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a b s t r a c t 

Outdoor videos captured in rainy weather may be significantly corrupted by the unde- 

sired rain streaks, which severely affect the video processing tasks in outdoor computer 

vision systems. In this paper, we propose a tensor-based video rain streaks removal 

method using the nonlocal low-rank regularization. Specifically, we first divide videos into 

overlapped spatial–temporal patches. Then for each patch, we group its nonlocal similar 

spatial–temporal patches to form a third-order tensor. To model the clean videos, we 

characterize the wealth redundancy by adopting the tensor nuclear norm to regularize 

the low-rankness of the third-order tensors formed by similar spatial–temporal patches 

of clean videos. We also consider the piecewise smoothness and the temporal continuity 

of clean videos and utilize the unidirectional total variation to enhance the smoothness 

and continuity. Moreover, as rain streaks are sparse and smooth along the rain direction, 

we model the rain streaks by employing an � 1 norm and the unidirectional total variation 

penalty to boost the sparsity and directional smoothness, respectively. We develop an 

efficient alternating direction method of multipliers to solve the proposed model. Experi- 

mental results on both synthetic and real rainy videos show that our method outperforms 

the state-of-the-art methods quantitatively and qualitatively. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Outdoor videos taken under raining conditions are often corrupted by the rain streaks which have the bright intensity

and also interfere with the neighbor pixels. These factors will cause several types of visibility degradation in the captured

videos, like obstructed objects, distorted colors, and blurred scenes. Such degradation may significantly affect the perfor-

mance of various tasks in video processing and outdoor vision systems, such as feature extraction, classification [1] , object

tracking [2,3] , recognition [4] , and incident detection [5] . Therefore, rain streaks removal is essential for many computer

vision applications and has drawn much attention in recent research [6–11] . 

The key issue for rain streaks removal is to explore the intrinsic properties for both the rain streaks and clean videos and

utilize their discriminative structures to separate the rain-free videos. Many existing methods design their algorithms along

this line and extract the prior knowledge for rain streaks and clean videos from different aspects, such as the chromatic

property of rain streaks [12] , the spatiotemporal property of rain and non-rain pixels [13] , the similarity and repeatabil-

ity of rain patterns, [14] , and the low-rankness of clean videos [15] . The current state-of-the-art deraining method [16]
∗ Corresponding author. 
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Fig. 1. Comparing the low-rankness of a clean video with dynamic scenes and its similar-patch-formed tensor in the top and bottom rows, respectively. 

The first column displays the original video, the nonlocal similar patches, and the tensor formed by a nonlocal similar patch group. From the second to 

fourth column displays: the singular values of the mode- n (n = 1 , 2 , 3) unfolding matrix of the corresponding tensors, respectively. The last column is 

obtained by first applying discrete Fourier transformation to the tensors along their third modes, then computing the singular values of each frontal slices 

(see Section 2 for the details). 
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Fig. 2. Illustration for the nonlocal similar spatial–temporal patches in a video. For a red key patch, many green nonlocal similar patches can be found in 

this video. These similar patches can form a third-order tensor with the spatial mode, temporal mode, and similar-patch-number mode. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

characterized the spatial-temporal correlation of clean videos by assuming the whole clean videos to be low-rank tensors.

However, when video frames contain moving objects and highly dynamic scenes, the global low-rankness assumption of

clean videos cannot be satisfied (see the first row of Fig. 1 ). So the detail information of videos may not be well preserved.

To better model the clean videos, in this paper, we adopt the nonlocal self-similarity (NSS) [17] to characterize the

spatial-temporal redundancy of clean videos. The NSS prior refers to the fact that for a spatial-temporal local patch, which

is the third-order subcube of the video tensor ( Fig. 2 ), many similar spatial–temporal patches can be found across this

whole video. To rationally exploit the NSS property, we first divide videos into overlapped spatial–temporal patches, and

then for each key patch, we group its nonlocal similar spatial–temporal patches to form a third-order tensor. Such tensors

built within clean videos reflect both the NSS and the spatial–temporal correlations (see Fig. 2 ) and always have low-rank

structures (see Fig. 1 ). To characterize the low-rank property, the sum of nuclear norm (SNN) [18] is usually leveraged

for regularizing the low-rankness of tensors. However, unfolding a tensor along one mode will often break the intrinsic

structures of tensors. Therefore, we utilize the tensor nuclear norm (TNN) [19] (see Section 2 ) to enhance the low-rankness

so that the structure of tensors can be well preserved. To fully explore the intrinsic priors, we also consider the spatial

and temporal continuity of clean videos and use the unidirectional total variation (UTV) regularizers to respectively enhance

spatial and temporal smoothness. Moreover, since rain streaks are sparse and smooth along the rain direction, the l 1 norm

and the UTV penalty are employed to characterize the sparsity and directional smoothness, respectively. We perform the

proposed model on each similar-patch-formed tensor and then aggregate the results to reconstruct the final rain-free video.

In this paper, the proposed method has three main contributions which are summarized as follows: 

• We consider the NSS prior for video rain streaks removal, which fully exploits the redundancy of nonlocal similar patches.

To the best of our knowledge, this is the first attempt to use NSS prior to remove rain streaks from videos. 
• To characterize the redundancy of nonlocal similar patches, we propose to use the TNN, which can efficiently preserve

the intrinsic structures, to regularize the similar-patch-formed tensors with their low-rankness, and build a convex model

for videos rain streaks removal. 
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• To tackle the proposed model, we develop an efficient alternating direction method of multipliers (ADMM). The conver-

gence of the proposed algorithm can be theoretically guaranteed under ADMM framework. The extensive experiments

on both synthetic and real rainy videos demonstrate that our method performs superiorly over the compared state-of-

the-art methods qualitatively and quantitatively. 

This paper is organized as follows. The basic notations are introduced in Section 2 . In Section 3 , some related works are

briefly discussed. Our method is proposed in Section 4, Section 5 presents the numerical algorithm. The experimental results

are shown in Section 6 . At last, the conclusion is given in Section 7 . 

2. Preliminaries 

In this paper, tensors are denoted by bold calligraphic letters, e.g., X . Matrices are denoted by uppercase letters, e.g., X .

Vectors are denoted by bold lowercase letters, e.g., x , and scalars are denoted by lowercase letters, e.g., x . 

The squared Frobenius norm of a third-order tensor X ∈ R 

n 1 ×n 2 ×n 3 is defined as ‖ X ‖ 2 
F 

= 

∑ n 1 
i =1 

∑ n 2 
j=2 

∑ n 3 
k =3 

x 2 
i jk 

, where x ijk 

is the ( i, j, k )-th component of X . 

The mode-k unfolding of a tensor X ∈ R 

n 1 ×n 2 ×···×n l can be denoted as a matrix X (k ) ∈ R 

k ×∏ 

i � = k n i , where the (i 1 , i 2 , . . . , i l ) -th

entry of X corresponds to the ( i k , j )th entry of X ( k ) with j = 

∑ l 
c=1 ,c � = k 

[
(i c − 1) 

∏ c−1 
m =1 ,m � = k n m 

]
. 

Slices are two-dimensional sections of a tensor, defined by fixing all but two indices. For a third-order tensor X ∈
R 

n 1 ×n 2 ×n 3 , the frontal slices are the matrix with the third index fixed, denote as X : : k ( k = 1 , 2 , . . . , n 3 ). 

For X ∈ R 

n 1 ×n 2 ×n 3 , we denote ̂ X as the tensor by applying discrete Fourier transformation to X along its third mode,

which is herein denoted by the command in Matlab fft , and 

̂ X = fft ( X , [] , 3) . By this way, X can also be computed from̂ X by using inverse fast Fourier transformation (FFT), i.e., X = ifft ( ̂  X , [] , 3) . 

In this paper, the tensor nuclear norm (TNN) of a tensor X ∈ R 

n 1 ×n 2 ×n 3 is denoted as ‖ X ‖ ∗ = 

1 
n 3 

∑ n 3 
i =1 

‖ ̂  X :: i ‖ ∗, i.e., ‖ X ‖ ∗
is the average of the nuclear norm of all the frontal slices of ̂ X . 

For more information about tensors, please refer to [19–21] for the extensive overview. 

3. Related works 

According to the different data formats, existing algorithms for rain streaks removal can be divided into two categories.

The first group of methods aims to remove rain streaks from a single observed rainy image. Kang et al. [22] proposed their

method based on morphological component analysis (MCA) and then decomposed rainy images into clean image and rain

streaks. Luo et al. [23] detected and removed rain pattern using the dictionary learning technique. Li et al. [24] removed the

rain effects by adopting a patch-based Gaussian mixture model (GMM) prior of both the clean images and rain streaks in

a single image. Deng et al. [25] utilized the directional global sparse priors in their deraining model. In recent years, some

deep learning based methods [26–29] have drawn much attentions and achieved impressive performances in rain streak

removal task. Generally, they first trained large amount of images to learn the deep features of both rain layers and clean

images and then removed the static rain streaks through the tailored deep networks. 

Another group of approaches focuses on the video rain streaks removal problem. Garg and Nayar [4,7] first proposed

to alternate the camera settings so that the obtained videos could avoid the degradation from rain drops. In the last two

decades, various efficient prior knowledge has been explored for video deraining task. Barnum et al. [30] detected and

separated the rain streaks in Fourier domain where the rain had united visual effects. Bossu et al. [31] assumed that the

histogram of directions of rain streaks could be modeled as the Gaussian distribution, and then they adopted the GMM to

characterize rain streaks. Santhaseelan and Asari [32] utilized the phase congruency features to detect the rain streaks, then

reconstructed the rain-free videos based on the intensity information. Ren et al. [33] divided the rain streaks into sparse and

dense categories and then proposed their method using the matrix decomposition technique. Chen et al. [34] proposed their

method based on deep convolutional neural networks. They decomposed the scene into depth consistent units by superpixel

segmentation (SP) and applied the alignment of clean contents at the SP level. Liu et al. [35] built a joint deep recurrent

convolutional networks to remove rain effects based on the assumption that rain streaks has low light transmittance. To

characterize the wealth redundancy in videos, current state-of-the-art methods often dealt with the temporal correlation

via a low-rank assumption on the whole clean video. Kim et al. [9] computed an initial rain map from the difference of

the adjacent frames and refined the rain map by a pre-trained classifier. Then the rain-free videos were recovered via low-

rank matrix completion. Wei et al. [36] adopted the Mixture of Gaussians (MOG) distribution to model the rain streaks, and

decomposed the clean video into the low-rank background and smooth foreground. Li et al. [37] removed the rain streaks

using the similar decomposition with [36] , while they depicted the rain streaks as the combination of multiscale features.

Jiang et al. [16] proposed a tensor-based deraining method which considered the discriminative smoothness priors. They

characterized the spatial–temporal correlation by assuming whole clean videos to be low-rank tensors. It is worth noting

that the above methods almost assume the whole clean videos is low-rank. However, when the video captured with moving

objects and dynamic scenes, the global low-rank assumption of the clean video will not be satisfied (see Fig. 1 ), thus the

diverse structures in videos may not be well recovered. 

To better model the clean videos and characterize the redundancy of videos in both spatial and temporal domains, in this

paper, we propose a tensor-based deraining method exploiting the NSS prior of clean videos. Instead of assuming the whole
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rain-free video to be low-rank, we consider the low-rankness of tensors formed by similar patch groups within clean videos.

In addition, the UTV penalties are also employed to enhance the directional smoothness of rain streaks and the piecewise

smoothness and temporal continuity of clean videos. The proposed method will be presented in the next section. 

4. The proposed method 

Generally, an observed rainy video can be formulated as a linear combination of the rain-free video and the rain streaks

part 

O = V + R , (1)

where O , V , R ∈ R 

n h ×n w ×n t are three tensors corresponding to the rainy video, clean video, and rain streaks, respectively.

The rain streaks removal task is an ill-posed problem which aims to recover the unknown clean video V and rain streaks R
from a given O . To solve this problem, we propose a tensor-based video deraining method combining the UTV and nonlocal

low-rank regularization. 

For an observed rainy video O ∈ R 

n h ×n w ×n t with the spatial resolution n h × n w 

and the frame number n t , we firstly

sweep across the whole video tensor along three directions with overlaps, and collect a group of spatial–temporal patches

{ C i jk } ⊂ R 

ω ×ω ×t , where 1 ≤ i ≤ n h − ω + 1 , 1 ≤ j ≤ n w 

− ω + 1 , 1 ≤ k ≤ n t − t + 1 , and ω and t are the spatial size and the

frame number, respectively, of each spatial–temporal patch. Moreover, A subset of { C i jk } is treated as key patches which are

selected by sweeping across the tensor along three directions with the size of overlaps being 1. We further lexicographically

rearrange the frontal slices of each C i jk as column vectors, thus each C i jk can be represented by a 2D patch, denoted as

 i jk ∈ R 

ω 2 ×t , and all the C i jk can be rearranged to form a set of 2D patches. Due to the NSS property, we can search the

most similar m − 1 ( m > 1) patches for each key patch and stack these patches (including this key patch) to build a third-

order tensor denoted as O i ∈ R 

ω 2 ×t×m , where i is the index of key patches. By this way, the nonlocal similar patches of all

key patches can construct a set of tensors { O i } . 
To estimate the clean video and rain streaks, we can first recover the corresponding patch groups of clean videos { V i } and

rain streaks { R i } from the rainy observation { O i } , then aggregate the results to reconstruct the V and R . For the i th group,

we address the rain streaks removal problem as finding the decomposition of O i by solving the following optimization

problem 

min 

V i , R i 

L 1 ( V i ) + L 2 ( R i ) , s.t. O i = V i + R i , O i ≥ R i ≥ 0 , (2)

where L 1 ( · ) and L 2 ( · ) are the regularizations for V i and R i , respectively. We would further explore and analyze the priors

to determine the appropriate L 1 and L 2 regularizations so that V i and R i can be well distinguished. 

Prior knowledge for V i . V i reflects both the NSS property and the spatial–temporal correlations of clean videos and always

possesses the low-rank structure. We thus consider the low-rankness of the nonlocal similar patch group V i , and regularize

it with TNN. TNN has been proved to be more effective than the SNN for characterizing the low-rankness of tensors [19] .

And only one parameter is needed when minimizing TNN. Moreover, since the clean videos are piecewise smooth in the

spatial domain and consist of continuous frames, we additionally regularize the rain-free videos with UTV penalties for the

horizontal smoothness and the temporal continuity. Note that raindrops often fall down from top to the bottom due to the

gravity, we assume the rain directions are uniform and nearly vertical in this paper. Actually, when rain directions are highly

oblique, our method can still remove the rain streaks, which will be further discussed in our experiments in Section 6 . In

addition, we do not consider the piecewise smoothness of clean videos along rain direction, because the rain steaks maintain

a stronger smooth property along this direction [16] . Therefore, under the assumption of vertical rain streaks, we define L 1
as 

L 1 ( V i ) = ‖ V i ‖ ∗ + α1 ‖ D x V i ‖ 1 + α2 ‖ D t V i ‖ 1 , (3)

where ‖ · ‖ ∗ is the TNN defined in Section 2 , ‖ · ‖ 1 is the � 1 norm which calculates the sum of absolute values of all

entries, α1 , α2 > 0 are two positive parameters, and D x , D t : R 

ω 2 ×t×m → R 

ω 2 ×t×m are defined as the operators that compute

the differential values of horizontal and temporal directions in the original spatial–temporal patches. Specifically, we define

{ V 

( j) 
i 

} m 

j=1 
∈ R 

ω ×ω ×t as the spatial–temporal patches reshaped from the frontal slices of tensor V i . We further respectively

define ∇ x , ∇ t : R 

ω ×ω ×t → R 

ω ×ω ×t as the unidirectional first-order difference operators of horizontal and temporal directions

for tensors. Then by reshaping the tensors in the sets {∇ x V 

( j) 
i 

} m 

j=1 
and {∇ t V 

( j) 
i 

} m 

j=1 
as 2D matrices with size ω 

2 × t and

stacking them, we can construct D x V i and D t V i , respectively. 

Prior knowledge for R i . Since the number of rain pixels is often less than that of clean pixels and the rain streaks

often have bright intensity, we assume R to be a sparse tensor. Obviously, R i preserves the sparsity of rain streaks, thus

we use the l 1 norm to regularize R i in our model. Additionally, we assume the directions of rain streaks are nearly uniform

and vertical, thus the rain streaks naturally have strong smoothness along the vertical direction, and we regularize the rain

streaks with the UTV penalty for the directional smoothness. Therefore, the regularization L 2 then can be defined as 

L 2 ( R i ) = α3 ‖ D y R i ‖ 1 + α4 ‖ R i ‖ 1 , (4)

where α3 , α4 > 0 are the positive parameters, D y : R 

ω 2 ×t×m → R 

ω 2 ×t×m is the operator to compute the differential values of

vertical direction in the original spatial–temporal patches. Here D y is defined similarly to D x and D t , i.e., D y R i is constructed
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by reshaping the tensors {∇ y R 

( j) 
i 

} m 

j=1 
as matrices and stacking them into a 3-order tensor, where ∇ y and R 

( j) 
i 

are the

first-order difference operator of vertical direction and the spatial–temporal patch reshaped from the j th frontal slice of R i ,

respectively. 

By incorporating (3) and (4) into (2) , for the i th group of nonlocal similar patches, we have the following optimization

model 

min 

V i , R i 

‖ V i ‖ ∗ + α1 ‖ D x V i ‖ 1 + α2 ‖ D t V i ‖ 1 + α3 ‖ D y R i ‖ 1 + α4 ‖ R i ‖ 1 , 

s.t. O i = V i + R i , O i ≥ R i ≥ 0 . (5) 

It is worth mentioning that all the variables in our model are the tensors built by the similar patch groups instead of

the original videos, which is much different between the work of [16] . The work [16] considered holistic low-rankness of

the clean videos, that are not always satisfied especially when there are moving objects and dynamic background in videos.

Our work considers the NSS [38] prior and fully exploits the redundancy of nonlocal similar patches of the clean videos.

The NSS is a more general prior which is satisfied even when there are moving objects and dynamic background in clean

videos. For example, in Fig. 1 , we can observe that the low-rankness of the holistic clean video is not significant while the

low-rankness of nonlocal similar patches is significant. Moreover, Our method adopts the TNN that is more effective than

the SNN employed in [16] . 

When all V i ’s are recovered by solving (5) , we can reconstruct the final clean V by aggregating all V i s to compute the

average intensity values for each pixel. The efficient numerical algorithm for the proposed model will be introduced in the

next section. 

5. Numerical algorithms 

The proposed model (5) is a convex optimization problem and easy to be solved by many efficient solvers, such as Breg-

man method [39] , proximal splitting method, primal-dual methods [40,41] , and ADMM [42] . In this paper, we develop an

efficient ADMM algorithm to tackle the proposed model. The other methods can also be applied and implemented effec-

tively. 

We first introduce some auxiliary variables U , W , M , N , and P into (5) . For the i th group of nonlocal similar patches,

we can then rewrite the problem as the following equivalent optimization problem 

min 

V i , R i , U , 
W , M , N , P 

‖ U ‖ ∗ + α1 ‖ W ‖ 1 + α2 ‖ M ‖ 1 + α3 ‖ N ‖ 1 + α4 ‖ P ‖ 1 , 

s.t. U = V i , W = D x V i , M = D t V i , N = D y R i , 

P = R i , O i = V i + R i , O i ≥ R i ≥ 0 . 

(6) 

By attaching the Lagrangian multipliers { �1 , �2 , �3 , �4 , �5 , �6 }, the augmented Lagrangian function for (6) can be

formulated as 

L ( V i , R i , U , W , M , N , P , �1 , �2 , �3 , �4 , �5 , �6 ) 

= ‖ U ‖ ∗ + α1 ‖ W ‖ 1 + α2 ‖ M ‖ 1 + α3 ‖ N ‖ 1 + α4 ‖ P ‖ 1 

+ 

β

2 

‖ U − V i + 

�1 

β
‖ 

2 
F + 

β

2 

‖ W − D x V i + 

�2 

β
‖ 

2 
F + 

β

2 

‖ M − D t V i + 

�3 

β
‖ 

2 
F 

+ 

β

2 

‖ N − D y R i + 

�4 

β
‖ 

2 
F + 

β

2 

‖ P − R i + 

�5 

β
‖ 

2 
F + 

β

2 

‖ O i − V i − R i + 

�6 

β
‖ 

2 
F , (7) 

where β is a positive scalar. In (7) , the unknown variables can be divided into two groups ( U , W , M , N , P ) and ( V i , R i ) .

We can solve them alternatively within ADMM framework. Firstly, we keep the variables in ( V i , R i ) fixed and solve the

variables in another group. To begin with, we can update U by solving the following sub-problem 

min 

U 
‖ U ‖ ∗ + 

β

2 

‖ U − V i + 

�1 

β
‖ 

2 
F . (8) 

Here ‖ · ‖ ∗ is the tensor nuclear norm (TNN) defined in Section 2 . Problem (8) can be efficiently solved by using the discrete

Fourier transform [19] and the singular value thresholding (SVT). Specifically, we obtain each frontal slice of U 

k +1 via 

̂ U 

k +1 
:: j 

= SVT 

⎛ ⎝ [ ̂  V 

k 
i ] :: j −

̂ 

[�
k 
1 ] :: j 

β
, 

1 

β

⎞ ⎠ , j = 1 , . . . , m, (9) 

where SVT is the soft-thresholding operation of singular values. Then we can apply inverse FFT to obtain U . Please refer to

[19,43] for more details. Here the computational cost of updating U 

k +1 is O (ω 

2 tm log m + m min (ω 

2 t 2 , ω 

4 t)) . 
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The sub-problems for W , M , N , and P can be solved by the same optimization problem, which can be written as the

following formulation 

min 

X 
ρ‖ X ‖ 1 + 

μ

2 

‖ X − Y ‖ 

2 
F , (10)

where ρ and μ are positive scalars. This problem can be solved by applying the operation as follows 

X = S ρ
μ
( Y ) , (11)

where S ( · ) is performed componentwisely and defined as 

S ρ
μ
(y ) = 

{ 

(
| y | − ρ

μ

)
· sign (y ) , | y | > 

ρ

μ
;

0 , otherwise, 

(12)

where sign (a ) is 1 if a > 0 and −1 otherwise. Then W , M , N , and P can be updated by the following closed-form solu-

tions 

W 

k +1 = S α1 
β

(
D x V 

k 
i −

�k 
2 

β

)
, M 

k +1 = S α2 
β

(
D t V 

k 
i −

�k 
3 

β

)
, 

N 

k +1 = S α3 
β

(
D y R 

k 
i −

�k 
4 

β

)
, P 

k +1 = S α4 
β

(
R 

k 
i −

�k 
5 

β

)
. (13)

The computational cost of updating W , M , N , and P is O ( ω 

2 tm ). 

To solve V i and R i , we keep the variables ( U , W , M , N , P ) fixed and minimizing (7) with respect to V i and R i . Obvi-

ously, they can be jointly solved by the following least squares problem 

min 

V i , R i 

β

2 

‖ U − V i + 

�1 

β
‖ 

2 
F + 

β

2 

‖ W − D x V i + 

�2 

β
‖ 

2 
F + 

β

2 

‖ M − D t V i + 

�3 

β
‖ 

2 
F 

+ 

β

2 

‖ N − D y R i + 

�4 

β
‖ 

2 
F + 

β

2 

‖ P − R i + 

�5 

β
‖ 

2 
F + 

β

2 

‖ O i − V i − R i + 

�6 

β
‖ 

2 
F . (14)

The problem (14) is equivalent to the following vectorized formulation 

min 

V i , R i 

β

2 

‖ vec ( U ) − vec ( V i ) + vec 

(
�1 

β

)
‖ 

2 
2 + 

β

2 

‖ vec ( W ) − vec (D x V i ) + vec 

(
�2 

β

)
‖ 

2 
2 

+ 

β

2 

‖ vec ( M ) − vec (D t V i ) + vec 

(
�3 

β

)
‖ 

2 
2 + 

β

2 

‖ vec ( N ) − vec (D y R i ) + vec 

(
�4 

β

)
‖ 

2 
2 

+ 

β

2 

‖ vec ( P ) − vec ( R i ) + vec 

(
�5 

β

)
‖ 

2 
2 + 

β

2 

‖ vec ( O i ) − vec ( V i ) − vec ( R i ) + vec 

(
�6 

β

)
‖ 

2 
2 , (15)

where vec (·) is the vectorization operation. By reshaping tensors into the vector form, we can further represent the terms

vec (D x V i ) , vec (D t V i ) , and vec (D y R i ) by the form of first-order difference matrices multiplying vectors. In specific, we can

construct the first-order difference matrices F x , F y , F t ∈ R 

ω 2 tm ×ω 2 tm that satisfy the following equations 

vec (D x V i ) = F x · vec ( V i ) , vec (D t V i ) = F t · vec ( V i ) , vec (D y R i ) = F y · vec ( R i ) . (16)

It can be easily derived that F x , F y , and F t are the matrices with circulant blocks. In (15) , through replacing

vec (D x V i ) , vec (D t V i ) , and vec (D y R i ) by the corresponding terms in (16) , the objective function of (15) becomes derivable.

We can then minimize it to get the following normal equation (
F � x F x + F � t F t + 2 I I 

I F � y F y + 2 I 

)(
vec ( V i ) 
vec ( R i ) 

)
= 

(
b 1 
b 2 

)
, (17)

where 

b 1 = vec ( O i + U + 

1 

β
( �1 + �6 )) + F � x 

(
vec 

(
W + 

1 

β
�2 

))
+ F � t 

(
vec 

(
M + 

1 

β
�3 

))
, 

b 2 = vec ( O i + P + 

1 

β
( �5 + �6 )) + F � y 

(
vec 

(
N + 

1 

β
�4 

))
, (18)

and I ∈ R 

ω 2 tm ×ω 2 tm is the identity matrix. Due to the circulant structure of F � x F x , F 
� 

y F y and F � t F t , the coefficient matri-

ces (F � x F x + F � t F t + 2 I) and (F � y F y + 2 I) can be diagonalized by FFTs. Therefore, problem (17) can be efficiently solved in
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O ( ω 

2 tm log ( ω 

2 tm )) operations. Then R 

k +1 
i 

and V 

k +1 
i 

are elementwisely projected between 0 and O i . At last, the Lagrangian

multipliers can be updated by ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

�k +1 
1 = �k 

1 + β( U 

k +1 
i 

− V 

k +1 
i 

) , 

�k +1 
2 = �k 

2 + β( W 

k +1 − D x V 

k +1 
i 

) , 

�k +1 
3 = �k 

3 + β( M 

k +1 − D t V 

k +1 
i 

) , 

�k +1 
4 = �k 

4 + β( N 

k +1 − D y R 

k +1 
i 

) , 

�k +1 
5 = �k 

5 + β( P 

k +1 − R 

k +1 
i 

) , 

�k +1 
6 = �k 

6 + β( O 

k +1 
i 

− V 

k +1 
i 

− R 

k +1 
i 

) . 

(19) 

The cost of updating these multipliers is O ( ω 

2 tm ). 

We perform our algorithm on all the similar patch groups. The final result V can be obtained by aggregating all the

result V i ’s and computing the average values of each pixel. In the next section, we will show our experimental results. 

The analysis of computational and storage complexity: 

In our method, the block-matching operation, which aims to search the similar patches for every key patch, is the most

time-consuming procedure besides the proposed ADMM algorithm. To analyze the complexity of the block-matching proce-

dure, we use n a and n b to denote the total number of spatial–temporal patches and key patches, respectively. In this way, the

cost of computing the distances between each key patch and all patches is O ( ω 

2 tn a ). Moreover, the cost of finding similar

patches for each key patch is n a log n a . Thus, the total computational complexity of block matching is O (n a n b ( log n a + ω 

2 t)) .

Meanwhile, the storage complexity can also be calculated as O (n b (n a + 1 + m ) + n a ω 

2 t) . 

For the proposed ADMM algorithm, by summarizing the computational cost of all variables, the total computational

complexity of each patch group is O (ω 

2 tm log ω 

2 tm 

2 + m min (ω 

2 t 2 , ω 

4 t)) per iteration. Moreover, the storage complexity

can be easily calculated as O ( ω 

2 tm ). 

6. Experiments 

In this section, we show and analyze the rain removal performance on both the synthetic data and real data. Our ex-

periments are implemented in MATLAB 2017b on an Intel 3.70 GHz PC with 16GB RAM. As each frame of color videos have

RGB three channels, we transform all the test videos into YUV 

1 color space and perform our method on the components of

brightness. For the parameters, unless otherwise specified, we set β = 2 and { α1 , α2 , α3 , α4 } are tuned in the interval [0.1,2]

empirically. We set ω = 15 , t = 10 , m = 30 , i.e., the size of spatial–temporal patch is fixed as 15 × 15 × 10, and the number

of similar patches is 30. For each key spatial–temporal patch, we search its similar patches in an 80 × 80 × 30 windows

centered at this patch. We compare the proposed method (UTV-NLR) with four recent state-of-the-art video deraining meth-

ods: the temporal correlation and low-rank matrix completion (TC-LRMC) method [9] , the stochastic encoding (SE) method

[36] , the tensor-based method using the discriminate intrinsic priors (DIP) [16] , and the convolutional sparse coding (CSC)

method [37] . We test these methods on both the synthetic data and real rainy videos quantitatively and visually. 

6.1. Experiments on synthetic data 

All the compared methods are first performed on four clean videos with the artificial rain streaks. To generate rain

streaks, Garg and Nayar [4] pointed out that the effects of rain streaks are caused by the motion-blurred raindrops. Thus

many recent deraining approaches [22,23,27] utilize the Photoshop software and follow the tutorial documents of Photoshop

[44] to add the rain streaks on a single image. The main idea of this way is to first generate some noise pixels on a black

layer and then apply the motion blur to the noise. In addition, the simulation of rain streaks in videos has been proposed

in early research [45] , which claims that the rain streaks can be assumed temporal independent in videos. Based on these

studies, we simulate the rain streaks R by first generating the “salt and pepper” noise on each frontal slice of a zero

tensor, and then applying a motion blur to it. A small bias angle is allowed between the rain direction and vertical direction

(maximum 5 degrees). In this section, we use two scenarios for each video: the video with light rain and the video with

heavy rain. The noise density d of light rain is set as d = 0 . 01 + 0 . 001 ∗ p and the one of heavy rain is set as d = 0 . 04 +
0 . 001 ∗ p, where 0 < p < 1 is a positive scalar taken randomly for each frame. Since the clean videos are known, we make

the comparison quantitatively and visually. 

Table 1 shows the quantitative comparisons of four synthetic videos. Besides the PSNR and SSIM [46] , we additionally use

3 performance metrics: the universal image quality index (UQI) [47] , visual information fidelity (VIF) [48] , and the feature

similarity index (FSIM) [49] . The values of all metrics are the higher, the better. These measures mainly focus on image

structure and fidelity so that the comparison from different aspects can be fully considered. In Table 1 , we list the mean

values of metrics over all frames for each recovered video. From Table 1 , we can evidently observe the advantage of the
1 https://en.wikipedia.org/wiki/YUV 

https://en.wikipedia.org/wiki/YUV
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Table 1 

Quantitative evaluation on synthetic videos with different metrics. 

Video Scenarios Methods MPSNR MSSIM MUQI MVIF MFSIM 

Running car Light rain Rainy 36.0193 0.9539 0.8762 0.6987 0.9762 

TC-LRMC 36.6063 0.9799 0.9555 0.8025 0.9833 

SE 37.8375 0.9713 0.9566 0.8556 0.9947 

DIP 43.1908 0.9945 0.9822 0.9103 0.9952 

CSC 43.9136 0.9934 0.9774 0.9415 0.9756 

UTV-NLR 48.9292 0.9976 0.9894 0.9674 0.9985 

Heavy rain Rainy 28.7164 0.8556 0.7227 0.5038 0.9290 

TC-LRMC 31.3614 0.9202 0.8047 0.5067 0.9460 

SE 31.8453 0.9575 0.9126 0.7617 0.9840 

DIP 35.3519 0.9664 0.8849 0.7072 0.9796 

CSC 39.4965 0.9869 0.9526 0.8675 0.9923 

UTV-NLR 40.0771 0.9877 0.9549 0.8219 0.9904 

Foreman Light rain Rainy 35.3353 0.9710 0.8840 0.6831 0.9698 

TC-LRMC 35.5148 0.9854 0.9372 0.7218 0.9796 

SE 28.9493 0.8966 0.8306 0.6203 0.9705 

DIP 39.7551 0.9923 0.9556 0.8005 0.9877 

CSC 28.2257 0.9249 0.7040 0.4875 0.8978 

UTV-NLR 41.0047 0.9949 0.9664 0.8339 0.9922 

Heavy rain Rainy 28.2117 0.9088 0.7498 0.4955 0.9106 

TC-LRMC 29.6899 0.9328 0.7837 0.4452 0.9275 

SE 28.0962 0.8725 0.7531 0.4343 0.9300 

DIP 34.2657 0.9808 0.8993 0.6520 0.9713 

CSC 27.7727 0.9151 0.6833 0.4103 0.8904 

UTV-NLR 35.0302 0.9851 0.9167 0.6769 0.9764 

Highway Light rain Rainy 34.0977 0.9141 0.8446 0.6141 0.9580 

TC-LRMC 35.7116 0.9383 0.8515 0.7290 0.9865 

SE 26.1085 0.7944 0.7095 0.5541 0.9738 

DIP 44.6563 0.9934 0.9840 0.9333 0.9955 

CSC 33.8929 0.9500 0.8888 0.6840 0.9648 

Ours 45.8307 0.9943 0.9867 0.9346 0.9966 

Heavy rain Rainy 27.6660 0.7576 0.6250 0.4323 0.8798 

TC-LRMC 30.8193 0.8580 0.7065 0.4341 0.9482 

SE 26.6654 0.7308 0.5752 0.3661 0.9491 

DIP 40.8268 0.9824 0.9588 0.8321 0.9896 

CSC 33.5574 0.9399 0.8657 0.6343 0.9643 

UTV-NLR 42.7556 0.9902 0.9767 0.8915 0.9939 

Walking Light rain Rainy 30.9037 0.9087 0.7932 0.5512 0.9375 

TC-LRMC 33.4872 0.9647 0.9170 0.7546 0.9660 

SE 29.0450 0.9062 0.9493 0.7661 0.9834 

DIP 37.0518 0.9764 0.9300 0.7463 0.9809 

CSC 39.6051 0.9881 0.9684 0.8763 0.9889 

UTV-NLR 40.1405 0.9893 0.9699 0.8703 0.9901 

Heavy rain Rainy 25.8174 0.8106 0.6411 0.4233 0.8817 

TC-LRMC 29.5570 0.8935 0.7404 0.4843 0.9219 

SE 31.4056 0.9474 0.9259 0.7014 0.9722 

DIP 33.3066 0.9565 0.8724 0.7014 0.9644 

CSC 33.6888 0.9715 0.9273 0.7284 0.9756 

UTV-NLR 35.8010 0.9726 0.9213 0.7482 0.9774 

 

 

 

 

 

 

 

 

 

 

 

proposed UTV-NLR. It shows that UTV-NLR achieves the highest PSNR and SSIM values in all cases, and highest UQI, VIF,

and FSIM values in most cases, which demonstrates the superiority of the proposed UTV-NLR in removing rain streaks and

preserving the detailed information of videos. 

Fig. 3 shows the visual comparison of rain removal results and the corresponding rain streak maps on the video “running

car” with light rain and heavy rain. A positive value (fixed as 0.4 in this paper) is added to each rain streaks map for better

visualization. This video is of size 120 × 160 × 3 × 30. For the case of light rain, we can observe that the rain-free videos

recovered by TC-LRMC and SE still have notable rain streaks left, while the results of DIP, CSC, and UTV-NLR achieve better

visual performance. In rain streak maps, it shows that the results of other compared methods contain some non-rain pixels

more or less, that means some bright pixels of scenes are considered as rain pixels by these methods. For the case of heavy

rain, it can be easily observed that the other compared methods cannot remove the heavy rain completely, and many bright

pixels of scenes are regarded as the rain pixels in their rain maps. From the quantitative comparison in Table 1 , we can see

that UTV-NLR achieves the best PSNR results, and at least 5dB and 0.5dB gain beyond the second best performed method

for the light rain and heavy rain case, respectively. 



904 Y. Wang, T.-Z. Huang and X.-L. Zhao et al. / Applied Mathematical Modelling 79 (2020) 896–913 

Fig. 3. Rain removal results and the corresponding rain maps on “running car” video with light (the first and second rows) and heavy (the third and fourth 

rows) rain. The first column shows the rainy frames. From the second to the last column are: ground truth (GT), TC-LRMC [9] , SE [36] , DIP [16] , CSC [37] , 

and the proposed UTV-NLR, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 shows the visual performance on a video named “foreman”, whose size is 144 × 166 × 3 × 30. In the case of light

rain, we can see that SE and CSC fail to remove the rain and their results contain distorted colors of scenes, that is caused

by the fact their algorithms assume videos have static backgrounds, but “foreman” is a video taken by the moving camera.

The proposed UTV-NLR slightly outperforms the other compared methods and recovers the rain-free video with least rain

streaks left. For the case of heavy rain, TC-LRMC, SE, and CSC fail to remove the rain streaks. The rain-free video recovered

by DIP still contains rain streaks. Echoing with the visual results, in Table 1 we can see that UTV-NLR outperforms the

competing methods by about 1.1dB in light rain case and 0.7dB in heavy rain case. Moreover, UTV-NLR achieves the highest

values in other metrics. 

Fig. 5 shows the visual comparison on a video named “highway” with the size 144 × 166 × 3 × 30. In the case of light

rain in the first two rows, we can observe that the recovered rain-free videos of SE and DIP still contain some rain streaks

in the demarcated areas (the zoomed versions are in the left corner of images). In the zoomed region, the results of TC-

LRMC and CSC have over smooth effects. Fig. 5 shows that the proposed UTV-NLR achieves the best visual results. Moreover,

from Table 1 we can see that UTV-NLR achieves more than 1.1dB gain in PSNR beyond the other competing methods and

the highest values in other metrics. In the case of heavy rain, both the results of TC-LRMC and DIP have clear rain streaks

left. Since this video is captured by the moving camera with the dynamic background, the result videos recovered by SE

and CSC contain some rain streaks and lose much details of the clean video. Table 1 shows that the proposed UTV-NLR

comprehensively removes the rain streaks, and outperforms the other compared methods by more than 1.8 dB in heavy rain

cases. 

Fig. 6 shows the visual comparison on a video named “walking” with the size of 144 × 180 × 3 × 30. This video contains

a static background and a walking woman. In the case of light rain, all methods succeed to remove the rain and achieve

similar visual performances. While the demarcated areas demonstrate that UTV-NLR recovers better videos with less rain

streaks and cleaner scenes. Specifically, from Table 1 we can see UTV-NLR outperforms the other compared methods by

about 0.5dB in this case. In the case of heavy rain, TC-LRMC cannot remove the rain streaks completely. And the recovered

rain-free video is corrupted by dark pixels in some regions. In the zoomed region, SE fails to remove the rain streaks due

to the effect of the moving object. DIP removes the rain streaks but burs the video. CSC can not remove the rain streaks

completely in this region. The proposed UTV-NLR removes the rain streaks and preserves clean patterns in the original

video. In addition, UTV-NLR outperforms the other competing methods by at least 2 dB in heavy rain case. 

Fig. 7 demonstrates the PSNR values of recovered clean videos in Figs. 3–6 . We calculate the PSNR values of each frame

for the recovered videos of different methods. It shows that SE and CSC sometimes fails to remove the rain and achieve

low PSNR values. The reason is that their methods rely on low-rank assumption of static backgrounds. TC-LRMC, DIP, and

UTV-NLR achieve higher PSNR values, while our method always achieves the highest PSNR values and stabler curves for

most cases. Fig. 7 quantitatively demonstrates the superiority and robustness of the proposed method. 

Table 2 shows the computing time of experiments from Figs. 3–6 . We can see that the proposed UTV-NLR always costs

more than 800s because it need to search similar patches for every key patch and compute each pixel value multiple times

(because the patches are overlapped). However, UTV-NLR can achieve the best performance because it takes advantage of the
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Fig. 4. Rain removal results and the corresponding rain maps on “foreman” video with light (the first and second rows) and heavy (the third and fourth 

rows) rain. The first column shows the rainy frames. 

Fig. 5. Rain removal results and the corresponding rain maps on “highway” video with light (the first and second rows) and heavy (the third and fourth 

rows) rain. The first column shows the rainy frames. 

Table 2 

The computing time of all compared methods on the images from Figs. 3–6 . 

Computing time (s) 

Video Scenarios TC-LRMC SE DIP CSC UTV-NLR 

Running car Light rain 248.86 50.18 19.98 22.90 860.31 

Heavy rain 391.14 41.96 28.72 23.77 802.51 

Foreman Light rain 318.75 30.03 47.59 30.93 839.91 

Heavy rain 265.35 31.56 43.54 31.28 879.53 

Highway Light rain 249.71 72.79 43.59 29.40 897.68 

Heavy rain 265.35 31.56 43.54 29.25 879.53 

Walking Light rain 336.90 73.82 41.30 29.24 1043.81 

Heavy rain 549.44 60.42 37.46 29.56 1002.52 
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Fig. 6. Rain removal results and the corresponding rain maps on “walking” video with light (the first and second rows) and heavy (the third and fourth 

rows) rain. The first column shows the rainy frames. 
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Fig. 7. The PSNR values of each frame in the videos from Figs. 3 to 6 . 

 

 

 

 

 

 

redundancy of nonlocal similar patches. Table 2 illustrates that our method sacrifices the computing time for high recovery

accuracy. 

6.2. Oblique rain streaks removal 

It should be noted that even though our method is based on the assumption that the directions of rain streaks are vertical

in rainy videos, when rain directions are not strictly but nearly vertical, our method can still remove the rain successfully.

This can also be verified in Section 6.1 , where the rainy videos of Figs. 3, 4 , and 6 are all generated with oblique rain streaks

with small angles. 

In this section, we mainly evaluate our method on the videos with highly oblique rain streaks. We denote γ as the angle

between the main rain direction and vertical direction, and generate the rain with three different directions: γ = 20 ◦, 30 ◦,



Y. Wang, T.-Z. Huang and X.-L. Zhao et al. / Applied Mathematical Modelling 79 (2020) 896–913 907 

Table 3 

Quantitative evaluation on the videos with oblique rain streaks. 

Bridge 

γ Methods MPSNR MSSIM MUQI MVIF MFSIM 

20 ◦ Rainy 28.7092 0.8468 0.5503 0.4150 0.8649 

TC-LRMC 33.1017 0.9216 0.6173 0.4798 0.9476 

SE 28.7941 0.9173 0.6269 0.5572 0.9758 

DIP 39.9878 0.9729 0.8616 0.8306 0.9869 

CSC 38.2997 0.9631 0.8118 0.8033 0.9795 

UTV-NLR 40.8362 0.9747 0.8718 0.8604 0.9890 

30 ◦ Rainy 28.7359 0.8488 0.5501 0.4252 0.8641 

TC-LRMC 33.2208 0.9247 0.6277 0.5039 0.9490 

SE 28.9799 0.9250 0.6273 0.5691 0.9757 

DIP 39.2723 0.9695 0.8444 0.8124 0.9839 

CSC 38.0849 0.9629 0.8107 0.8108 0.9790 

UTV-NLR 40.6011 0.9735 0.8652 0.8551 0.9877 

40 ◦ Rainy 28.2611 0.8289 0.5259 0.3776 0.8454 

TC-LRMC 29.5740 0.8912 0.5709 0.4737 0.9060 

SE 29.0138 0.9181 0.6210 0.5713 0.9745 

DIP 39.1306 0.9694 0.8521 0.8286 0.9847 

CSC 38.5752 0.9621 0.8105 0.8261 0.9792 

UTV-NLR 40.3750 0.9722 0.8635 0.8672 0.9880 

Carphone 

γ Methods MPSNR MSSIM MUQI MVIF MFSIM 

20 ◦ Rainy 28.0146 0.8705 0.6861 0.5057 0.8887 

TC-LRMC 29.4307 0.9151 0.7332 0.4407 0.9222 

SE 28.9571 0.8681 0.7754 0.5061 0.9502 

DIP 32.8527 0.9592 0.8203 0.5983 0.9599 

CSC 30.2795 0.9477 0.8081 0.5369 0.9422 

UTV-NLR 33.5989 0.9666 0.8426 0.6160 0.9687 

30 ◦ Rainy 27.9244 0.8708 0.6854 0.5191 0.8864 

TC-LRMC 29.6957 0.9254 0.7510 0.4757 0.9294 

SE 28.8585 0.8595 0.7801 0.5155 0.9502 

DIP 32.3282 0.9528 0.8047 0.5978 0.9535 

CSC 30.2510 0.9474 0.8101 0.5451 0.9417 

UTV-NLR 33.0900 0.9636 0.8364 0.6189 0.9658 

40 ◦ Rainy 28.0196 0.8707 0.6858 0.5391 0.8869 

TC-LRMC 28.5237 0.9044 0.7111 0.5335 0.9048 

SE 28.8612 0.8597 0.7802 0.5234 0.9502 

DIP 32.2099 0.9537 0.8083 0.6021 0.9538 

CSC 30.2559 0.9469 0.8077 0.5528 0.9418 

UTV-NLR 32.7298 0.9543 0.8042 0.6181 0.9576 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and 40 ◦ on two videos named “bridge” and “carphone”. Fig. 8 and Table 3 respectively shows the visual results and the

quantitative evaluation of all compared methods. We can observe that UTV-NLR can remove the rain streaks successfully

on video “bridge” with different rain directions. Specifically, Table 3 shows that UTV-NLR outperforms the other methods

by more than 1.5 dB and achieves the highest values with other metrics in all cases. For the video “carphone”, UTV-NLR

performs competitively against the other compared state-of-the-art methods in visual performance. While in Table 3 , we

can see that the proposed UTV-NLR outperforms the competing methods in most cases, which indicates that UTV-NLR best

keeps the texture details of original clean videos. Fig. 8 and Table 3 demonstrate the proposed UTV-NLR can successfully

remove highly oblique rain streaks visually and quantitatively. This can be explained from two aspects: (1) oblique rain

streaks always have vertical components,so the UTV regularization of R i along vertical direction still promotes the deraining

performance. (2) We fully adopt the priors of clean videos and rain streaks. Although the effect of UTV regularization of R i

is weakened, the others can still distinguish the clean videos and rain streaks successfully. 

6.3. Discussion of parameters 

In our method, the penalty parameter β = 2 is fixed for all cases. For the other weighted parameters, α1 , α2 , α3 , and α4

are first roughly selected in the set { 10 −3 , 10 −2 , 10 −1 , 10 0 , 10 1 } . Among this set, we choose the settings for α1 , α2 , α3 , and

α4 with the highest PSNR values. Then we fine-tune the best parameters in a small range. By this way, these parameters are

finally tuned empirically in the interval [0.1,2] in this paper. Besides β , α1 , α2 , α3 , and α4 , the parameters of the patch size

and number of similar patches are also important in our model. In this section, we analyze how the regularization terms

and these parameters influence the performance of rain streaks removal task. We test them on the video “running car” with

heavy rain. 
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Fig. 8. Rain removal results and the corresponding rain maps with different rain directions. The first column shows the rainy frames. The rain directions 

are set as γ = 20 ◦, γ = 30 ◦, and γ = 40 ◦ with the corresponding result frames shown from top to bottom for each videos. 
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Fig. 9. The results of the proposed UTV-NLR obtained without different regularization terms. 
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Fig. 10. Analysis of the parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We first perform our method with discarding each regularization terms in equation (5) to test the effect of these terms.

Fig. 9 shows the visual performance and the corresponding PSNR values. We can see that performing UTV-NLR without the

TNN term ‖ V ‖ ∗, ‖ D x V i ‖ 1 ( α1 = 0 ), or ‖ D y R i ‖ 1 ( α3 = 0 ) leads to notable rain streaks left in the recovered video, which

demonstrates that these terms can well characterize the clean video or rain streaks and benefit the final deraining results.

When setting α2 = 0 , i.e., without the temporal UTV regularization term ‖ D t V i ‖ 1 , the proposed UTV-NLR fails to remove

the rain streaks and achieves about only 28 dB. Performing UTV-NLR with α4 = 0 , i.e., without term ‖ R i ‖ 1 , we can see

that the result video is not well recovered and has very low intensity. Fig. 9 demonstrates that all the regularization terms

make great contributions to the final deraining results. Moreover, it can be observed that ‖ V i ‖ ∗, ‖ D x V i ‖ 1 , and ‖ D y R i ‖ 1
significantly contribute to preserving the detailed textures of clean videos. ‖ D t V i ‖ 1 and ‖ R i ‖ 1 are the most important

terms for removing rain streaks and recovering clean videos, respectively. 

We then test how the parameters influence the proposed algorithm. Fig. 10 presents the quantitative results with varying

parameters. We can observe that when α1 ≤ 0.4, UTV-NLR achieves high and stable PSNR values. While for α2 , α3 , and α4 ,

when they become larger than 0.8, the corresponding PSNR curves tend to be stable. For the penalty parameter β , the stable

interval is about 10 −1 < β < 10 1 . In this paper, we set β = 2 and empirically tune α1 , α2 , α3 , and α4 in the interval [0.1,

2] for all videos. Note that the size of the spatial–temporal patch is ω × ω × t and the size of similar-patch-based tensor
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Fig. 11. Rain removal results on a real video “wall” and the corresponding rain streaks. The first column shows the input rainy frames. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V i is ω 

2 × t × m , we also test the parameters of spatial size ω, temporal size t , and the number of similar patches m .

Fig. 10 shows the curves of PSNR values with respect to ω, t , and m in the second row. We can see that the PSNR values are

very low with small ω or t , but increase sharply when ω or t become larger than 15. The reason is that too small patches

can not present the image structures and will further lead to unfaithful matches of similar patches. In the meanwhile, too

large ω or t will reduce the self-similarities of the spatial–temporal patches and affect the rain removal performance, which

can also be observed from the slight decline of PSNR curves with respect to ω and t in Fig. 10 . For the parameter of similar

patch number m , the PSNR curve is much stabler than those of ω and t . But the PSNR values slightly decrease when m

become bigger. The reason may be that selecting too many similar spatial–temporal patches will reduce the low-rankness

of V i and then degrade the performance of rain streaks removal task. In this paper, We set ω = 15 , t = 10 , m = 30 , i.e., the

size of spatial–temporal patch is fixed as 15 × 15 × 10, Fig. 10 demonstrates that our method is robust to most parameters

within a certain range. 

6.4. Experiments on real data 

In this section, we test the methods on four real rainy videos. Since these videos contain the real rain streaks and no

ground truths are known, we mainly evaluate the visual performance of the compared methods. 

Fig. 11 shows the results on a real rainy video named “wall” with the size 144 × 184 × 3 × 30. Two frames are selected

and shown from top to bottom. All methods succeed to removal the rain streaks and recover the rain-free video. While

in the demarcated areas, we can see that UTV-NLR recovers the best texture and detail information of the rain-free video.

Additionally, the rain steak maps also demonstrate that UTV-NLR removes the rain streak most completely. 

Fig. 12 shows the rain removal results and the corresponding rain streak maps on a real video extracted from the movie

“the Matrix”. This video has the size of 83 × 210 × 3 × 30. Three frames are selected from the results of all the methods

and shown from top to bottom. Fig. 12 demonstrates that TC-LRMC cannot remove the rain completely and some recovered

rain-free frames are clearly blurred or corrupted. The reason may be that when the rain is very heavy, many clean pixels

are severely affected and detected as the rain streaks by TC-LRMC. So they are difficult to be recovered by the subsequent

matrix completion processing in TC-LRMC. The recovered clean video of SE and CSC have smooth backgrounds but the

dynamic regions still contain a lot of rain streaks. This may be caused by the fact that SE and CSC aim to decompose

the clean video into the static background and moving objects, but the background of this video is dynamic. The rain-free

frames of DIP still contain clear marks of rain streaks in the demarcated areas and blur the scenes in some frames. This is

because the low-rank assumption of the whole clean video makes the pixels of dynamic scenes affected by their neighbors

in adjacent frames. Our result achieves the best visual performance. Since we exploit the NSS property to characterize the

spatial–temporal redundancy of clean videos, our method handles the dynamic scenes well and recovers the clean video

with the best visual effects. 
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Fig. 12. Rain removal results on the real video “the Matrix”. The first column shows the input rainy frames. 

Fig. 13. Rain removal results and the estimated rain streaks with the real video “trees”. The first column shows the input rainy frames. 

 

 

 

 

 

 

 

 

In Fig. 13 , we evaluate the methods on a real rainy video named “trees” with the size 116 × 180 × 3 × 30. This video was

taken by the moving camera with dynamic scenes. Two frames are selected for visual comparison in the top and bottom

rows in Fig. 13 . It demonstrates that the recovered rain-free video of SE has blurred scenes and distorted colors. TC-LRMC,

DIP, and CSC succeed to remove most of the rain, however, some shallow marks of rain streaks are still left in demarcated

areas. The proposed UTV-NLR slightly outperforms the other compared methods and achieves a cleaner rain-free video. 

Fig. 14 shows rain removal results and the estimated rain maps on a video named “sitting man” with the size

350 × 720 × 3 × 100. This video is taken by a moving camera. We can observe that DIP cannot remove the rain streaks

completely in the first frame. TC-LRMC achieves better performance in the first frame but fails to remove the conspicuous

rain streaks in the second frame. The result of CSC has notable rains streaks left in both the first and second frames. Due to
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Fig. 14. Rain removal results and the corresponding estimated rain streak maps on the real video “sitting man”. The first column shows the input rainy 

frames. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the moving camera, SE removes the rain streaks but gets a severely ambiguous background. Our method not only removes

the rain streaks but also recovers the detailed video information well in both frames. 

7. Conclusion 

In this paper, we proposed a tensor-based video rain streaks removal method using the UTV and nonlocal low-rank

regularization. We exploited the NSS to characterize the spatial–temporal correlation of clean videos and used the TNN to

enhance the low-rankness of the tensors constructed by similar spatial–temporal patches of clean videos. We also considered

the piecewise smoothness and the temporal continuity of clean videos and employed the UTV regularization to enhance the

smoothness and continuity. Since rain streaks are sparse and smooth along rain direction, we utilized the l 1 norm and the

UTV term to enhance the sparsity and directional smoothness. An efficient ADMM algorithm was developed to tackle the

proposed model. Experimental results demonstrate that our method outperforms the state-of-the-art methods quantitatively 

and visually. 

Even though our method can handle the oblique rain streaks removal task, the vertical UTV terms may still affect the

deraining performance when dealing with oblique rain streaks. In [50] , Wang et al. proposed to use the directional total

variation (DTV) to remove rain streaks with arbitrary directions from a single-image. This motivated us to employ the DTV

term into the video deraining task in our future work. 
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