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Abstract— This paper addresses the tensor completion prob-
lem, which aims to recover missing information of multi-
dimensional images. How to represent a low-rank structure
embedded in the underlying data is the key issue in tensor
completion. In this work, we suggest a novel low-rank tensor
representation based on coupled transform, which fully exploits
the spatial multi-scale nature and redundancy in spatial and
spectral/temporal dimensions, leading to a better low tensor
multi-rank approximation. More precisely, this representation is
achieved by using two-dimensional framelet transform for the
two spatial dimensions, one/two-dimensional Fourier transform
for the temporal/spectral dimension, and then Karhunen–Loéve
transform (via singular value decomposition) for the trans-
formed tensor. Based on this low-rank tensor representation,
we formulate a novel low-rank tensor completion model for
recovering missing information in multi-dimensional visual data,
which leads to a convex optimization problem. To tackle the
proposed model, we develop the alternating directional method
of multipliers (ADMM) algorithm tailored for the structured
optimization problem. Numerical examples on color images,
multispectral images, and videos illustrate that the proposed
method outperforms many state-of-the-art methods in qualitative
and quantitative aspects.

Index Terms— 2D framelet transform, multi-scale representa-
tion, tensor nuclear norm, tensor completion.
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I. INTRODUCTION

AS THE high-dimensional extension of vector/
matrix [1]–[3], tensor provides a more diverse and

flexible representation for multi-dimensional visual data,
which usually contains two spatial dimensions and another
temporal (or spectral) dimension, such as color images [4],
videos [5], [6], hyperspectral images [7]–[13], seismic
data [14], etc. Unfortunately, due to hardware restrictions and
various degradations, the obtained data are usually incomplete,
which significantly degrades the visual quality and limits the
subsequent processing tasks. The problem of recovering the
missing information in multi-dimensional visual data from
its small known observations is called tensor completion
(TC) [15]–[18], which is a typical inverse problem in image
processing. An effective restoration process generally relies
on prior knowledge about the desired solution.

Low-rankness is a powerful tool to describe the internal
redundancy of tensor, and how to exploit the embedded low-
rank structure has been widely studied in TC [19]. Mathemati-
cally, a unified low-rank tensor completion (LRTC) model can
be written as

arg min
X

rank(X )

s.t. P�(X ) = P�(O),

where X ∈ Rn1×···×nk is the underlying tensor, O ∈ Rn1×···×nk

is the observed data, � is the index set of the observed
data, and P�(·) is the sampling operator that remains the
elements in � while making the others to be zeros. In LRTC,
a central issue is the definition of the tensor rank, i.e., how to
characterize the correlations along different dimensions within
a data. However, it is a difficult task due to the complex
algebraic structure of tensors, and there is no universally
accepted solution to the definition of tensor rank [20]. Over
the past decades, many research efforts have been devoted to
this topic, such as CANDECOMP/PARAFAC (CP) rank [21],
[22], Tucker rank [23], [24], and tubal rank [25], [26], all of
which capture the tensor redundancy from their perspectives.

The CP decomposition [22] decomposes a tensor into a sum
of rank-one factors constructed by the vector outer product,
and the CP-rank is defined as the smallest number of these fac-
tors among all such decompositions. However, calculating the
CP-rank of a known tensor is an NP-hard problem [27], [28],
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and there is generally no accurate algorithm for estimating
CP-rank. The Tucker decomposition factorizes a tensor into a
product of a core tensor and factor matrices, and the Tucker
rank (also called as “n-rank”) [23], [24], [29] is a vector
composed of the ranks of unfolding matrices of the target
tensor along different dimensions [30]. However, Tucker rank
suffers from a limitation that the global correlation within the
tensor is destroyed by its unfolding scheme.

Recently, a new tensor decomposition method called the
tensor singular value decomposition (t-SVD) [25], [26] was
proposed for third-order tensors, which decomposes a three-
dimensional tensor into the product of two orthogonal tensors
and one f -diagonal tensor (see Section II for details). t-SVD
has the advantage of characterizing the correlation along the
third dimension via constructing group-rings along the tensor
fibers, i.e., executing the 1D fast Discrete Fourier Transform
(DFT) along the third mode. Based on the t-SVD framework,
a new tensor tubal rank [31], [32] is defined as the number of
non-zero tubes of the f -diagonal tensor in t-SVD. However,
direct minimizing tubal rank is an NP-hard problem. As the
convex surrogate of tensor tubal rank, tensor nuclear norm
(TNN) [25], [33], [34] is considered for tubal rank minimiza-
tion with a strong theoretical guarantee for LRTC.

Later works [35] have been proposed to improve the per-
formance of TNN. Considering that TNN is a biased approx-
imation [36]–[38] to the tubal rank, some works replace the
nuclear norm with non-convex surrogates [36]–[38] to obtain
a better low-rank approximation, including weighted tensor
nuclear norm [39], Laplace function [40], and the partial sum
of tubal nuclear norm [37]. Other works focus on a more
effective characterization of the data correlation by finding
a more suitable transform than DFT, such as invertible linear
transform [41], [42], multiple linear transform [43], [44], and
framelet transform [45].

Recently, deep learning (DL)-based completion meth-
ods [46]–[48] have been rapidly developed to learn deep image
priors from a large number of example images and have shown
promising performance due to its high capacity. However, most
of these methods are designed for particular tasks, e.g., inpaint-
ing (tube-wise sampling) [46]–[48], and their performance
is essentially dependent upon the diversity and volume of
training datasets. Therefore, the lack of generalization hinders
its direct application to the general tensor completion problem
for diverse samplings and data compared with regularized
LRTC methods.

The above-mentioned LRTC methods only consider the
global data correlation (i.e., the low-rankness) but ignore the
other significant properties, such as the spatial multi-scale
nature and redundancy in the spatial and spectral/temporal
dimensions. As a result, those methods can only recover the
global cartoon but fail to repair specific textures, especially
when the sampling rate is low. To fully exploit the intrinsic
structure within multi-dimensional visual data, we propose a
novel low-rank tensor representation under coupled transform,
which can characterize the correlations along different dimen-
sions in a unified framework. The main idea is to explore
suitable transforms to decorrelate the spatial and temporal
(or spectral) dimensions, achieving an enhanced low-rank

representation of the underlying data. More precisely, the pro-
posed representation involves three layers: B = B3 ◦ B2 ◦ B1.

• In the first layer B1, we use a two-dimensional framelet
transform with abundant bases to describe the local spatial
correlation, which has two advantages. First, with the help
of the filters to construct the framelet system, the abun-
dant spatial structures can be elaborately expressed with
respect to different frequencies and spatial directions.
Second, the multi-level nature of the framelet decomposi-
tion helps to capture the multi-scale features of the tensor,
as shown in Fig. 1 (a).

• In the second layer B2, we use a Fourier transform to
characterize the global correlation of the temporal (or
spectral) dimension. This layer characterizes the temporal
(or spectral) global correlation by constructing group-
rings along the corresponding dimensions and reveals the
intrinsic low-rank property of the multi-scale represen-
tation coefficients achieved by the first layer, in which
the spatial features of different directions and levels are
gathered together with strong correlations.

• In the third layer B3, we use a Karhunen–Loéve (KL)
transform (via singular value decomposition), regarded
as a special transform, to characterize the global spatial
correlation (i.e., low-rankness) of the representation coef-
ficients by the first two layers, which incorporates both
the global correlation and local geometric details in a
unified framework. The sparsity of the result after KL
transform is indeed the rank of the spatial slice of the
framelet and Fourier transformed result.

Fig. 1 gives an illustration of the proposed representa-
tion on the color image “Butterfly”, in which Fig. 1 (a)
shows the third-layer structure of the proposed representation;
Fig. 1 (b) shows the comparison of the accumulation energy
ratio (AccEgy = �k

i=1 σ 2
i /

�
j σ 2

j , where σi is the i -th sin-
gular value) of the proposed representation and t-SVD. Form
Fig. 1 (b), we can observe that the proposed representation
always achieve higher structural similarity (SSIM) values and
lower relative squared error (RSE) than t-SVD on the same
AccEgy, which implies that our representation coefficients
exhibit higher sparsity, i.e., the representation is more efficient
in terms of data compression.

Based on the above sparsity of the representation coeffi-
cients, we formulate a novel model for LRTC under coupled
transform, termed as CT-LRTC, which is expressed as follows:

min
X

�B(X )�1

s.t. P�(X ) = P�(O),

where B = B3 ◦B2 ◦B1 is coupled transforms which involves
three layer, i.e., the framelet transform, Fourier transform, and
KL transform.

Our work also provides a unified framework that can
accommodate the previous TNN-based methods, as well as
a deconstruction perspective to view their inner mechanisms.
In our framework, they can be viewed as a compound of
transforms, such as FFT+KL (TNN) [33] and DCT+KL [41]
(see Section II-B for more details).
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Fig. 1. An illustration of the proposed CT-LRTC on the color image “Butterfly”. (a) Shows the three-layer structure of the proposed representation. (b) Compares
the accuracy of the proposed representation and t-SVD with respect to the change of AccEgy and shows the image constructed by AccEgy = 0.6.

The main contributions of this work are summarized as
follows.

• We propose a novel low-rank tensor representation under
coupled transform for multi-dimensional visual data, which
provides an enhanced low-rank approximation and a novel per-
spective to exploit the implicit low-rank structure, i.e., being
not directly low-rank in the original domain but low-rank in
the transformed domain with well-chosen transformation.

• We formulate a novel low-rank tensor completion model
for recovering missing information in multi-dimensional visual
data based on the proposed low-rank tensor representation,
and develop an efficient alternating directional method of
multipliers (ADMM) [49] solving algorithm.

• Numerical examples on color images, multispectral
images, and videos illustrate the superiority and effectiveness
of the proposed CT-LRTC compared with many existing
methods.

The rest of this paper is organized as follows. Section II
gives some preliminaries of tensor used throughout this paper.
Section III presents the proposed CT-LRTC and the corre-
sponding ADMM solver in detail. Section IV displays exper-
imental results to verify the effectiveness of the proposed
CT-LRTC. Finally, Section V concludes our work.

II. PRELIMINARIES

In this section, we give some preliminary knowledge of
tensor and t-SVD used throughout this paper.

A. Tensor Notations
For a better reading, we summarize some basic notations

of tensors in Table I. Below we introduce some necessary
definitions; see [41], [50] for more details.

TABLE I

NOTATIONS ABOUT A THIRD-ORDER TENSOR

B. The t-SVD Framework

In this subsection, we briefly introduce the t-SVD frame-
work since the proposed CT-LRTC is somewhat related to
TNN. Here are some related definitions.

Definition 2.1 (t-Product [41]): The tensor-tensor product
of X ∈ Rn1×n2×n3 and Y ∈ Rn2×n4×n3 is defined as

X ∗ Y = Fold(bcirc(X ) · Unfold(Y)) ∈ R
n1×n4×n3 ,
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where bcirc(X ) ∈ Rn1n3×n2n3 is the following block circulant
matrix

bcirc(X ) :=

⎡⎢⎢⎢⎣
X (1) X (n3) · · · X (2)

X (2) X (1) · · · X (3)

...
...

. . .
...

X (n3) X (n3−1) · · · X (1)

⎤⎥⎥⎥⎦ ,

Unfold(Y) is a matrix of size n2 n3 × n4:

Unfold(Y) =

⎡⎢⎢⎢⎣
Y(1)

Y(2)

...

Y(n3)

⎤⎥⎥⎥⎦ , Fold(Unfold(Y)) = Y.

When n3 = 1, the t-product degenerates to a matrix-matrix
product.

Definition 2.2 (Orthogonal Tensor [50]): A tensor Q ∈
Rn1×n2×n3 is called an orthogonal tensor, if it satisfies QH ∗
Q = Q ∗ QH = I.

Definition 2.3 ( f -Diagonal Tensor [50]): A tensor is called
an f -diagonal tensor, if each of its frontal slices is a diagonal
matrix.

Definition 2.4 (t-SVD [41]): Every tensor X ∈ Rn1×n2×n3

can be factorized as

X = U ∗ S ∗ VH,

where S ∈ Rn1×n2×n3 is an f -diagonal tensor, and U ∈
Rn1×n1×n3 and V ∈ Rn2×n2×n3 are two orthogonal tensors.

Definition 2.5 (Tensor Multi Rank [33]): The multi rank of
X ∈ R

n1×n2×n3 is a vector r ∈ R
n3 , whose i -th element equals

to the rank of i -th frontal slice of X̄ , i.e., ri = rank(X̄ (i)).
Definition 2.6 (Tensor Tubal Rank [33]): The tubal rank of

X ∈ Rn1×n2×n3 is defined as the number of non-vanishing
tubes of S in X = U ∗ S ∗ VH. That is

ranktubal(X ) = �{i : S(i, i, :) �= 0}.

III. LOW-RANK TENSOR COMPLETION UNDER

COUPLED TRANSFORM

This section is divided into three parts. Subsection III-A
gives the proposed CT-LRTC for tensor completion.
Subsection III-B provides justification for several key ideas of
coupled transform. Subsection III-C provides the correspond-
ing ADMM [49] algorithm with guaranteed convergence in
details.

A. The Proposed CT-LRTC

Based on the above sparsity of the representation coeffi-
cients, we formulate a novel model for LRTC under coupled
transforms, termed as CT-LRTC, which is as follows:

min
X

�B(X )�1

s.t. P�(X ) = P�(O),

where X ∈ Rn1×···×nk is the underlying tensor, O ∈ Rn1×···×nk

is the observed data, � is the index set of the observed data,
P�(·) is the sampling operator that remains the elements in �

Algorithm 1 Coupled Transform for a Third-Order Tensor

while making the others to be zeros, and B = B3 ◦B2 ◦B1 is a
coupled transform which involves three layer, i.e., the framelet
transform, Fourier transform, and KL transform.

In the first layer B1, the framelet transform is conducted
on the spatial slices, which can be expressed as a com-
position of two operators, i.e., B1(X ) = L(W(X )). Here,
W : Rn1×n2×n3×···×nk → Rm2l×n1×n2×n3×···×nk is a framelet
transform operator, i.e., W(X ) = fold4((WX�

(3))
�), where

W ∈ Rm2ln1n2×n1n2 is a framelet transform matrix with
m filters and l levels, and L : R

m2l×n1×n2×n3×···×nk →
Rm2ln1×m2ln2×n3×···×nk is a reshape operator, i.e., rearranges
W(X ) in a diagonal manner which regards W(X ) as
m2l k-order tensors. In fact, B1 : Rn1×n2×n3×···×nk →
Rm2ln1×m2ln2×n3×···×nk is a linear operator. Here, the two-
dimensional framelet transform W is equivalent to a col-
lection of over-complete basis over L2(R) which satisfies
W�W = I [51]–[53], where W� and I are the inverse framelet
transform and equivalent transform, respectively. The detailed
description of the generation process of W can be found
in [54], [55].

In the second layer B2, the Fourier transform is implemented
along the spectral or temporal mode through Matlab’s fft
operation, which is a linear operator B2 : Rn1×n2×n3×···×nk →
Cn1×n2×n3×···×nk .

In the third layer B3, the KL transform projects the data to
the bases, which is the principal directions of the data itself
B3 : Cn1×n2×n3×···×nk → Rn1×n2×n3×···×nk . As a contrast,
Fourier transform and framelet transform only project the data
to some fixed bases.

The compound of the KL transform, framelet transform, and
Fourier transform can be viewed as a couple of the predefined
transform and data-adaptive transform. Moreover, the coupled
transform B can be efficiently obtained by calculating a series
of operations in Matlab; see Algorithm 1 for more details.

We discuss the connection between the proposed work and
previous TNN-based methods. On the one hand, we provide
a unified framework that can accommodate the previous
TNN-based methods, as well as a deconstruction perspective
to view their inner mechanisms. In our framework, they can
be viewed as a sparse approximation under a compound of
transforms, such as FFT+KL (TNN) [33] and DCT+KL [41].
On the other hand, our method can be seen as an improvement
of the existing work, namely TNN in the framelet domain.
Thus, for a third-order tensor X ∈ R

n1×n2×n3 , the proposed
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CT-LRTC is equivalent to

min
X

�B1(X )�TNN

s.t. P�(X ) = P�(O), (1)

where B1 is a linear operator which is a two-dimensional
framelet transform, it is computed within a local spatial neigh-
borhood of the original tensor. The following theorem shows
that the proposed model is a convex optimization problem.

Theorem 1: The proposed CT-LRTC (1) is a convex opti-
mization problem.

Proof. The key to proving the convexity of the proposed
CT-LRTC (1) is that {X |P�(X ) = P�(O)} is a convex set
and �B1(X )�TNN is a convex function.

First, it is easy to check that set {X |P�(X ) = P�(O)} is
convex by the definition.

Second, we prove that the function �B1(X )�TNN : X ∈
R

n1×n2×n3 → R is convex. In fact, for
∀ X1,X2 ∈ Rn1×n2×n3 , and 0 ≤ θ ≤ 1, we have

�B1(θX1 + (1 − θ)X2)�TNN

= �θB1(X1) + (1 − θ)B1(X2)�TNN

× (B1 is a linear operator)

≤ θ�B1(X1)�TNN + (1 − θ)�B1(X2)�TNN

× (TNN [41] is a convex function).

Thus, the function �B1(X )�TNN is convex by definition.
Combining the above facts, the proposed CT-LRTC (1) is a

convex optimization problem.

B. The Coupled Transform

Below, we provide explanations for several key ideas of the
proposal.

1) Role of Different Transforms: The framelet transform
captures local spatial correlation, since it is computed within a
local spatial neighborhood of the original tensor. The Fourier
transform is believed to exploit the global temporal (or spec-
tral) correlation, since its computation refers to the whole
temporal (or spectral) vectors. The KL transform reflects
the global spatial correlation (i.e., low-rankness), since it is
computed within a spatial slice of the framelet and Fourier
transformed result. The sparsity of the result after KL trans-
form is indeed the rank of the spatial slice of the framelet and
Fourier transformed result.

These three transforms are inherently related, and they have
collaborated. As we can see, the framelet transform is applied
on the spatial slices while the Fourier transform is conducted
along the third mode (temporal or spectral mode). The carrying
out of framelet and Fourier transforms relatively independent
but spatial and temporal (or spectral) are coupled. Meanwhile,
the KL transform is based on the bases related to the data
distribution, being different from the fixed bases provided by
framelet and Fourier transforms.

2) Spatial and Spectral Decorrelation: First, the framelet
transform has been widely used for image processing (Please
see [51], [54] for example) with its abundant bases which are
greatly suitable for the spatial geometric structures, textures,
and details existed in a majority of natural images. Second,

Fig. 2. The AccEgy with respect to the percentage of singular values of
the original tensor and the framelet transformed tensor. From left to right: the
color image Butterfly of size 256×256×3, the multispectral image (MSI) Cd
of size 512 × 512 × 31, and the grayscale video Bus of size 288 × 352 × 30,
respectively.

along the temporal (or spectral) dimension, this framelet
transformed result is further decomposed into low-frequency
components and high-frequency components with respect to
the Fourier bases. Thus, after the framelet and Fourier trans-
forms, the multi-dimensional images are thoroughly decom-
posed with respect to the semi-orthogonal framelet bases along
the spatial dimensions and the orthogonal Fourier bases along
the temporal (or spectral) dimension. The introduced framelet
transform faithfully exploits the spatial multi-scale nature
widely existed in imaging data, especially for implicit spatial
low-rank images, which results in more sparse coefficients
after KL transform (i.e., more low-rankness) as compared with
coupled Fourier and KL transforms (i.e., TNN).

3) Enhanced Low-Rank Representation: The proposed low-
rank tensor representation based a coupled transform faithfully
exploits the spatial multi-scale nature widely existed in imag-
ing data, and this is expected to help generating a better low
tensor multi-rank approximation. Fig. 2 plots the AccEgy with
respect to the percentage of singular values of the original
tensor and the framelet transformed tensor on different types of
multi-dimensional data. An immediate observation is that the
framelet together with Fourier transform significantly reform
singular values for different multi-dimensional data and the
energy of the singular value of the transformed tensor is more
concentrated after the framelet transform. More distinctly,
as pointed out by the auxiliary dashed lines, after the framelet
and Fourier transforms, the transformed data could occupy
95% of the whole energy with a smaller proportion of singular
values, compared with the case in which only the Fourier
transform is involved (i.e., TNN). Therefore, we can use a
better tensor low multi-rank approximation to achieve the
same AccEgy. The above numerical experiments justify our
contribution.

C. ADMM-Based Optimization Algorithm

We develop an ADMM [49] algorithm to solve the proposed
CT-LRTC (1). By introducing an auxiliary variable Y =
B1(X ), we rewrite the original problem (1) as the equivalent
constrained optimization problem

min
X ,Y

lS(X ) + �Y�TNN

s.t. Y = B1(X ), (2)

where lS(X ) is an indicator function defined as

lS(X ) =
	

0, X ∈ �,

∞, otherwise,
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where � := {X ∈ Rn1×n2×n3 , P�(X ) = P�(O)}. The
corresponding augmented Lagrangian function is

Lβ(X ,Y, �)= lS(X )+�Y�TNN+ β

2
�B1(X )−Y+ �

β
�2

F , (3)

where � ∈ Rm2ln1×m2ln2×n3 is the Lagrangian multiplier and
β is a positive penalty parameter. In the end, ADMM iterates
as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Yk+1 = arg min
Y

Lβ(X k ,Y,�k),

X k+1 = arg min
X

Lβ(X ,Yk+1,�k),

�k+1 = �k + β(B1(X k+1) − Yk+1).

Below, we give the details of updating each minimizing
subproblem.

Step 1, the Y-subproblem at the k-th iteration is

Yk+1 = arg min
Y

�Y�TNN + β

2
�B1(X k) − Y + �k

β
�2

F . (4)

A closed-form solution of (4) can be obtained by a tensor
singular value thresholding (t-SVT) operator [56], [57], i.e.,

Yk+1 = t-SVT 1
β
(B1(X k) + �k

β
), (5)

and its computational complexity is O(m2ln1n2n3log(n3) +
m2ln3 min(n1n2

2, n2n2
1)).

Step 2, the X -subproblem at the k-th step is

X k+1 = arg min
X

lS(X ) + β

2
�B1(X ) − Yk+1 + �k

β
�2

F

= arg min
X

lS(X )

+ β

2
�WX�

(3) − (L−1(Yk+1 − �k

β
)(4))

��2
F . (6)

To solve (6), we introduce the following Theorem.
Theorem 2: Let E be a semi-orthogonal matrix, i.e., E�E =

I, where I is the identity matrix, then

E�Y = arg min
Z

�EZ − Y�2
F .

Proof. The derivation process is as follows

arg min
Z

�EZ − Y�2
F

= arg min
Z

�EZ�2
F − 2 < EZ, Y > +�Y�2

F

= arg min
Z

�Z�2
F − 2 < Z, E�Y > +�E�Y�2

F

= arg min
Z

���Z − E�Y
���2

F
.

Thus, E�Y = arg minZ

��Z − E�Y
��2

F = arg minZ �EZ−Y�2
F .

By using Theorem 2, the corresponding (6) equals to

X k+1 = arg min
X

lS(X )

+ β

2
�X(3) − (L−1(Yk+1 − �k

β
)(4))W�2

F .

Algorithm 2 Low-Rank Tensor Completion Under Coupled
Transform

By minimizing the X -subproblem, we have lS(X ) = 0.
Thus, the solution of X -subproblem can be obtained by	

P�(X k+1) = P�(O),

P�C (X k+1) = P�C (fold3((L−1(Yk+1 − �k

β )(4))W)),
(7)

where �C denotes the complement of set �, and its compu-
tational complexity is O(m2ln1n2n3).

Step 3, updating the multiplier � by

�k+1 = �k + β(B1(X k+1) − Yk+1). (8)

The overall ADMM iteration strategy is summarized in
Algorithm 2. The total computational complexity at each
iteration is O(m2ln1n2n3log(n3) + m2ln3 min(n1n2

2, n2n2
1).

The following theorem shows the convergence of the proposed
algorithm.

Theorem 3: The sequences generated from the proposed
ADMM algorithm converges to the minimizer of the convex
optimization problem (1).

Proof. Since B1 is a linear operator, B1(X ) can be written
as a matrix-vector product, i.e., B1x, where x denotes the
vectorization of X . The linear constraints can be reformulated
as the following matrix-vector product:

Iy + (−B1)x = 0,

where I and y denote the identity matrix and the vectorization
of Y , respectively. We separate all the variables into two
groups, X and Y , decompose the objective function as f + g
with f = lS(X ) and g = �Y�TNN, both of which are convex
functions. Therefore, the problem (2) fits the framework of
ADMM [49], and the convergence of the algorithm is theoret-
ically guaranteed, i.e., the sequence {X k,Yk} generated from
the proposed ADMM algorithm is convergent.

IV. EXPERIMENTAL RESULTS

In this section, we test the performance of the proposed
CT-LRTC and compare it with state-of-the-art tensor comple-
tion methods. Subsection IV-A provides some experimental
settings. Subsection IV-B tests the proposed CT-LRTC in syn-
thetic data completion. Subsections IV-C–IV-E present exper-
imental results on multi-dimensional visual data, including
color images, multispectral images, grayscale videos, and color
videos. Finally, some discussions are given in Subsection IV-F.
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TABLE II

THE COMPUTATIONAL COMPLEXITY OF DIFFERENT ALGORITHMS ON AN
n1 × n2 × n3 TENSOR. HERE, R IS THE RANK OF THE

TR FACTORIZATION

A. Experimental Setting

1) Parameter Setting: The proposed method involves the
following parameters: m and l in the framelet transform matrix
W, and the positive penalty parameter β in the augmented
Lagrangian function (3). The parameter m controls the type of
the selected filter, including the Haar wavelet, piece-wise linear
B-spline, and piece-wise cubic B-spline, which are briefly
referred to as “Haar”, “Linear”, and “Cubic”, severally. The
parameter l controls the level of framelet transform, and we
set it to the range of [1, 3] with increments 1. The effects of
m and l are discussed in subsection IV-F. The parameter β
controls the speed of convergence, and we fine-tuned it in the
range of [0.01, 0.1] with increments 0.01 to obtain the highest
peak signal-to-noise ratio (PSNR) [58] value.

2) Compared Methods: We compare the proposed method
with several existing approaches, including TNN [33],
TNN-DCT [41], t-TNN [59], PSTNN [37], and TRLRF [60].
For a fair comparison, parameters in the compared method
are manually adjusted according to the authors’ suggestions
to obtain the highest PSNR value. Table II compares the
computational complexity of different methods.

3) Data Generation and Experimental Environment: In
order to test the generalization, we consider four types of
multi-dimensional visual data: color images, multispectral
images, grayscale videos, and color videos. All data are
normalized to [0, 1]. We also consider two types of sampling:
the element-wise sampling and the tube-wise sampling as
shown in Fig. 3. In the element-wise sampling, we generate
incomplete data by sampling elements of data randomly, with
different sampling rates (SRs) ∈ {5%, 10%, 20%}. As for
tube-wise sampling, we generate incomplete data by deleting
elements of the original data with three different masks (text,
graffiti, and grid mask). All tests are implemented under
Windows 10 and MATLAB R2018a running on a desktop with
an Intel(R) Core (TM) i9-9900K CPU at 3.60GHz and 32GB
RAM.

4) Evaluation Indices: We consider the following indices
for quantitative evaluation: PSNR and the structural similarity
index [58] (SSIM). PSNR and SSIM are defined as

PSNR = 20 log10

√
n1 × n2

�X − X∗�F

and

SSIM = (2μX · μX∗ + c1)(2σXX∗ + c2)

(μ2
X + μ2

X∗ + c1)(σ
2
X + σ 2

X∗ + c2)
.

Fig. 3. An illustration of the element-wise sampling and tube-wise sampling.

Fig. 4. The success rates for synthetic data with varying multi-ranks and
SRs. The left and right are the result of the TNN-based and the proposed
CT-LRTC method, respectively. The white dashed lines are placed on the
diagonal line for easier comparison.

Fig. 5. Ten benchmark color images used in color image completion. From
left to right, and from top to bottom: Barbara, Airplane, Peppers, Fruits,
Baboon, Cherry, Parrot, Vegetable, Flower, and Sailboat.

Here, X∗ ∈ Rn1×n2 is the recovered image, X is the ground
truth image, μX and μX∗ , σX and σX∗ are the mean values
and standard variances of X and X∗, respectively, σXX∗ is the
covariance of X and X∗, and c1, c2 > 0 are constants. For a
third-order tensor, the PSNR and SSIM values are calculated
by averaging the PSNR and SSIM values of all frontal
slices.

B. Synthetic Data Completion

To verify our motivation, we conducted the experiments
with respect to the tensor multi-rank and the sampling rate
(SR) by the TNN-based tensor completion method and the pro-
posed CT-LRTC. We conduct 50 independent experiments on
random color image patch of size 64×64×3 and calculate the
success rate, where one test is successful if the relative square
error of the recovered tensor �X and the ground-truth tensor

X , i.e.,
�X− �X �2

F
�X �2

F
is less than 10−3. Fig. 4 shows the success

rates for various multi-ranks and different SRs. We can observe
that the performance of the proposed CT-LRTC shows larger
reddish-brown areas than the TNN-based method, implying
higher success rates.
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Fig. 6. The recovered results by different methods on color images under SR = 20%. From top to bottom: Barbara, Airplane, and Peppers, respectively.
For better viewing, under each image, we display the magnified map of a patch and the corresponding error map (difference from the ground truth). Error
maps with less color information indicate better restoration performance.

C. Color Image Completion

Ten benchmark color images1 are shown in Fig. 5 for color
image completion. We conduct two types of experiments: the
first five benchmark images of size 512×512×3 with element-
wise sampling, and the last five benchmark images of size
500 × 500 × 3 with tube-wise sampling (i.e., color image
inpainting). Here, we test three different masks: text, graffiti,
and grid mask.

1) The Element-Wise Sampling: Fig. 6 shows the recovered
results by different methods on color images under SR =
20%. As one can see, the recovered results obtained by TNN
only recover the coarse structure, which produce evident blur
and artifacts. We can observe that other TNN-based methods
(i.e., TNN-DCT, t-TNN, and PSTNN) also suffer from such
problems. The recovered results obtained by TRLRF recover
some details and do not alleviate the blurriness compared
to TNN-based methods. The underlying reason is that only
the global low-rankness prior is not sufficient to recover
the potential image. In comparison, the proposed CT-LRTC
provides the most visually pleasing results with clear and
sharp spatial details, due to CT-LRTC can capture the intrinsic
structure of the multi-dimensional visual data represented in a
multi-scale manner.

Table III presents the PSNR/SSIM values and average CPU
time (in minutes) of the recovered results by different methods
on color images under different SRs. We can observe that

1Available at http://sipi.usc.edu/database/database.php

the proposed CT-LRTC consistently outperforms the compared
ones in terms of both PSNR and SSIM values and the CPU
time is comparable with the other compared methods. More
precisely, CT-LRTC outperforms the second-best methods
about 3 dB in PSNR and 0.1 in SSIM. Such an improvement is
mainly attributed to that the use of multi-scale representation
by CT-LRTC to implicitly utilize the spatial information of
images, thereby promoting the improvement of PSNR and
SSIM values.

2) The Tube-Wise Sampling: Fig. 7 shows the recovered
results by different methods for color image inpainting. Notice
that the magnified map of a patch and the corresponding error
map (difference from the ground truth) are displayed below
each image. The corresponding PSNR and SSIM values are
displayed above the image. Clearly, CT-LRTC obtains the most
visually satisfying results among the competing methods, and
the PSNR and SSIM results are higher than the corresponding
compared methods in all cases. In particular, the advantages
of the proposed CT-LRTC are particularly evident in the text
and mesh masking problem.

D. Multispectral Image Completion

In this subsection, we perform LRTC on five multispectral
images (MSIs) from the CAVE dataset,2 i.e., Clay, Balloons,
Feathers, Cd, and Beads. All MSIs are of size 512 ×512 ×31
with SR = 5%, 10%, and 20%.

2Available at http://www.cs.columbia.edu/CAVE/databases/multispectral/
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Fig. 7. The recovered results by different methods on the five masked image. The corresponding PSNR and SSIM values are displayed above the image. For
better visual comparison, under each image, we display the magnified map of a patch and the corresponding error map (difference from the ground truth).
Error maps with less color information indicate better restoration performance.

Fig. 8 shows the pseudo-color image (composed of the
1st, 2nd, and 31st bands) of the recovered results by dif-
ferent methods on MSIs under SR = 10%, where the pixel
intensity is readjusted for better viewing. We observe that
TNN, TNN-DCT, PSTNN, and TRLRF cannot recover all the
elements; t-TNN performs slightly better while the proposed
CT-LRTC fills almost all elements. Regarding visual quality,
the proposed CT-LRTC produces the closet result to the ground
truth, which is superior to other compared methods.

Table IV lists the quantitative indexes (PSNR/SSIM) and
average CPU time of the recovered results by different meth-
ods on MSIs under different SRs. The proposed CT-LRTC
obtains the highest PSNR and SSIM values in almost all
cases under different MRs. In addition, Fig. 9 displays the
PSNR values of each frontal slice of multispectral image Clay.
As observed, in all frontal slices, the PSNR values of the
proposed CT-LRTC are much higher than those of the other
compared methods.
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Fig. 8. The pseudo-color image (composed of the 1st, 2ed, and 31st bands) of the recovered results by different methods on MSIs under SR = 10%. From
top to bottom: Balloons, Feathers, and Cd, respectively. The intensity of the pixels in the shown image is readjusted for better display.

Fig. 9. The PSNR values of all frontal slices obtained by different methods on the multispectral image Clay and the grayscale video Suzie under different
SRs.

E. Video Completion
In this subsection, we test four grayscale videos with

differenr SRs: Birdhouse of size 700 × 860 × 30, Suzie of
size 480 × 700 × 30, Bus of size 288 × 352 × 30, and Hall of

size 144×176×100. And we also test three color videos with
differenr SRs: Bus of size 288×352×3×30, Container of size
144×176×3×30, and Coastguard of size 144×176×3×30.
These videos are available online http://trace.eas.asu.edu/yuv/.
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Fig. 10. The 15-th frame of the recovered results by different methods on grayscale videos under SR = 10%. From top to bottom: Birdhouse, Suzie, Bus,
and Hall, respectively.

Fig. 11. The 15-th frame (color figure) of the recovered results by different methods on color videos under SR = 5%. From top to bottom: Bus, Container,
and Coastguard, respectively. For better viewing, under each image, we display the magnified map of a patch and the corresponding error map (difference
from the ground truth). Error maps with less color information indicate better restoration performance.

1) Grayscale Video Completion: Fig. 10 shows the 15-th
frame of the recovered examples by different methods on
grayscale videos under SR = 10%, and the corresponding
PSNR, SSIM values, and average CPU time are summa-
rized in Table V. Clearly, CT-LRTC obtains the most visually
pleasant results among the compared methods. In the red
regions of Fig. 10, we can see that the recovered results by
the proposed CT-LRTC are more clear and sharper in spatial
texture compared with the other methods. Table V shows
that the proposed CT-LRTC obtains the highest quantitative

indexes in all testing videos. Fig. 9 displays the PSNR values
of each frontal slice of Suzie, and the quantitative indexes are
consistent with the above results.

2) Color Video Completion: Compared with the other
TNN-based methods, the proposed CT-LRTC can also be used
for color videos completion by simply changing B2 into a two-
dimensional Fourier transform. In order to facilitate compar-
ison, for the other TNN-based methods, we use a reshaping
operation to convert the color video (fourth-order) into third-
order data, and then input it into the model for solution.
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TABLE III

THE PSNR/SSIM VALUES AND AVERAGE CPU TIME (IN MINUTES)
OF THE RECOVERED RESULTS BY DIFFERENT METHODS ON COLOR

IMAGES UNDER DIFFERENT SRS. THE BEST RESULTS ARE

HIGHLIGHTED IN BOLDER FONTS

Fig. 11 shows the 15-th frame of the recovered examples by
different methods on color videos under SR = 10%, and the
corresponding PSNR, SSIM values, and average CPU time are
summarized in Table VI. It is obvious that CT-LRTC visually
outperforms the other compared methods in keeping details
of the recovered images and achieves the highest quantitative
results under different SRs.

F. Discussion

In this subsection, we give some discussions.
1) A Rigorous Comparison: In order to further verify the

effectiveness of the proposed method, we add a rigorous com-
parison with the compared methods about missing percentage
from 10% to 90% with an interval of 20%. Table VII lists the
quantitative indexes (PSNR/SSIM) by different methods on
the color image Flower, the multispectral image Cd, and the
grayscale video Hall under different SRs. We can observe that
the proposed CT-LRTC obtains visually satisfying results and
consistently outperforms the other compared methods in terms
of both PSNR and SSIM values, especially when the sampling
is extremely low. These observations correspond exactly to the
relationships we mentioned earlier.

2) Framelet Setting: We discuss the effects of two important
parameters of the framelet transform, which are the parameter
m that controls the selection of filter and the parameter l

TABLE IV

THE PSNR/SSIM VALUES AND AVERAGE CPU TIME (IN MINUTES)
OF THE RECOVERED RESULTS BY DIFFERENT METHODS ON MSIS

UNDER DIFFERENT SRS. THE BEST RESULTS ARE HIGHLIGHTED

IN BOLDER FONTS

Fig. 12. The relative error curves of the ADMM algorithm on multispectral
image Clay with SR = 10% (left) and SR = 20% (right), respectively.

that controls the decomposition level. Table VIII shows the
quantitative indexes of the proposed CT-LRTC with different
framelet settings on the color image peppers under SR =
5%. From Table VIII, we can see that CT-LRTC is not very
sensitive to changes in the framelet transform parameters,
but they directly affect the computational complexity of the
proposed algorithm.

3) Mumerical Convergence of the Algorithm: In Fig. 12,
we illustrate the convergence behavior of the proposed ADMM
solver. Here, the relative error in each iteration is defined as
�X k+1 − X k�F/�X k�F , where X k+1 and X k are the two
successive reconstructed tensors. Fig. 12 suggests a strong
convergence behavior of the proposed ADMM solver; it can
reach a relative decrease of 10−2 in 30 iterations, and the
relative error is decreased with the increase of iterations so
that higher accuracy can be obtained.
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Fig. 13. The recovered results by different methods on color image Airplane of size 512 × 512 × 3 under SR = 20%. (a) The ground truth; (b) The observed
image; (c-f) The recovered results by CT-LRTC without framelet and Fourier transforms, CT-LRTC without Fourier transform, CT-LRTC without framelet
transform, and the proposed CT-LRTC, respectively. The corresponding PSNR and SSIM values are displayed above the image.

Fig. 14. The recovered results by different methods for diverse sampling and data. From top to bottom: the color images Sculpture and Beach from the testing
dataset with tube-wise sampling; the color images Cherry and Sailboat not from the testing dataset with tube-wise sampling; and the color images Peppers
and Fruits not from the testing dataset with element-wise sampling. For better visualization, under each image, we show enlargements of a demarcated patch
and the corresponding error map (difference from the ground-truth). Error maps with less color information indicate better restoration performance.

4) Effects of the Three Transforms: Numerically, to further
clarify that the inner-correlation between these three trans-
forms are mutually collaborative, we have added experiments
to test the performance of different combinations of these three
transforms in Fig. 13. From Fig. 13, we can observe that
the recovered results with KL and Framelet + KL are color
distorted, which implies the necessity of Fourier transform in
the spectral (i.e., color) fidelity. The recovered results with KL
and FFT+KL lose some image details and textures, especially
in the tail, which implies the necessity of Framelet transform
in the spatial fidelity. Although the coupled transform may
adversely affect real-time performance, the proposed CT-
LRTC has the best visual performance in the spatial and
spectral fidelity, which validates our motivation.

5) Compared With Deep Learning: To further illustrate that
the proposed CT-LRTC has good generalization compared
with some DL-based completion methods, some experiments
are given. Here, we choose “Generative Image Inpainting with
Contextual Attention” (termed as CA) [46] as the compared
method, whose main idea is to utilize the surrounding image
features as references during network training to make better
predictions. The model is a feed-forward, fully convolutional
neural network which is trained on the color image dataset
with tube-wise sampling. We consider two color images from
the testing dataset with tube-wise sampling, two color images
not from the testing dataset with tube-wise sampling, and two
color images not from the testing dataset with element-wise
sampling.

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on March 31,2021 at 01:57:43 UTC from IEEE Xplore.  Restrictions apply. 



3594 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

TABLE V

THE PSNR/SSIM VALUES AND AVERAGE CPU TIME (IN MINUTES) OF
THE RECOVERED RESULTS BY DIFFERENT METHODS ON GRAYSCALE

VIDEOS UNDER DIFFERENT SRS. THE BEST RESULTS ARE

HIGHLIGHTED IN BOLDER FONTS

TABLE VI

THE PSNR/SSIM VALUES AND AVERAGE CPU TIME (IN MINUTES)
OF THE RECOVERED RESULTS BY DIFFERENT METHODS ON COLOR

VIDEOS UNDER DIFFERENT SRS. THE BEST RESULTS ARE
HIGHLIGHTED IN BOLDER FONTS

Fig. 14 shows the recovered results by different methods
for diverse samplings and data. We can observe that the per-
formance of CA is better than the proposed CT-LRTC on the
testing image with the tube-wise sampling. As we expected,
the performance of the proposed CT-LRTC is superior to CA
on the image not from testing dataset with diverse samplings,
which demonstrates the generalization ability of our method.

TABLE VII

THE PSNR/SSIM VALUES OF THE RECOVERED RESULTS BY DIFFERENT
METHODS UNDER DIFFERENT SRS. THE BEST RESULTS ARE

HIGHLIGHTED IN BOLDER FONTS

TABLE VIII

THE PSNR/SSIM/TIME (IN SECONDS) VALUES OF THE PROPOSED

CT-LRTC ON THE COLOR IMAGE Peppers UNDER DIFFERENT
FRAMELET SETTINGS WITH SR = 5%. THE BEST RESULTS ARE

HIGHLIGHTED IN BOLDER FONTS

V. CONCLUSION

In this paper, we proposed a novel low-rank tensor represen-
tation under the coupled transforms, which can characterize
both the global correlation and local geometric details in
a unified framework, and obtain a better low multi-rank
approximation. The proposed low-rank tensor representation
can be formulated via the two-dimensional framelet transform,
Fourier transform, and Karhunen–Loéve transform (via sin-
gular value decomposition). Further, we formulated a novel
model for LRTC (named as CT-LRTC) by promoting the
proposed low-rank tensor representation. Then, we devel-
oped an efficient ADMM algorithm to optimize the proposed
CT-LRTC, in which every variable has a closed-form solution
in each iteration. Finally, experimental examples of real-
world imaging data illustrated that the proposed CT-LRTC
outperforms many existing approaches in both qualitative
and quantitative aspects. In future work, we will work hard
to speed up CT-LRTC, establish the theoretical justification,
and expand the low-rank tensor representation under coupled
transforms to other applications, such as denoising [61], [62]
and subspace clustering [63], [64].
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