 be a three-way tensor, then it can be factored as
X ¼ U � S � VT;
where U 2 Rn1�n1�n3 and V 2 Rn2�n2�n3 are orthogonal tensors, and S 2 Rn1�n2�n3 is an f-diagonal tensor.
The t-SVD scheme is illustrated in Fig. 1, and its computation is given in Algorithm1. Now, we give the definitions of the

tensor multi-rank and tubal rank.

Definition 3 (tensor multi-rank and tubal rank). Let X 2 Rn1�n2�n3 be a three-way tensor. The tensor multi-rank of X is a vector
rankm Xð Þ 2 Rn3 , the i-th element of which is the rank of the i-th frontal slice of �X , where �X ¼ fft X ; ½�;3ð Þ. The tubal rank of X ,
denoted as rankt Xð Þ, is defined as the number of non-zero tubes of S, where S comes from the t-SVD of X : X ¼ U � S � VT. That is,
rankt Xð Þ ¼max rankm Xð Þð Þ.
Definition 4 (tensor nuclear norm (TNN)). The tensor nuclear norm of a tensor X 2 Rn1�n2�n3 , denoted as kXkTNN, is defined as the
sum of the singular values of all the frontal slices of �X , i.e.,
kXkTNN :¼
Xn3
i¼1
kX ið Þk�;
where X ið Þ is the i-th frontal slice of X , with �X ¼ fft X ; ½�;3ð Þ.
3. Tensor N-tubal rank and convex relaxation

In this section, we first propose the mode-k1k2 tensor unfolding operation and then give the definitions of the tensor N-
tubal rank and its convex relaxation WSTNN.

As noted in Section 1, the framework of t-SVD and the corresponding tubal rank apply only to three-way tensors and lack
the flexibility to handle different correlations along different modes. To address these two issues, we define a novel tensor
unfolding operation to transform an N-way tensor into a three-way tensor by reordering its slices along any two modes.

Definition 5 (mode-k1k2 slices). For an N-way tensor X 2 Rn1�n2�����nN , its mode-k1k2 slices (Xk1k2 ;1 6 k1 < k2 6 N; k1; k2 2 Z)
are two-dimensional sections, defined by fixing all but the mode-k1 and the mode-k2 indexes.
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Definition 6 (mode-k1k2 tensor unfolding). For an N-way tensor X 2 Rn1�n2�����nN , its mode-k1k2 unfolding is a three-way tensor

denoted by X k1k2ð Þ 2 R
nk1�nk2�

Q
s–k1 ;k2

ns , the frontal slices of which are the lexicographic orderings of the mode-k1k2 slices of X .
Mathematically, the i1; i2; � � � ; iNð Þ-th element of X maps to the ik1 ; ik2 ; j

� �
-th element of X k1k2ð Þ, where
n1

n

Fig. 2.
permut
end fro
j ¼ 1þ
XN
s¼1

s–k1 ;s–k2

is � 1ð ÞJs with Js ¼
Ys�1
m¼1

m–k1 ;m–k2

nm:
We define the corresponding operation as X k1k2ð Þ :¼ t� unfold X ; k1; k2ð Þ and its inverse operation as
X :¼ t� fold X k1k2ð Þ; k1; k2

� �
. Examples of Definition 5 and Definition 6 can be found in the Appendix. Specifically, for a

three-way tensor, the proposed tensor unfolding operation does not involve dimensional reduction but corresponds to a per-
mutation operation, i.e.,
X i; j; sð Þ ¼ X 12ð Þ i; j; sð Þ ¼ X 13ð Þ i; s; jð Þ ¼ X 23ð Þ j; s; ið Þ:

Therefore, in this case, we use permute and ipermute to replace t� unfold and t� fold, respectively.

By performing t-SVD on each mode-k1k2 unfolding tensor, we propose a novel tensor rank, named the tensor N-tubal
rank.

Definition 7 (N-tubal rank). NThe-tubal rank of an N-way tensor X 2 Rn1�n2�����nN is defined as a vector, the elements of which
contain the tubal rank of all mode-k1k2 unfolding tensors, i.e.,
N � rankt Xð Þ ¼ rankt X 12ð Þ
� �

; rankt X 13ð Þ
� �

; � � � ; rankt X 1Nð Þ
� �

; rankt X 23ð Þ
� �

; � � � ; rankt X 2Nð Þ
� �

; � � � ; rankt X N�1Nð Þ
� �� � 2 RN N�1ð Þ=2:
Clearly, for a three-way tensor, the tensor tubal rank is the first element of the tensor N-tubal rank. By taking the HSI
Washington DC Mall shown in Fig. 2 as an example, its low N-tubal rank prior can be observed both quantitatively and visu-
ally. Specifically, the proposed N-tubal rank combines the advantages of the Tucker rank and tubal rank. On the one hand,
compared with the mode-k1 unfolding matrix, the mode-k1k2 unfolding tensor avoids the destruction of the structure infor-
mation along the k2-th mode. On the other hand, as shown in Fig. 2, the tubal rank of each mode-k1k2 unfolding (permuta-
tion) tensor X k1k2ð Þ more directly depicts the correlation of the k1-th and the k2-th modes, i.e., it lacks direct characterization
of the correlation along other modes. Because all mode-k1k2 unfolding tensors are considered simultaneously, the proposed
N-tubal rank can effectively exploit the correlations along all modes. The following theorem reveals the relationship between
the tensor N-tubal rank and Tucker rank.
Theorem 2 (N-tubal rank and Tucker rank). Let X 2 Rn1�n2�����nN be an N-way tensor with Tucker rank r1; r2; � � � ; rNð Þ and Tucker
decomposition
X ¼ G�1A1�2A2�3 � � � �NAN ¼
Xr1
i1¼1

Xr2
i2¼1
� � �
XrN
iN¼1
G i1; i2; � � � ; iNð Þa1

i1
� a2

i2
� � � � � aN

iN
;
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Illustration of the low N-tubal rank prior of an HSI. (a) The HSI Washington DC Mall, which has a size of 150� 150� 150. (b) The mode-k1k2
ation tensors of X . (c) The tensors �X k1k2ð Þ generated by performing a DFT along each tube of X k1k2ð Þ. (d) Singular value curves from the second to the
ntal slices of �X k1k2ð Þ . (e) Singular value curves of the first frontal slices of �X k1k2ð Þ.
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where G 2 Rr1�r2�����rN ;Ak 2 Rnk�rk k ¼ 1;2; � � � ;Nð Þ, and ak
ik
is the ik-th column of Ak. Then, each element of the N-tubal rank is

bounded by the Tucker rank along the corresponding modes, i.e.,
2 one
tubal� Rank X k1k2ð Þ
� �

6 min rk1 ; rk2
� �

:

This theorem demonstrates theoretically that the proposed N-tubal rank learns the global correlations within multi-
dimensional data as the Tucker rank does. Furthermore, we reveal the relationship between the tensor N-tubal rank and
CP rank in the next theorem.
Theorem 3 (N-tubal rank and CP rank). Assume that the CP rank of an N-way tensor X 2 Rn1�n2�����nN is r and that its CP
decomposition is
X ¼
Xr
i¼1

a1
i � a2

i � � � � � aN
i ;a

k
i 2 Rnk ; k ¼ 1;2; � � � ;N:
Then, the N-tubal rank of X is at most r � ones N N � 1ð Þ=2;1ð Þ.2 Specifically, we define vector sets
V1 ¼ a1
i ji ¼ 1;2; � � � ; r� �

;

V2 ¼ a2
i ji ¼ 1;2; � � � ; r� �

;

..

.

VN ¼ aN
i ji ¼ 1;2; � � � ; r� �

;

and
ci ¼ vec Cið Þ 2 R

Y
s–k1 ;k2

ns

; i ¼ 1;2; � � � ; r;

where Ci ¼ a1

i � a2
i � � � � � ak1�1

i � ak1þ1
i � � � � � ak2�1

i � ak2þ1
i � � � � � aN

i . If each vector set Vi is linearly independent and there is a j such
that each j-th element of �ci ¼ fft cið Þ is non-zero, the N-tubal rank is equal to r � ones N N � 1ð Þ=2;1ð Þ.

Detailed proofs of Theorem 2 and Theorem 3 can be found in the Appendix. To effectively minimize the tensor N-tubal
rank, we propose the following WSTNN as its convex relaxation.

Definition 8 (weighted sum of the tensor nuclear norm). The WSTNN of an N-way tensor X 2 Rn1�n2�����nN , denoted as kXkWSTNN,
is defined as the weighted sum of the TNN of each mode-k1k2 unfolding tensor, i.e.,
kXkWSTNN :¼
X

16k1<k26N

ak1k2kX k1k2ð ÞkTNN;
where ak1k2 P 0 1 6 k1 < k2 6 N; k1; k2 2 Zð Þ and P16k1<k26Nak1k2 ¼ 1.

The weight a ¼ a11;a12; � � � ;a1N;a23; � � � ;a2N; � � � ;aN�1Nð Þ is an important parameter for the WSTNN. For the choice of the
weight a, we consider the following three cases.

Case 1: The tensor N-tubal rank of the underlying tensor is unknown and cannot be estimated empirically, such as the
case of MRI data. Here, the weight a is chosen to be
a ¼ 1;1; � � � ;1ð Þ
N N � 1ð Þ=2 ¼

2 1;1; � � � ;1ð Þ
N N � 1ð Þ :
Case 2: The tensor N-tubal rank of the underlying tensor X 2 Rn1�n2�����nN is known, i.e.,
N � rankt Xð Þ ¼ r11; r12; � � � ; r1N; r23; � � � ; r2N; � � � ; rN�1Nð Þ:

Since ak1k2 stands for the contribution of the TNN of the mode-k1k2 unfolding tensor X k1k2ð Þ, the value of ak1k2 should be

dependent on the tubal rank of X k1k2ð Þ (rk1k2 ) and the size of the first two modes of X k1k2ð Þ nk1 andnk2

� �
. Specially, a larger (or

smaller) ratio of rk1k2 to min nk1 ;nk2

� �
corresponds to a smaller (or larger) value of ak1k2 . Therefore, the following strategy is

considered to choose the weight a:
ak1k2 ¼
e
gr̂k1k2

RX
16k1<k26N

e
gr̂k1k2

R

;withR ¼
X

16k1<k26N

r̂k1k2 ; 1 6 k1 < k2 6 N; k1; k2 2 Z;
where r̂k1k2 ¼
min nk1 ;nk2ð Þ�rk1k2

min nk1 ;nk2ð Þ and g is a balance parameter.
s n;1ð Þ 2 Rn is a vector whose elements are all 1.
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Case3: Particularly for HSIs/MSIs, although their exact N-tubal ranks are unknown, the correlations along their spectral
modes should be much stronger than those along their spatial modes. This implies that the value of the first element of the
N-tubal rank should be much larger than the values of its second and third elements. Thus, in this case, we empirically
choose the weights a as h;1;1ð Þ= 2þ hð Þ, where h is a balance parameter.

4. WSTNN-based models and solving algorithms

In this section, we apply the WSTNN to LRTC and TRPCA and propose the WSTNN-based models with ADMM-based solv-
ing schemes.

4.1. WSTNN-based LRTC model

Tensor completion aims at estimating the missing elements from an incomplete observation tensor. Considering an N-
way tensor X 2 Rn1�n2�����nN , the proposed WSTNN-based LRTC model is formulated as
min
X

kXkWSTNN

s:t: PX X � Fð Þ ¼ 0;
ð12Þ
where X is the underlying tensor, F is the observed tensor, X is the index set for the known entries, and PX Xð Þ is a projection
operator that keeps the entries of X in X and sets all others to zero. Let
iS Xð Þ :¼
0; if X 2 S;

1; otherwise;

�
ð13Þ
where S :¼ X 2 Rn1�n2�����nN ;PX X � Fð Þ ¼ 0f g. Then (12) can be rewritten as
min
X

X
16k1<k26N

ak1k2kX k1k2ð ÞkTNN þ iS Xð Þ; ð14Þ
where ak1k2 P 0 1 6 k1 < k2 6 N; k1; k2 2 Zð Þ and P16k1<k26Nak1k2 ¼ 1.

Algorithm2 ADMM-based optimization algorithm for the proposed WSTNN-based LRTC model (12).

Input: The observed tensor F , index set X, weight
a ¼ a11;a12; � � � ;a1N;a23; � � � ;a2N ; � � � ;aN�1Nð Þ; b ¼ b11; b12; � � � ; b1N; b23; � � � ; b2N; � � � ; bN�1Nð Þ;
bmax ¼ 1010;1010; � � � ;1010

� �
, and c ¼ 1:1.

Initialization: X 0ð Þ
X ¼ FX;X 0ð Þ

Xc ¼ 0;Y 0ð Þ
k1k2
¼ 0;M 0ð Þ

k1k2
¼ 0; p ¼ 0, and pmax ¼ 500. 1: while not converged and p < pmaxdo

2: Update Y pþ1ð Þ
k1k2

via (19), 1 6 k1 < k2 6 N; k1; k2 2 Z.

3: Update X pþ1ð Þ via (21).

4: UpdateM pþ1ð Þ
k1k2

via (17), 1 6 k1 < k2 6 N; k1; k2 2 Z.

5: b ¼min cb; bmaxð Þ and p ¼ pþ 1.
6: endwhile Output: The completed tensor X .

Next, we use the ADMM to solve (14). We rewrite (14) as the following equivalent constrained problem
min
X ;Yk1k2

X
16k1<k26N

ak1k2k Yk1k2

� �
k1k2ð ÞkTNN þ iS Xð Þ

s:t: X � Yk1k2 ¼ 0; 1 6 k1 < k2 6 N; k1; k2 2 Z:

ð15Þ
The augmented Lagrangian function of (15) can be expressed in the following concise form
Lbk1k2 Yk1k2 ;X ;Mk1k2

� � ¼ X
16k1<k26N

ak1k2k Yk1k2

� �
k1k2ð ÞkTNN

n
þ bk1k2

2 gkX � Yk1k2 þ
Mk1k2
bk1k2

gk2F
o
þ iS Xð Þ þ C; ð16Þ
whereMk1k2 1 6 k1 < k2 6 N; k1; k2 2 Zð Þ are Lagrange multipliers, bk1k2 1 6 k1 < k2 6 N; k1; k2 2 Zð Þ are penalty parameters,
and C is a variable independent of X and Yk1k2 . Within the framework of the ADMM, Yk1k2 ;X , and Mk1k2 are alternately
updated as
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Step1 : Y pþ1ð Þ
k1k2

¼ arg minYk1k2 Lbk1k2 Yk1k2 ;X pð Þ;M pð Þ
k1k2

� �
;

Step2 : X pþ1ð Þ ¼ arg minXLbk1k2 Y
pþ1ð Þ
k1k2

;X ;M pð Þ
k1k2

� �
;

Step3 :M pþ1ð Þ
k1k2

¼M pð Þ
k1k2
þ bk1k2 X pþ1ð Þ � Y pþ1ð Þ

k1k2

� �
:

8>>>><
>>>>:

ð17Þ
In Step 1, the Yk1k2 1 6 k1 < k2 6 N; k1; k2 2 Zð Þ subproblems are
Y pþ1ð Þ
k1k2

¼ arg minYk1k2ak1k2k Yk1k2

� �
k1k2ð ÞkTNN þ

bk1k2
2 gk X k1k2ð Þ

� � pð Þ � Yk1k2

� �
k1k2ð Þ þ

Mk1k2ð Þ k1k2ð Þ

� � pð Þ

bk1k2
gk2F : ð18Þ
To solve (18), we introduce the following theorem [43].

Theorem 4. [43] Assuming that Z 2 Rn1�n2�n3 is a three-way tensor, a minimizer to
min
Y
skYkTNN þ

1
2
kY � Zk2F ;
is given by the tensor singular value thresholding (t-SVT)
Y ¼ Ds Zð Þ :¼ U � Ss � VT;
where Z ¼ U � S � VT and Ss is an n1 � n2 � n3 tensor that satisfies
�Ss i; i; sð Þ ¼max S i; i; sð Þ � s;0� �
;

where S ¼ fft S; ½�;3ð Þ and s is a threshold.
Via Theorem 4, Yk 1 6 k1 < k2 6 N; k1; k2 2 Zð Þ can be updated as
Y pþ1ð Þ
k1k2

¼ t� fold Dak1k2
bk1k2

X k1k2ð Þ
� � pð Þ þ

Mk1k2

� �
k1k2ð Þ

� � pð Þ

bk1k2

0
B@

1
CA; k1; k2

0
B@

1
CA: ð19Þ
In Step 2, we solve the following problem
X pþ1ð Þ 2 arg minX
X

16k1<k26N

bk1k2

2
gkX � Y pþ1ð Þ

k1k2
þM

pð Þ
k1k2

bk1k2

gk2F þ iS Xð Þ; ð20Þ
which is differentiable and has a closed-form solution, i.e.,
X pþ1ð Þ ¼ PXc

X
16k1<k26N

bk1k2 Y
pþ1ð Þ
k1k2

�M
pð Þ
k1k2

bk1k2

	 

X

16k1<k26N

bk1k2

0
BBBB@

1
CCCCAþ PX Fð Þ: ð21Þ
The pseudocode of the developed algorithm is described in Algorithm2.
We analyse the computational complexity of the developed algorithm, which involves three subproblems, i.e., the Yk1k2

subproblems, the X subproblem, and theMk1k2 subproblems. Updating Yk1k2 requires performing SVD on dk1k2 matrices with
a size of nk1 ;nk2

� �
and fast Fourier transformations (FFT) on nk1nk2 vectors with a size of dk1k2 , which cost

O D log dk1k2

� �þmin nk1 ;nk2

� �� �� �
, where D ¼QN

k¼1nk and dk1k2 ¼ D= nk1nk2

� �
. Updating X andMk1k2 involves only scalar multi-

plication costing O D
P

16k1<k26N1
� �

. In summary, the computational cost at each iteration is

O D
P

16k1<k26N log dk1k2

� �þmin nk1 ;nk2

� �� �� �
.

4.2. WSTNN-based TRPCA model

The TRPCA aims to exactly recover a low-rank tensor corrupted by sparse noise. Considering an N-way tensor
X 2 Rn1�n2�����nN , the proposed WSTNN-based TRPCA model can be formulated as
min
L;E

kLkWSTNN þ kkEk1
s:t: X ¼ Lþ E;

ð22Þ
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where X is the corrupted observation tensor, L is the low-rank component, E is the sparse component, and k is a tuning
parameter compromising L and E. And (22) can be rewritten as
Alg

Inp

b

1:

d

3:

4:
5:

6:

7:
8:
9:
Out
min
L;E

X
16k1<k26N

ak1k2kL k1k2ð ÞkTNN þ kkEk1

s:t: X ¼ Lþ E;
ð23Þ
where ak1k2 P 0 1 6 k1 < k2 6 N; k1; k2 2 Zð Þ and P16k1<k26Nak1k2 ¼ 1.
Next, we use the ADMM to solve (23). We rewrite (23) as
min
L;E;Zk1k2

X
16k1<k26N

ak1k2k Zk1k2

� �
k1k2ð ÞkTNN þ kkEk1

s:t: X ¼ L þ E;
L � Zk1k2 ¼ 0;1 6 k1 < k2 6 N; k1; k2 2 Z:

ð24Þ
The augmented Lagrangian function of (24) can be expressed in the following concise form
Lbk1k2 ;q L;Zk1k2 ;Pk1k2 ; E;M
� � ¼ X

16k1<k26N

ak1k2k Zk1k2

� �
k1k2ð ÞkTNN

n

þ bk1k2
2 gkL � Zk1k2 þ

Pk1k2
bk1k2

gk2F
o
þ kkEk1 þ q

2 gkX � L � E þ Mq gk2F þ C;
ð25Þ
where Pk1k2 andM are Lagrange multipliers, bk1k2 and q are penalty parameters, and C is a variable independent of L; E, and
Zk1k2 . To minimize (25), we can update L;Zk1k2 ;Pk1k2 ; E;M (1 6 k1 < k2 6 N; k1; k2 2 Z) as
Step 1 : Z pþ1ð Þ
k1k2

¼ arg minZk1k2
Lbk1k2 ;q L

pð Þ;Zk1k2 ;P pð Þ
k1k2

; E pð Þ;M pð Þ
� �

;

Step 2 : L pþ1ð Þ ¼ arg minLLbk1k2 ;q L;Z
pþ1ð Þ
k1k2

;P pð Þ
k1k2

; E pð Þ;M pð Þ
� �

;

Step 3 : E pþ1ð Þ ¼ arg minELbk1k2 ;q L
pþ1ð Þ;Z pþ1ð Þ

k1k2
;P pð Þ

k1k2
; E;M pð Þ

� �
;

Step 4 : P pþ1ð Þ
k1k2

¼ P pð Þ
k1k2
þ bk1k2 L pþ1ð Þ � Z pþ1ð Þ

k1k2

� �
;

Step 5 :M pþ1ð Þ ¼ M pð Þ þ q X � L pþ1ð Þ � E pþ1ð Þ� �
:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð26Þ
In Step 1, the Zk1k2 1 6 k1 < k2 6 N; k1; k2 2 Zð Þ subproblem can be solved as
Z pþ1ð Þ
k1k2

¼ t� fold Dak1k2
bk1k2

L k1k2ð Þ
� � pð Þ þ

Pk1k2

� �
k1k2ð Þ

� � pð Þ

bk1k2

0
B@

1
CA; k1; k2

0
B@

1
CA: ð27Þ
In Step 2, the L subproblem has the following closed-form solution
orithm3 ADMM-based optimization algorithm for the proposed WSTNN-based TRPCA model (22).

ut: The corrupted observation tensor X , weight a ¼ a11;a12; � � � ;a1N ;a23; � � � ;a2N ; � � � ;aN�1Nð Þ;
¼ b11; b12; � � � ; b1N; b23; � � � ; b2N; � � � ; bN�1Nð Þ; bmax ¼ 1010;1010; � � � ;1010

� �
; k;q;qmax ¼ 1010, and c ¼ 1:2.

Initialization: L 0ð Þ ¼ 0; E 0ð Þ ¼ 0;M 0ð Þ ¼ 0;Z 0ð Þ
k1k2
¼ 0;P 0ð Þ

k1k2
¼ 0, and pmax ¼ 500. 2: while not converged and p < pmax

o

Update Z pþ1ð Þ
k1k2

via (27), 1 6 k1 < k2 6 N.

Update L pþ1ð Þ via (28).
Update E pþ1ð Þ via (30).

Update P pþ1ð Þ
k1k2

via (26), 1 6 k1 < k2 6 N.

UpdateM pþ1ð Þ via (26).
b ¼min cb; bmaxð Þ;q ¼min cq;qmaxð Þ, and p ¼ pþ 1.

endwhile
put: The low-rank component L and the sparse component E.
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L pþ1ð Þ ¼
q X � E pð Þ þ M pð Þ

q

� �
þ

X
16k1<k26N

bk1k2 Z
pþ1ð Þ
k1k2

� P
pð Þ
k1k2

bk1k2

	 


qþ
X

16k1<k26N

bk1k2

: ð28Þ
In Step 3, we solve the following problem
E pþ1ð Þ 2 arg minEkkEk1 þ
q
2
gkX � L pþ1ð Þ � E þM

pð Þ

q
gk2F ; ð29Þ
which has the following closed-form solution
E pþ1ð Þ ¼ S k
q
X � L pþ1ð Þ þM

pð Þ

q

 !
; ð30Þ
where Sn �ð Þ is the tensor soft thresholding operator with threshold n, i.e.,
Sn Xð Þ½ �i1 i2 ���iN ¼ sgn xi1 i2 ���iN
� �

max jxi1 i2 ���iN j � n;0
� �

: ð31Þ

The pseudocode of the proposed algorithm for solving the proposed WSTNN-based TRPCA model (22) is described in

Algorithm3.
We analyse the detailed computational complexity of the developed algorithm, which involves five subproblems, i.e., the

Zk1k2 subproblems, the L subproblem, the E subproblem, the Pk1k2 subproblem, and the M subproblems. Updating Zk1k2

requires performing SVD on dk1k2 matrices with a size of nk1 ;nk2

� �
and FFT on nk1nk2 vectors with a size of dk1k2 , which cost

O D log dk1k2

� �þmin nk1 ;nk2

� �� �� �
, where D ¼QN

k¼1nk and dk1k2 ¼ D= nk1nk2

� �
. Updating L; E;Pk1k2 , and M involves only scalar

multiplication costing O D
P

16k1<k26N1
� �

. In summary, the computational cost at each iteration is

O D
P

16k1<k26N log dk1k2

� �þmin nk1 ;nk2

� �� �� �
.

5. Numerical experiments

We evaluate the performance of the proposed WSTNN-based LRTC and TRPCA methods.3 Both synthetic and real-world
data are tested. We employ the peak signal-to-noise rate (PSNR), the structural similarity (SSIM) [33], and the feature similarity
(FSIM) [41] to measure the quality of the recovered results. All tests are implemented on the Windows 7 platform and MATLAB
(R2017b) with an Intel Core i5-4590 3.30 GHz and 16 GB of RAM.

5.1. Low-rank tensor completion

In this section, we test synthetic data and five kinds of real-world data: MSI, HSI, MRI, color video (CV), and hyperspectral
video (HSV). If not specified, the methodology for sampling the data is purely random sampling. The compared LRTC meth-
ods are as follows: HaLRTC [24] and LRTC-TVI [23], representing the state of the art for the Tucker-decomposition-based
method; BCPF [44], representing the state of the art for the CP-decomposition-based method; and logDet [14], TNN [43],
PSTNN [16], and t-TNN [12], representing the state of the art for the t-SVD-based method. Because logDet, the TNN, the
PSTNN, and the t-TNN apply only to three-way tensors, in all four-way tensor tests, we first reshape the four-way tensors
into three-way tensors and then test the performances of these methods.

Parameter selection. In all tests, the stopping criterion depends on the relative change (RelCha) in two successive recov-

ered tensors, i.e., RelCha ¼ kX pþ1ð Þ�X pð ÞkF
kX pð ÞkF

< 10�4. Letting the threshold parameter s ¼ a:=b;a is chosen by the weight selection

strategy presented in Section 3, s is set to x� ones N N � 1ð Þ=2;1ð Þ2, and x is empirically selected from a candidate set:
1;10;50;100;500;1000;10000f g. Table 2 shows the parameter settings for the proposedWSTNN-based LRTC method on dif-
ferent data.

Synthetic data completion. We test both synthetic three-way tensors of size 30� 30� 30 and four-way tensors of size
30� 30� 30� 30. The tested synthetic tensors consist of the sum of r rank-one tensors, which are generated by finding the
vector outer product on N (N ¼ 3 or 4) random vectors. In practice, the data in each test are regenerated and confirmed to
meet the conditions of Theorem 3, i.e., the N-tubal rank is r � ones N N � 1ð Þ=2;1ð Þ. We define the success rate as the ratio of
successful times to the total number of times, where one test is successful if the relative square error of the recovered tensor

X̂ and the ground-truth tensor X , i.e., kX̂ � Xk2F=kXk2F , is less than 10�3.
We test data with different N-tubal ranks and sampling rates (SRs), which is defined as the proportion of the known ele-

ments. The N-tubal ranks are set to r � ones N N � 1ð Þ=2;1ð Þ r ¼ 1;2; . . . ;20ð Þ, and the SRs are set to 0:05� s s ¼ 1;2; � � � ;19ð Þ.
For each N-tubal rank and SR pair, we conduct 50 independent tests and calculate the success rate. Fig. 3 shows the success
codes of the WSTNN-based LRTC and TRPCA methods are available at https://yubangzheng.github.io/.

https://yubangzheng.github.io/


Table 3
The average PSNR, SSIM, and FSIM values for all 32 MSIs tested by the eight utilized LRTC methods.

SR 5% 10% 20% Time (s)

Method PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM

HaLRTC 14.90 0.242 0.648 21.43 0.537 0.773 32.90 0.892 0.933 13.64
LRTC-TVI 23.92 0.718 0.812 29.21 0.868 0.895 34.17 0.941 0.953 472.3
BCPF 30.47 0.785 0.884 35.66 0.903 0.936 39.62 0.944 0.962 642.7
logDet 16.99 0.309 0.679 31.27 0.780 0.894 40.81 0.968 0.977 46.31
TNN 17.64 0.332 0.692 30.90 0.780 0.894 39.60 0.962 0.974 46.14

PSTNN 19.56 0.264 0.526 32.95 0.809 0.882 40.77 0.962 0.973 63.48
t-TNN 28.32 0.779 0.874 35.45 0.942 0.954 42.67 0.985 0.987 24.79
WSTNN 32.03 0.881 0.930 38.74 0.977 0.979 45.70 0.994 0.994 75.31

Fig. 3. The success rates for synthetic data with a varying N-tubal rank and varying SR. The left two are the results of the TNN-based LRTC method [43] and
the proposed WSTNN-based LRTC method on three-way tensors. The right two are the results of the TNN-based LRTC method [43] and the proposed
WSTNN-based LRTC method on four-way tensors. The gray magnitude represents the success rates.

Table 2
Parameter settings of the proposed WSTNN-based LRTC method on different data.

Test Data a s

synthetic data completion three-way tensor (1,1,1)/3 (10,10,10)
four-way tensor (1,1,1,1,1,1)/6 (50,50,50,50,50,50)

real-world data completion three-way tensor HSI/MSI (0.001,1,1)/2.001 (100,100,100)
MRI (1,1,1)/3

four-way tensor CV (1,1,1,1,1,1)/6 (500,500,500,500,500,500)
HSV
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rates for various N-tubal ranks and SRs. It is obvious that under a varying N-tubal rank, the proposed WSTNN-based LRTC
method requires less sampling than the TNN-based method [43] to successfully recover the target tensor.

MSI completion. We test 32 MSIs in the dataset CAVE.4 All testing data are of size 256� 256� 31. Table 3 lists the mean
values of the PSNR, SSIM, and FSIM for all 32 MSIs recovered by different LRTC methods. As observed, the proposed method can
significantly outperform the compared methods in terms of all evaluation indices. To illustrate the visual quality, in Fig. 4, we
show one band in three tested data recovered by different methods with SR ¼ 10%. The proposed method is evidently superior
to the compared ones in the recovery of both abundant shape structure and texture information. The HSI completion results can
be found in the Appendix.

MRI completion. We test an MRI5 data set of size 181� 217� 181. Table 4 lists the values of the PSNR, SSIM, and FSIM of
the tested MRI recovered by the different LRTC methods. As observed, the proposed method significantly outperforms the com-
pared methods in terms of all evaluation indices. In Fig. 5, we show three slices obtained in different directions. It can be
observed that no matter which direction they are in, the proposed method is evidently superior to the compared ones in the
recovery of both abundant shape structure and texture information.

CV completion.We test the CV news6 of size 144� 176� 3� 50. For each frame, the missing elements of each channel have
the same location. Table 5 lists the values of the PSNR, SSIM, and FSIM of the tested CV recovered by different LRTC methods. As
4 http://www.cs.columbia.edu/CAVE/databases/multispectral.
5 http://brainweb.bic.mni.mcgill.ca/brainweb/selection_normal.html.
6 http://trace.eas.asu.edu/yuv/.

http://www.cs.columbia.edu/CAVE/databases/multispectral
http://brainweb.bic.mni.mcgill.ca/brainweb/selection_normal.html
http://trace.eas.asu.edu/yuv/


Original Observed HaLRTC [24] LRTC-TVI [23] BCPF [44] logDet [14] TNN [43] PSTNN [16] t-TNN [12] WSTNN

Fig. 4. The completion results of three selected MSIs with SR ¼ 10%. From top to bottom: the images located at the 31-st band in chart and stuffed toy,
feathers, and paints, respectively.

Original Observed HaLRTC [24] LRTC-TVI [23] BCPF [44] logDet [14] TNN [43] PSTNN [16] t-TNN [12] WSTNN

Fig. 5. The completion results of the MRI data with SR ¼ 20%. From top to bottom: the images located at the 70-th horizontal slice, the 100-th lateral slice,
and the 70-th frontal slice, respectively.

Table 4
The PSNR, SSIM, and FSIM values output by the eight utilized LRTC methods for MRI.

SR 5% 10% 20% Time (s)

Method PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM

HaLRTC 15.40 0.241 0.608 19.03 0.390 0.699 24.30 0.653 0.826 69.981
LRTC-TVI 19.36 0.597 0.702 22.84 0.748 0.805 28.19 0.891 0.908 1473.8
BCPF 22.37 0.426 0.734 23.81 0.495 0.758 24.96 0.552 0.779 1525.6
logDet 18.32 0.283 0.654 25.36 0.596 0.791 31.22 0.823 0.892 165.90
TNN 22.71 0.472 0.743 26.06 0.642 0.811 29.99 0.799 0.881 165.85

PSTNN 20.39 0.288 0.629 26.45 0.621 0.802 30.71 0.805 0.885 209.19
t-TNN 22.78 0.460 0.736 26.42 0.649 0.816 30.58 0.816 0.890 170.04
WSTNN 25.60 0.714 0.827 29.02 0.835 0.887 33.46 0.931 0.941 405.01
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observed, the proposed method has an overall better performance than that of the compared ones with respect to all evaluation
indices. In Fig. 6, we show one frame in the tested CV recovered by the eight compared methods with SR ¼ 10%. We observe
that the results obtained by the proposed method are superior to those obtained by the compared ones.

HSV completion. We test an HSV7 of size 120� 120� 33� 31. Specifically, this HSV has 31 frames, and each frame has 33
bands of wavelengths of from 400 nm to 720 nm with a 10 nm step [27]. Table 6 lists the values of the PSNR, SSIM, and FSIM of
the tested HSV recovered by different LRTC methods. As observed, the proposed method consistently achieves the highest val-
ues in terms of all evaluation indexes, e.g., no matter what the SR is set to, the proposed method achieves an approximately 4 dB
gain in the PSNR compared with the second-best method. In Fig. 7, we show two images located at different frames and different
bands in the HSV recovered by the eight compared methods with SR ¼ 5%. We observe that the proposed method is evidently
superior to the compared ones, especially in the recovery of texture information.
7 http://openremotesensing.net/knowledgebase/hyperspectral-video/.

http://openremotesensing.net/knowledgebase/hyperspectral-video/


Table 5
The PSNR, SSIM, and FSIM values output by the eight utilized LRTC methods for CVs.

CV SR 5% 10% 20% Time (s)

Method PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM

news
HaLRTC 12.59 0.413 0.649 17.67 0.596 0.767 23.92 0.816 0.886 42.53
LRTC-TVI 18.31 0.640 0.731 20.16 0.728 0.802 23.51 0.858 0.901 768.8
BCPF 25.49 0.779 0.881 28.05 0.857 0.919 29.87 0.897 0.939 961.3
logDet 13.69 0.288 0.836 18.03 0.534 0.782 33.11 0.944 0.969 92.16
TNN 21.23 0.659 0.832 29.12 0.893 0.940 32.75 0.943 0.968 97.32

PSTNN 23.03 0.624 0.884 29.69 0.893 0.942 33.37 0.947 0.970 98.38
t-TNN 20.65 0.605 0.804 26.92 0.844 0.919 31.91 0.934 0.965 91.36
WSTNN 26.92 0.892 0.929 30.67 0.947 0.964 34.61 0.976 0.983 324.2

Table 6
The PSNR, SSIM, and FSIM values output by the eight utilized LRTC methods for an HSV.

SR 5% 10% 20% Time (s)

Method PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM

HaLRTC 9.008 0.115 0.519 10.46 0.194 0.565 13.41 0.338 0.652 162.77
LRTC-TVI 22.09 0.686 0.791 27.08 0.835 0.891 32.19 0.931 0.959 5121.5
BCPF 27.75 0.855 0.907 30.23 0.902 0.934 31.69 0.917 0.945 5840.6
logDet 31.01 0.912 0.948 38.94 0.975 0.984 44.52 0.991 0.995 446.61
TNN 33.68 0.946 0.968 38.02 0.974 0.984 42.94 0.989 0.993 487.95

PSTNN 32.93 0.934 0.960 38.53 0.975 0.985 43.41 0.989 0.994 423.32
t-TNN 29.43 0.894 0.931 34.37 0.957 0.971 40.11 0.986 0.990 391.87
WSTNN 37.61 0.979 0.986 43.67 0.994 0.996 49.11 0.997 0.998 1228.3

Original Observed HaLRTC [24] LRTC-TVI [23] BCPF [44] logDet [14] TNN [43] PSTNN [16] t-TNN [12] WSTNN

Fig. 6. The completion results at the 49-th frame of the CV news with SR ¼ 10%.
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5.2. Tensor robust principal component analysis

In this section, we evaluate the performance of the proposed WSTNN-based TRPCA method by synthetic data and HSI
denoising. The compared TRPCA methods include the SNN [9] and TNN [25].

Parameter selection. In all tests, the stopping criterion depends on the RelCha in two successive recovered tensors, i.e.,

RelCha ¼ kL pþ1ð Þ�L pð ÞkF
kL pð ÞkF

< 10�4. The tuning parameter k is set to
k ¼
X

16k1<k26N

ak1k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max nk1 ;nk2

� �
dk1k2

q withdk1k2 ¼
Y

s–k1 ;k2

ns:
Letting the threshold parameter s ¼ a:=b, the penalty parameter q is set to q ¼ 1=mean sð Þ. This means that only the weight a
and the threshold s need to be adjusted. Table 7 shows these two parameter settings for the proposed WSTNN-based TRPCA
method on different data, where a is chosen by the weight selection strategy presented in Section 3, s is set to
x� ones N N � 1ð Þ=2;1ð Þ, and x is empirically selected from a candidate set: 1;10;50;100;500;1000;10000f g.

Synthetic data denoising.We test three-way tensors of size 30� 30� 30 and four-way tensors of size 30� 30� 30� 30
with different N-tubal ranks and random salt-pepper noise levels (NLs). The N-tubal ranks are set to
r � ones N N � 1ð Þ=2;1ð Þ r ¼ 1;2; . . . ;20ð Þ, and the NLs are set to 0:025� l l ¼ 1;2; � � � ;20ð Þ. For each N-tubal rank and NL pair,
we conduct 50 independent tests and calculate the success rate. Fig. 8 shows the success rates for varying N-tubal rank and
varying NL. The results illustrate that the proposed WSTNN-based TRPCA method is more robust and preferable than the
TNN-based method [25].

HSI denoising.We test theWashington DC Mall and Pavia University HSI data sets. The random salt-pepper NL is set to 0:2
and 0:4. Table 8 lists the PSNR, SSIM, and FSIM values of the tested HSIs recovered by different methods. From these results,
we observe that our method evidently performs better than the other competing ones in terms of all the evaluation mea-
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Fig. 8. The success rates for synthetic data with varying N-tubal rank and varying NLs. The left two are the results of the TNN-based TRPCA method [25] and
the proposed WSTNN-based TRPCA method on three-way tensors. The right two are the results of the TNN-based TRPCA method [25] and the proposed
WSTNN-based TRPCA method on four-way tensors. The gray magnitude represents the success rates.

Original Observed HaLRTC [24] LRTC-TVI [23] BCPF [44] logDet [14] TNN [43] PSTNN [16] t-TNN [12] WSTNN

Fig. 7. The completion results of an HSV with SR ¼ 5%. Top row: the image located at the 15-th band and the 7-th frame. Bottom row: the image located at
the 25-th band and the 30-th frame.

Table 8
The PSNR, SSIM, and FSIM values output by the three utilized TRPCA methods for HSIs.

HSI NL 0.2 0.4 Time (s)

Method PSNR SSIM FSIM PSNR SSIM FSIM

Washington DC Mall 256� 256� 150 SNN 31.48 0.927 0.950 28.19 0.848 0.902 79.822
TNN 43.87 0.992 0.994 35.82 0.953 0.973 172.81

WSTNN 50.49 0.999 0.999 42.29 0.993 0.995 385.39

Pavia University 256� 256� 87 SNN 28.14 0.877 0.899 26.16 0.787 0.834 56.238
TNN 38.97 0.983 0.988 35.42 0.958 0.975 120.28

WSTNN 39.21 0.995 0.997 36.48 0.988 0.993 243.89

Table 7
Parameter settings of the proposed WSTNN-based TRPCA method on different data.

Test Tensor a s

synthetic data denoising three-way tensor (1,1,1)/3 (10,10,10)
four-way tensor (1,1,1,1,1,1)/6 (50,50,50,50,50,50)

HSI denoising three-way tensor (0.001,1,1)/2.001 (100,100,100)

184 Y.-B. Zheng et al. / Information Sciences 532 (2020) 170–189
sures. In Fig. 9, we show one band in these two HSIs. As observed, our WSTNN-based TRPCA method achieves the best visual
results among those of the three compared methods in terms of both noise removal and detail preservation.
5.3. Parameter study and convergence analysis

In this section, we discuss the effects of the threshold parameter s and the convergence of the proposed ADMM in the
proposed LRTC and TRPCA problems. All tests are based on the HSI Washington DC Mall.

Effects of the threshold parameter.We set the SR to 10% in the completion tests and the NL to 0:4 in the denoising tests.
In addition, s ¼ x;x;xð Þ. The results are presented in Fig. 10(a). As observed, values of s that are too large or too small result
in failure, while moderate values yield the best results. This observation is consistent with the theoretical analysis. That is,



Original Observed SNN [9] TNN [25] WSTNN

Fig. 9. The denoising results of the HSIs Washington DC Mall and Pavia University with NL ¼ 0:4. Top row: the image located at the 150-th band in
Washington DC Mall. Bottom row: the image located at the 87-th band in Pavia University.

Fig. 10. (a) The PSNR values with respect to the iteration for different values of s. Left column: completion tests. Right column: denoising tests. (b) The
RelCha values with respect to the iteration for s ¼ 100;100;100ð Þ. Left column: completion tests. Right column: denoising tests.

Y.-B. Zheng et al. / Information Sciences 532 (2020) 170–189 185
for the completion tests, if s is too large (e.g., 10000;10000;10000ð Þ), all the singular values are replaced with 0, andthe algo-
rithm iterates only one step and outputs the partial observation tensor F . If the parameter s is too small (e.g., 10;10;10ð Þ),
the singular values obtained after performing the t-SVT (in Theorem 4) contain corrupted information, which is not consis-
tent with the low-rank prior of the underlying tensor. Similarly, for the denoising tests, if the parameter s is too large or too
small, the low-rank term becomes out of action. Under the guidance of Fig. 10(a), s is set to 100;100;100ð Þ in all experiments
conducted on real-world data.

Convergence analysis. Owing to the use of the ADMM framework and the convexity of the objective functions, the con-
vergence of the two developed algorithms is guaranteed theoretically. Empirically, this convergence can be visually observed
in Fig. 10(b), where s is set to 100;100;100ð Þ.

6. Conclusions

In this paper, we defined mode-k1k2 tensor unfolding, which is used to reorder the elements of an N-way tensor into
a three-way tensor, and then performed t-SVD on each mode-k1k2 unfolding tensor to depict the correlations along dif-
ferent modes. On this basis, we proposed the corresponding tensor N-tubal rank and its convex relaxation WSTNN. To
illustrate the effectiveness of the proposed N-tubal rank and WSTNN, we applied the WSTNN to two typical LRTR prob-
lems, i.e., LRTC and TRPCA problems, and proposed the WSTNN-based LRTC and TRPCA models. Meanwhile, two efficient
ADMM-based algorithms were developed to solve the proposed models. The numerical results demonstrated that the
proposed method effectively exploits the correlations along all modes while preserving the intrinsic structure of the
underlying tensor.

For future work, there are three directions. First, the mechanism of all low-rank models lies in the assumption that
the original data has a stronger low-rankness than the observed one. Therefore, the proposed method tends to fail when
the observed data have the same, or even stronger, low-N-tubal-rank property compared with the original one. One chal-
lenging example is the missing slice problem, which usually results in observed data with a lower N-tubal rank than that
of the original data. To solve this issue and further improve the completion performance, we plan to combine the pro-
posed global low-N-tubal-rankness prior to some other priors, such as the piecewise smoothness prior, nonlocal self-
similarity prior, and deep prior. Second, we plan to establish some nonconvex relaxations [39,40,42] to further improve
the performance of the proposed method. Third, for MSIs/HSIs, we plan to combine the proposed WSTNN with the
recent excellent MSI/HSI processing methods, such as FastHyDe [49] and NG-meet [10], to enhance the ability to recover
the target HSI.
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Appendix A

1. Examples of Definition 5.

For a four-way tensor X 2 R2�3�3�2, its i2; i4ð Þ-th mode-13 slice and i1; i3ð Þ-th mode-24 slice are
X13 ¼ X 1; i2;1; i4ð Þ X 1; i2;2; i4ð Þ X 1; i2;3; i4ð Þ
X 2; i2;1; i4ð Þ X 2; i2;2; i4ð Þ X 2; i2;3; i4ð Þ

	 

and X24 ¼

X i1;1; i3;1ð Þ X i1;1; i3;2ð Þ
X i1;2; i3;1ð Þ X i1;2; i3;2ð Þ
X i1;3; i3;1ð Þ X i1;3; i3;2ð Þ

0
B@

1
CA;
respectively.

2. Examples of Definition 6.

For a four-way tensor X 2 R2�3�3�2, its mode-24 unfolding tensor X 24ð Þ 2 R3�2�6 can be expressed as
X 24ð Þ :; :;1ð Þ ¼
X 1;1;1;1ð Þ X 1;1;1;2ð Þ
X 1;2;1;1ð Þ X 1;2;1;2ð Þ
X 1;3;1;1ð Þ X 1;3;1;2ð Þ

0
B@

1
CA; X 24ð Þ :; :;4ð Þ ¼

X 1;1;2;1ð Þ X 1;1;2;2ð Þ
X 1;2;2;1ð Þ X 1;2;2;2ð Þ
X 1;3;2;1ð Þ X 1;3;2;2ð Þ

0
B@

1
CA;

X 24ð Þ :; :;2ð Þ ¼
X 2;1;1;1ð Þ X 2;1;1;2ð Þ
X 2;2;1;1ð Þ X 2;2;1;2ð Þ
X 2;3;1;1ð Þ X 2;3;1;2ð Þ

0
B@

1
CA; X 24ð Þ :; :;5ð Þ ¼

X 2;1;2;1ð Þ X 2;1;2;2ð Þ
X 2;2;2;1ð Þ X 2;2;2;2ð Þ
X 2;3;2;1ð Þ X 2;3;2;2ð Þ

0
B@

1
CA;

X 24ð Þ :; :;3ð Þ ¼
X 3;1;1;1ð Þ X 3;1;1;2ð Þ
X 3;2;1;1ð Þ X 3;2;1;2ð Þ
X 3;3;1;1ð Þ X 3;3;1;2ð Þ

0
B@

1
CA; X 24ð Þ :; :;6ð Þ ¼

X 3;1;2;1ð Þ X 3;1;2;2ð Þ
X 3;2;2;1ð Þ X 3;2;2;2ð Þ
X 3;3;2;1ð Þ X 3;3;2;2ð Þ

0
B@

1
CA:
3. Proof of Theorem 2. (N-tubal rank and Tucker rank)

Proof. Apparently, the mode-k1k2 unfolding tensor of X can be expressed as
X k1k2ð Þ ¼
Xrk1
ik1¼1

Xrk2
ik2¼1

ak1
ik1
� ak2

ik2
� cik1 ik2 ;
where cik1 ik2 ¼ vec Cik1 ik2
� �

with



Fig. 11. The completion results of the HSIs Washington DC Mall and Pavia University with SR ¼ 5%. Top row: the image located at the 70-th band in
Washington DC Mall. Bottom row: the image located at the 85-th band in Pavia University.

Table 9
The PSNR, SSIM, and FSIM values output by the eight utilized LRTC methods for HSIs.

HSI SR 5% 10% 20% Time (s)

Method PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM

Washington DC Mall 256� 256� 150 HaLRTC 20.72 0.452 0.665 24.74 0.656 0.798 29.38 0.848 0.909 76.487
LRTC-TVI 21.93 0.437 0.605 25.89 0.638 0.759 29.11 0.824 0.893 2348.2
BCPF 29.07 0.820 0.895 31.89 0.895 0.934 32.77 0.911 0.943 2955.9
logDet 25.22 0.685 0.848 32.50 0.911 0.947 37.99 0.969 0.981 237.18
TNN 28.87 0.831 0.907 32.41 0.913 0.949 36.85 0.963 0.977 294.46

PSTNN 28.15 0.793 0.886 32.63 0.911 0.946 37.39 0.965 0.978 306.16
t-TNN 33.23 0.932 0.959 43.96 0.994 0.996 56.99 0.997 0.998 184.23
WSTNN 40.54 0.988 0.992 50.31 0.999 0.999 58.89 0.999 0.999 544.26

Pavia University 256� 256� 87 HaLRTC 15.01 0.043 0.517 24.02 0.611 0.736 27.59 0.788 0.861 49.745
LRTC-TVI 23.26 0.554 0.652 25.80 0.713 0.785 29.19 0.866 0.903 1427.3
BCPF 27.64 0.726 0.835 30.39 0.836 0.898 32.07 0.884 0.928 1603.6
logDet 26.90 0.684 0.835 32.69 0.876 0.932 39.34 0.959 0.977 140.96
TNN 28.12 0.750 0.865 32.15 0.874 0.931 37.49 0.950 0.972 168.44

PSTNN 23.18 0.449 0.737 32.97 0.872 0.932 38.84 0.955 0.974 181.04
t-TNN 33.38 0.928 0.957 41.15 0.988 0.993 50.83 0.997 0.998 101.49
WSTNN 37.26 0.976 0.983 44.48 0.995 0.997 53.92 0.999 0.999 258.78
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Cik1 ik2 ¼
Xr1
i1¼1
� � �

Xrk1�1
ik1�1¼1

Xrk1þ1
ik1þ1¼1

� � �
Xrk2�1

ik2�1¼1

Xrk2þ1
ik2þ1¼1

� � �
XrN
iN¼1

G i1; i2; � � � ; iNð Þa1
i1
� � � � � ak1�1

ik1�1
� ak1þ1

ik1þ1
�

� � � � ak2�1
ik2�1
� ak2þ1

ik2þ1
� � � � � aN

iN
:

Letting �X k1k2ð Þ ¼ fft X k1k2ð Þ; ½�;3
� �

, then �X k1k2ð Þ can be expressed as
�X k1k2ð Þ ¼
Xrk1
ik1¼1

Xrk2
ik2¼1

ak1
ik1
� ak2

ik2
� �cik1 ik2 ;
where �cik1 ik2 ¼ fft cik1 ik2

� �
. Letting �cik1 ik2 ¼ �c1ik1 ik2

;�c2ik1 ik2
� � � �cdik1 ik2

� �T
and supposing rk1 ¼min rk1 ; rk2

� �
, then the j-th

8j ¼ 1;2; � � � ; dð Þ frontal slice of �X k1k2ð Þ can be expressed as
X jð Þ
k1k2ð Þ ¼ ak1

1 bj
1

� �T
þ ak1

2 bj
2

� �T
þ � � � þ ak1

rk1
bj
rk1

� �T
;

where bj
ik1
¼Prk2

ik2¼1
�cjik1 ik2

ak2
ik2

ik1 ¼ 1;2; � � � ; rk1
� �

. This implies that the rank of each frontal slice of �X k1k2ð Þ is at most r1. Thus, the

theorem holds. �

4. Proof of Theorem 3 (N-tubal rank and CP rank).

Proof. The X k1k2ð Þ has the following CP decomposition
X k1k2ð Þ ¼
Xr
i¼1

ak1
i � ak2

i � ci;



Fig. 12. The PSNR, SSIM, and FSIM values of each band of the recovered HSI Washington DC Mall output by the eight LRTC methods with SR ¼ 5%.
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Letting �X k1k2ð Þ ¼ fft X k1k2ð Þ; ½�;3
� �

, then �X k1k2ð Þ has the following CP decomposition
8 http
�X k1k2ð Þ ¼
Xr
i¼1

ak1
i � ak2

i � �ci;
where �ci ¼ fft cið Þ. Letting �ci ¼ �c1i ; �c
2
i � � ��cdi

� �
, then the j-th frontal slice of �X k1k2ð Þ can be expressed as
X jð Þ
k1k2ð Þ ¼ �cj1a

k1
1 ak2

1

� �T
þ �cj2a

k1
2 ak2

2

� �T
þ � � � þ �cjra

k1
r ak2

r

� �T
:

This implies that the rank of each frontal slice of �X k1k2ð Þ is at most r, and it is equal to r if the vector sets Vk1 or Vk2 is linearly
independent and the j-th element of each �ci is non-zero. Thus, the tubal rank of X k1k2ð Þ (the k1; k2ð Þ-th element of the N-tubal
rank of X) is at most r, and it is equal to r if the aforementioned conditions are satisfied. �

5. HSI completion.

We test HSIs Washington DC Mall8 and Pavia University8. Table 9 lists the values of the PSNR, SSIM, and FSIM of these two
tested HSIs recovered by different LRTC methods. We observe that compared with other methods, the proposed method con-
sistently achieves the highest values in terms of all evaluation indexes, e.g., when SR is set as 5% or 10%, the proposed method
achieves around 7 dB gain in PSNR beyond the second-best method in the test on Washington DC Mall. For visual comparison, in
Fig. 11, we show one band in these two testing HSIs recovered by the eight utilized LRTC methods with SR ¼ 5%. As observed,
the proposed method can produce visually superior results than the compared methods. Fig. 12 shows the PSNR, SSIM and FSIM
values of each band of the recovered HSIWashington DC Mall obtained by the eight compared LRTC methods with SR ¼ 5%. From
this figure, it is easy to observe that the proposed method achieves the best performance in all bands among eight LRTC
methods.
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