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Abstract—Recently emerged deep learning methods have
achieved great success in single image rain streaks removal.
However, existing methods ignore an essential factor in the
rain streaks generation mechanism, i.e., the motion blur leading
to the line pattern appearances. Thus, they generally produce
overderaining or underderaining results. In this article, inspired
by the generation mechanism, we propose a novel rain streaks
removal framework using a kernel-guided convolutional neural
network (KGCNN), achieving state-of-the-art performance with
a simple network architecture. More precisely, our framework
consists of three steps. First, we learn the motion blur kernel
by a plain neural network, termed parameter network, from the
detail layer of a rainy patch. Then, we stretch the learned motion
blur kernel into a degradation map with the same spatial size as
the rainy patch. Finally, we use the stretched degradation map
together with the detail patches to train a deraining network with
a typical ResNet architecture, which produces the rain streaks
with the guidance of the learned motion blur kernel. Experiments
conducted on extensive synthetic and real data demonstrate the
effectiveness of the proposed KGCNN, in terms of rain streaks
removal and image detail preservation.

Index Terms— Convolutional neural network (CNN), motion
blur kernel, rain streaks generation mechanism, rain streaks
removal.

I. INTRODUCTION

UTDOOR vision systems are frequently affected by bad
weather conditions, one of which is the rain. Because
of the high motion velocities and the light scattering, rain-
drops usually introduce bright streaks into the images or
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Fig. 1.  Example of rain streaks removal for a real-world rainy image.
(a) Rainy image. (b)—(d) Deraining results by DID [11], DDN [12], and the
proposed KGCNN, respectively.

videos acquired by cameras. This undesirable interference will
degrade the performance of various computer vision algo-
rithms [1], such as object detection [2], [3], event detection [4],
action recognition [5], [6], and scene analysis [7], [8]. Rain
streaks removal aims at alleviating the effects of the rain,
which is an essential task [9] and has been investigated
extensively [10]. Fig. 1 shows one example of the single image
rain streaks removal.

The central issue in deraining methods is to exploit
the discriminative characteristics of the rain streaks and
the clean image. Model-based methods formulate rain
streaks removal as an optimization problem involved hand-
crafted regularizers expressing prior knowledge of the solu-
tion, such as the high-frequency (HF) property [13], [14],
directionality [15]-[18], and repeatability [19] of the rain
streaks and the piecewise smoothness [18]-[21] of the image.
However, these model-based methods generally cannot deal
with real rainy scenarios since the degradation processes can
be very complex. To overcome this shortage, learning-based
methods attempt to learn the discriminative characteristics
from the data, such as learned dictionaries [22], the Gaussian
mixture models (GMMs) [20], [21], the stochastic distribu-
tions [23], and the convolutional filters [24]-[26]. Recently
emerged deep learning methods [11], [12], [27]-[39] capture
the data knowledge by a trained deep neural network with
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Fig. 2.

Flowchart of the proposed single image rain streaks removal framework. The rainy image is decomposed into the detail layer and the base layer.

A detail patch is fed to the parameter network to obtain the angle and the length of the motion blur kernel. The motion blur kernel is stretched to the degradation
map. The detail patch and the degradation map are then fed into the deraining network, whose output is the rain streaks patch. Finally, the deraining image

is obtained by the subtraction of the rainy image and the rain streaks image.

strong representation ability, leveraging the data to the most
extent and obtaining promising results.

Despite achieving great success in rain streaks removal,
existing deep learning methods still face two challenges.
First, the performance of the trained network highly relies
on the training data. Examples include the deep detail net-
work (DDN) [12], [40], which concentrated on learning the
nonlinear mapping from the detail layer to the rain streaks
with straightforward network architectures. Second, many
deep learning methods suffer from the burden of network
designing. Examples include CNN-based methods, such as
DID [11] and JORDER [29], which elaborately design the
CNN architectures in order to tackle the complex situations of
real rainy scenarios. Due to the abovementioned limitations,
state-of-the-art methods cannot effectively distinguish the rain
streaks and the line pattern textures, leading to either under-
deraining results (remaining rain streaks) or overderaining
results (erasing image details). Fig. 1 shows a typical example,
in the enlarged areas of which we can observe that DID erased
some grasses (overderaining) and DDN retains obvious rain
streaks (underderaining).

To tackle the abovementioned challenges, we propose a
novel deep learning method for rain streaks removal. The
basic idea is to guide rain streaks removal via the rain
streaks generation mechanism, which is modeled as a con-
volution of a raindrop mask with a motion blur kernel.
As pointed out in [1], the appearance of the rain streaks is
mainly related to the motion blur. This mechanism naturally
exploits two important distinguishing characteristics of the rain
streaks, i.e., the repeatability and the directionality. Specifi-
cally, the repeatability of the rain streaks, which has also been
mentioned in [19], can be utilized to estimate the motion blur
kernel. Then, the kernel, which contains the information of
the rain streaks’ direction, is supposed to guide the deraining
stage. Therefore, this would contribute to distinguishing the
rain streaks and the line pattern textures in different directions.
Once established, two questions arise: 1) how to infer the
motion kernel from the data? and 2) how to utilize the
information provided by the motion blur kernel in the process
of removing rain streaks?

The answers to the abovementioned questions lead to a
three-step framework for rain streaks removal (see Fig. 2
for the flowchart). In our approach, we assume that the rain
streaks in a small patch approximately share the same motion
blur kernel (i.e. direction). First, extract the detail patch from
a rainy patch. Then, feed the rainy patch to the parameter
network, a plain network with six “Conv + ReLU” layers and
two fully connected layers to infer the angle and the length
of the motion blur kernel. To enable the learned motion blur
kernels to participate in the subsequent rain streaks removal
process, we adopt the dimensionality stretching strategy [41],
which stretched the motion blur kernels to degradation maps
with the same spatial size as the detail patches. Then, the detail
patch together with the degradation map is inputed to a
26-layer network of the typical ResNet architecture, and its
output is the patch of rain streaks. Finally, we obtain the
rain streaks removal results by subtracting the rain streaks
image from the rainy image. The core idea of our framework
is exploiting the generation mechanism of the rain streaks to
guide rain streaks removal, and the flowchart of our framework
is shown in Fig. 2. In this work, we mainly focus on the
rain streaks removal and the readers may apply haze removal
methods [42], [43] as a preprocessing or postprocessing step
for heavy rain accompanied by haze.

The contributions of this article mainly include three
aspects.

1) We build a novel rain streak observation model based
on the motion blur mechanism, which enables us to
utilize the repeatability and the directionality of the rain
streaks. To infer the parameters (length and angle) of
the motion blur kernel, we design a subnetwork, i.e.,
the parameter network, by exploiting the rain streaks
generation mechanism.

2) We propose an effective kernel-guided CNN (KGCNN)
with a simple architecture for rain streaks removal,
in which the estimation process is thoroughly guided
by the automatically learned motion blur kernel.

3) Extensive experiments are conducted on publicly avail-
able real and synthetic data. Qualitative and quantita-
tive comparisons with existing state-of-the-art methods
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suggest that the proposed KGCNN achieves state-of-
the-art performance in terms of removing rain streaks
and keeping textures.

The organization of this article is as follows. We provide
an overview of the existing deraining methods in Section II.
Section III gives the detailed architecture of the proposed
KGCNN. In Section IV, experimental results on synthetic data
and real-world data are reported. Finally, we draw conclusions
in Section V.

II. RELATED WORKS

In the past decades, numerous methods have been pro-
posed to improve the visibility of images/videos captured with
rain streaks interference. Traditionally, these methods can be
divided into two categories: single image deraining methods
and multiple-image/video deraining methods. Nevertheless,
the explosive development of deep learning brings in a novel
branch, i.e., the deep learning methods.

A. Traditional Methods

1) Single Image Deraining Methods: For the single image
deraining task, Kang et al. [13] decomposed a rainy image
into low-frequency (LF) and HF components using a bilateral
filter and then performed morphological component analysis
(MCA)-based dictionary learning and sparse coding to sepa-
rate the rain streaks in the HF component. To alleviate the loss
of the details when learning HF image bases, Sun et al. [14]
tactfully exploited the structural similarity of the derived HF
image bases. Kim et al. [44] took advantage of the nonlocal
similarity. Chen and Hsu [19] considered the similar and
repeated patterns of the rain streaks and the smoothness of the
rain-free content. Luo et al. [22] adopted discriminative sparse
codes of the rain layer and the derained image layer. The recent
work by Li et al. [21] utilized the GMM patch priors for rain
streaks removal, with the ability to account for rain streaks of
different orientations and scales. Meanwhile, the directional
property of rain streaks received a lot of attention in [15]-[17]
and [45] and these methods achieved promising performances.
Ren et al. [46] removed the rain streaks from the image
recovery perspective. Wang et al. [47] took advantage of image
decomposition and dictionary learning.

2) Video Deraining Methods: Garg and Nayar [48] first
raised a video rain streaks removal method with a com-
prehensive analysis of the visual effects of rain streaks on
an imaging system. Since then, many approaches have been
proposed for the video rain streaks removal task and obtained
good performances with different rain circumstances. Tripathi
and Mukhopadhyay [49] took the spatiotemporal properties
into consideration. In [19], the similarity and repeatability
of rain streaks were considered, and a generalized low-rank
appearance model was proposed. Chen and Chau [50] con-
sidered highly dynamic scenes. Whereafter, Kim et al. [51]
considered the temporal correlation of rain streaks and the
low-rank nature of clean videos. Santhaseelan and Asari [52]
detected and removed the rain streaks based on phase congru-
ency features. In addition, comprehensive early existing video
deraining methods were reviewed in [53]. You et al. [54] took
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the raindrops adhered to a windscreen or window glass into
account. In [18], a novel tensor-based video rain streaks
removal approach was proposed by considering the directional
property. The rain streaks and the clean image were stochas-
tically modeled as a mixture of Gaussians by Wei et al. [23].
The convolutional sparse coding (CSC), which has shown its
ability in image cartoon-texture decomposition [26], was also
adopted by Li ef al. [24] for the video rain streaks removal.
Ren ef al. [55] addressed the video desnow and deraining task
based on matrix decomposition.

B. Deep Learning-Based Methods

Deep learning was first applied to deraining in [56],
in which a three-layer CNN was designed to remove static
raindrops and dirt spots from pictures taken through window
glass. Fu et al. [40] were the first to successfully tailor a CNN
for the rain streaks removal task. Moreover, Fu et al. [12]
designed the DDN to further improve the performance by
adopting the well-known ResNet [57] structure. Pan et al. [58]
simultaneously operated on the texture component and the
structural component. Yang et al. [29] added a binary map
that provides rain streak locations to the degradation model
and proposed a deep recurrent network for simultaneous rain
streaks detection and removal.

Chen et al. [28] proposed a CNN framework for video
rain streaks removal, whereas Liu et al. [30], [31] adopted
the recurrent neural network (RNN) for this task. For jointly
rain-density estimation and deraining, Zhang and Patel [11]
raised a density-aware multistream densely connected
CNN (DID). Recently, the increasingly popular generative
adversarial networks (GANs) were applied to deal with adher-
ent raindrop [27]. Since the rainy scenarios can be very
complex, the latest methods [32]-[34], [59]-[62] removed
the rain streaks removal in a recursive/progressive/hierarchical
manner.

III. FRAMEWORK OF THE KERNEL-GUIDED
CONVOLUTIONAL NEURAL NETWORK

This section describes the details of the framework of
the proposed KGCNN. Section III-A gives our rain streaks
degradation model. Sections II[-B—III-D give three main parts,
i.e., the parameter network, the dimensionality stretching, and
the deraining network of the proposed rain streaks removal
framework, respectively.

A. Degradation Model

Taking image patches as the basic unit, within which the
rain streaks can be approximately viewed as sharing the
same direction, we consider the basic additive degradation
model [20], [21]: O = B + R, where O, B, and R € R"™*"*3
are patches of the rainy image, the clean image, and the
rain streaks, respectively. Because of the high velocity of
the raindrops, we model the generation of rain streaks as the
following motion blur process:

O=B+K@ 1HoM (1)
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Fig. 3. [Illustration of the extraction of the detail layer from the rainy image
via the guided image filtering [63].

where 6 and [ are, respectively, the angle and length of the
motion blur kernel K(0,1), M € R"™ "3 is the raindrops
mask, and ® denotes the spatial convolution operator. The two
important factors, i.e., the length / and the angle 6, essentially
encode the motion blur kernel and can be easily inferred from
the rainy images by exploiting the repeatability of the rain
streaks.

Meanwhile, many existing methods assume that rain streaks
mainly exist on the detail layer [12], [40], [58] or the HF
layer [13], [14]. Following this research line, we adopt the
guided image filtering [63] as the low-pass filter because it is
simple and fast to implement.! Fig. 3 shows the decomposition
of the rainy image into the base layer Os and the detail layer
OT (denoted as “detail component” in [12], [40], and [58]),
which satisfies O = Ogs + Ot. Assuming that the detail layer
contains all rain streaks, the degradation model (1) turns to be

Or =BT+ K@, )M 2)

where Bt € R"*"*3 is the rain-free content of the detail layer
and the goal is also transferred to estimate the clean detail part
and separate the rain streaks from the rainy detail layer.

The advantages of processing on the detail layer have been
fully discussed in [12] and [40]. In order to facilitate the
readers, we briefly bring them here. It can be found in Fig. 2
that the detail layer contains all rain streaks, i.e., Or = Bt+R.
Thus, training and testing on the detail layer Ot is sufficient
and compact. Meanwhile, compared with the original image,
the detail layer is more sparse, which helps the network to
focus on important information. In this work, considering the
benefits of processing on the detail layer, we attempt to design
and train a CNN derainer Fp(-; ®p), which maps the detail
patch Or into the rain streaks patch R = K(4,[) ® M.

B. Parameter Network

We select the CNN to infer the motion blur kernel from an
input detail patch, considering its overwhelming superiority on
features extraction. As we pointed out above, the motion blur
kernel within the generation of rain streaks is conclusively
decided by two parameters, i.e., the angle 8 and length [.
We built the parameter network to learn the parameters?

LAs discussed in [40], the choice of the low-pass filters is not limited to
the guided filter.

20ur parameter network learns the length and angle and has shown to be
more simple and robust than learning all values of a motion kernel of size

p xp-.
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(Iength and angle) of the motion blur kernel. We adopt the
CNN Fp(-; Op) : R™*mx3 5 R2 which maps the input detail
patch Ot to the parameter vector [0,117, with the network
parameter ®p. The loss function thereof for training is

Lp(®p) = % > |70 (0% ©p) —p' [ ©)

i=1

where p = [6,[]7 is the parameter vector, | - ||z denotes
the Frobenius norm, and i indexes the patches and motion
blur kernels. The architecture of Fp(-) (denoted as “parameter
network™) is shown in Fig. 2. Once the parameters 6 and [ are
determined, the motion blur kernel K(@,/) can be uniquely
constructed.

C. Dimensionality Stretching

After obtaining the motion blur kernel K(0, 1), the question
comes to how to “tell” our CNN derainer Fp(-; ®p) the infor-
mation of the motion blur kernel for a “precise strike” on the
rain streaks. The input of our deraining network Fp(-; ®p),
which would be detailed in Section III-D, is supposed to be
the detail patch together with the motion blur kernel learned
from this detail patch, since the motion blur kernel consists
of the prior knowledge of the rain streaks. By enforcing a
local connectivity pattern between neurons of adjacent layers,
CNNs exploit spatial locality and thus cannot extract the
complete information of the motion blur kernel when we just
concatenate the detail patch and motion blur. Hence, inspired
by the CNN-based single-image super-resolution work [41],
we adopt the dimensionality stretching strategy.

The dimensionality stretching strategy is schematically
shown in Fig. 2. First, the motion blur kernel K € RP*?
is vectorized into a vector k € R”z. After the vectorization, k
is projected onto a 7-dimensional linear space by the principal
component analysis (PCA) technique. Then, the projected
vector k, € R’ is stretched into the degradation map M €
R™>nxt ~All values in the jth horizontal slice of M with
the size m x n are the same as the jth element of k;. The
degradation maps then can be concatenated with the detail
patch, making CNN possible to handle the two inputs. It is
noteworthy that this stretching operation is also in accordance
with our assumption that rain streaks in a small patch are
sharing the similar direction, and by doing so, every pixel of
the input patch can receive the complete information of the
blur kernel.

However, different from [41], in the case of plain motion
blur kernel with only two parameters, we found that 7 is
still too large compared with the number of channels of the
detail patch. To balance the channel number of the detail
patch and the degradation map, the degradation maps will be
concatenated with the detail image after the first convolutional
layer in the deraining network, as shown in Fig. 2.

D. Deraining Network

As previously mentioned in Section I, instead of elaborately
designing the architecture, we resort to the typical ResNet
structure. A cascade of “Conv + ReLU + BN” layers is
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applied to perform deraining. Each layer consists of three types
of operations, including convolution (denoted as “Conv”),
rectified linear units [64] (denoted as “ReLU”), and batch
normalization [65] (denoted as “BN”). We also adopt the
Frobenius norm in the loss function, which is

n
Lp(®p) = % > |7o(0f. K 0p) R @)
i=1
where R' is the ith rain streaks patch. After subtracting the rain
streaks R from the rainy image O, we could get the rain-free
image.

Discussions: As we mentioned earlier, distinguishing the
rain streaks and the line pattern textures is important but
challenging. In this work, we face this challenge by exploiting
the generation mechanism of the rain streaks to guide the
rain streaks removal. Within our framework, the generation
mechanism of the rain streaks is taken into consideration, and
the prior knowledge of the rain streaks, i.e., the angle and
the length of the motion blur kernel, is automatically learned.
Embedding of the motion blur kernel into the deraining
network, which has a plain ResNet structure, greatly enhances
the performance (see the comparisons in Section IV-D1).

IV. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed KGCNN
framework, we test it on both synthetic and real-world
rainy images. The networks are trained on synthesized rainy
images. We compare the proposed KGCNN with four state-of-
the-art methods, including two traditional methods: the layer
prior (LP)3 [20] and the unidirectional global sparse model
(UGSM)* [16], as well as two deep learning-based methods:
the DDN? [12] and the density-aware multistream deraining
dense network (DID)° [11].

A. Experimental Settings

1) Rainy Images Simulation: With the observation model
in (1), the synthetic rainy images are generated by the follow-
ing steps.

1) Transform a clean image from RGB color space to YUV

color space.’

2) Generate the raindrops mask M by adding salt and
pepper noise with 1%—-10% to a zero matrix with the
same size as the Y channel of the clean image, and add
a Gaussian blur with the standard variance from 0.2 to
0.5.

3) Generate the motion blur kernel K with the angle and
length sampled from [45°, 135°] and [15, 30], respec-
tively.

4) Directly add the generated rain streaks R = K® M
to the Y channel of the clean image, and the intensity
values greater than 1 are set as 1.

5) Finally, transform the image back to RGB color space.

3http://yu-i.github.io/
4http://www.escience.cn/people/den gliangjian/index.html
5 https://xueyangfu.github.io/projects/cvpr2017.html
6https://github.com/hezhangsprinter/DID—MDN
7https://en.wikipedia.org/wiki/YUV
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TABLE I
SYNTHETIC DATA SETS

Dataset # images Details Examples

Rain streaks synthesised [*

No. 1 4 via motion blurring re- j 38 £ i 2 ]
ferred to [67, 68]. . A §
Generated by the authors

No. 2 12 of [20, 21] via the render-
ing technique [69].

S bt e

Generated by the authors |

No. 3 200 of [29]. Mmoo ﬁ e ‘

2) Implementation Details: For fair comparisons, we use
the default parameters in the codes for traditional methods
and the default trained models for the deep learning methods.
Since existing rainy data sets do not consist of the information
of the motion blur kernel, we train our networks only on our
training data. Because of our assumption, the input image
should be split into several patches for training and testing.
The patch size is set as 64 x 64 x 3 and the stride for selecting
patches is set as 16. The radius of the guided filter for low-pass
filtering is 15. By preserving 99% of the energy, the kernel
is projected onto a space of 162 dimensions. We generated
1 million rainy/clean patch pairs with parameters [0, [] for
training and 500 rainy/clean patch pairs with parameters [0, /]
as the validation set from a data set containing 1000 clean
images of [12]. The two (sub)networks are trained separately
on the same data. We use Adam [66] optimizer with the
learning rate 0.01. Our model is trained and tested on Python
3.5.2 with TensorFlow 1.0.1 framework on a desktop of GPU
NVIDIA GeForce GTX 1060 with 6 GB. For other compared
methods based on MATLAB, they are running on MATLAB
2017A. LP and UGSM are implemented on the CPU, whereas
DID, DDN, and the proposed KGCNN are implemented on the
GPU.

B. Experimental Results on Synthetic Data

In this section, we evaluate the performance of different
state-of-the-art methods on synthetic rainy images. Here,
we consider three synthetic data sets, which are summarized
in Table I, as follows.

Data Set 1: Four synthetic rainy images (respectively,
denoted as “night,” “panda,” “house,” and “dog”) simulated
via motion blurring referred to [67] and [68]. The angle, with
respect to the horizontal direction, of the rain streaks in “night”
is fixed at @ = 45°, while § = 80° or 100° in “house.” The
rain streaks’ angles are uniformly distributed in the range of
[110°, 120°] in “panda” and [75°, 85°] |J[95°, 105°] in “dog.”
Data set 1 is designed mainly for testing the robustness of our
method for various situations.

Data Set 2: Twelve synthetic rainy images® (denoted as
“Rainl2”) simulated by using the photorealistic rendering
technique [69] by Li er al. [20], [21].

8https://yu-li.github.io/
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Fig. 4. From top to bottom, the rain streaks removal results by different methods on four rainy images in data set 1. For each image: the first row exhibits
the rainy image, the rain streaks removal results by different methods, and the clean image; the second row displays the rain streaks images and the true rain

streaks images.

Data Set 3: Two hundred rainy images’ generated by

Yang et al. [29]. Among them, 100 rainy images (denoted
as “100L”) are generated to simulate the light rain case,
whereas the other 100 rainy images (denoted as “100H”) are
synthesized for the heavy rain case.

For quantitative comparisons, we adopt the peak signal-
to-noise ratio (PSNR), structure similarity index (SSIM) [70],
feature similarity index (FSIM) [71], universal image quality
index (UIQI) [72], and gradient magnitude similarity deviation
(GMSD; smaller is better) [73] as the quality metrics of the
deraining results. We report the quality metrics of each image
from data set 1. For saving space, we only give the average
values for data sets 2 and 3.

Since the compared methods are implemented with different
programming languages (e.g., UGSM was implemented with
MATLAB, whereas DDN was implemented with Python),
we first save the results by different methods as the.mat

9http://Www.icst.pku.edu.cn/struct/Projects/ /joint_rain_removal.html

format without any compression and then reload the mat files
and compute the corresponding quantitative metrics in the
MATLAB for fairness. Meanwhile, to accurately and vividly
illustrate the capabilities of different methods to remove the
rain streaks and preserve the detail and the contrast, we exhibit
both the deraining results and the rain streaks images. The
rain streaks images are scaled for better visualization, and the
scaling is identical for each rainy image.

The results on data set 1 are shown in Fig. 4 and Table II.
From Fig. 4, it can be found that the proposed KGCNN
is able to remove the rain streaks completely and preserves
the details well. The compared methods tend to obtain either
underderaining results, i.e., remaining obvious rain streaks or
overderaining results, i.e., mistaken extraction of distinct struc-
tural information into the rain streaks images. For instance,
DID removes almost all the rain streaks but usually brings a
lot of content in the clean image into the rain streaks images.
UGSM favors separating vertical line patterns and this limits
its applicability for different scenarios.
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TABLE II

QUANTITATIVE COMPARISONS OF RAIN STREAKS REMOVAL RESULTS BY
DIFFERENT METHODS ON DATA SET 1. THE BEST QUANTITATIVE
VALUES ARE HIGHLIGHTED IN BOLDFACE

Image Method PSNR SSIM FSIM UIQI GMSD Time (s)
rainy 18.506 0.539 0.787 0.753 0.261 -
LP [20] 22.984 0.777 0.872 0.806 0.175 511.492
night UGSM [16] 20.626 0.641 0.824 0.784 0.225 1.207
6 = 45° DDN [12] 23.833 0.679 0.882 0.767 0.173  0.281
DID [11] 23.996 0.828 0.924 0.725 0.097 0.219
KGCNN  31.415 0.957 0.970 0.929 0.046 3.780
rainy 17.569 0.750 0.871 0.836 0.140 -
LP [20] 21.188 0.857 0.905 0.907 0.104 103.666
panda UGSM [16] 19.621 0.798 0.876 0.885 0.118 0.401
0 € [110°,120°] DDN [12] 23.210 0.867 0.904 0.971 0.099 0.078
DID [11] 23.842 0.879 0.909 0.962 0.095 0.219
KGCNN  27.060 0.927 0.938 0.980 0.086 1.172
rainy 23.265 0.766 0.833 0.831 0.208 -
LP [20] 29.129 0.898 0.937 0.894 0.099 278.365
house UGSM [16] 29.368 0.911 0.943 0.898 0.089 1.077
6 € {80°,100°} DDN [12] 28.687 0.869 0.933 0.861 0.097 0.687
DID [11] 26.401 0.876 0.939 0.945 0.088 1.280
KGCNN  32.101 0.940 0.965 0.926 0.064 2.999
rainy 22.643 0.729 0.886 0.919 0.187 -
dog LP [20] 28.330 0.891 0.937 0.963 0.100 320.849
6 € {[75°,85°] UGSM [16] 28.919 0.908 0.944 0.961 0.089 1.337
[95° 102’)0]} > DDN [12] 26.097 0.847 0.931 0.919 0.111 0.141
’ DID [11] 26.794 0.846 0.935 0.968 0.096 0.234
KGCNN  32.773 0.948 0.970 0.986 0.057 2.765
rainy 20.496 0.696 0.844 0.835 0.199 -
LP [20] 25.408 0.856 0.913 0.893 0.120 303.593
average UGSM [16] 24.634 0.814 0.897 0.882 0.130 1.005
DDN [12] 25.457 0.815 0.913 0.879 0.120 0.297
DID [11] 25.258 0.857 0.927 0.900 0.094 0.488
KGCNN  30.837 0.943 0.960 0.955 0.063 2.679

TABLE III

QUANTITATIVE COMPARISONS (AVERAGE VALUES) OF RAIN STREAKS
REMOVAL RESULTS BY DIFFERENT METHODS ON DATA SET 2. THE
BEST QUANTITATIVE VALUES ARE HIGHLIGHTED IN BOLDFACE

Method PSNR SSIM FSIM UIQI GMSD Time (s)
rainy 28.822 0910 0910 0.968 0.134 -
LP [20] 30.833  0.947 0935 0.968 0.070 338.005
UGSM [16] 32.185 0958 0947 0.983 0.065 0.944
DDN [12] 29.421 0938 0.942 0.939 0.073 0.164
DID [11] 27.040  0.902 0.909 0.972 0.088 0.221
KGCNN 34907 0975 0969 0.990 0.048 2.856

It is notable that the images in data set 1 consist of
abundant line textures, and we can find from Fig. 4 that DDN
suffers from the difficulty of distinguishing the line pattern
textures and the rain streaks. In contrast, the rain streaks
images in Fig. 4 extracted by the proposed KGCNN is the
closest to the simulated rain streaks, and this indicates that
our method could distinguish the line pattern textures and the
rain streaks well.

Table III exhibits the quantitative comparisons of the results
by different methods on the 12 images in the data set 2,
i.e., “Rain12.” The PSNR of KGCNN is the highest and the
margins are more than 2.7 dB. The proposed KGCNN also
achieves the best SSIM, FSIM, UIQI, and GMSD. Fig. 5
shows the results of different methods on four images in
data set 2. From the zoomed-in areas, it can be observed
that the proposed KGCNN removes the rain streaks, whereas
other compared methods fail to do so. We can see obvious
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structural information in the extracted rain streaks images by
the compared methods, except UGSM, in Fig. 5. The rain
streaks image by the proposed KGCNN is the closest to the
true rain streaks and does not contain details of the clean
image. This demonstrates that the proposed KGCNN preserves
the details very well.

Table IV shows the quantitative comparisons of the results
by different methods on data set 3. Except for the UIQI and
GMSD, the proposed KGCNN achieves the best quantitative
metrics. Fig. 6 shows the results of different methods on four
images in data set 3. It can be observed that the proposed
KGCNN removes the rain streaks, whereas other compared
methods fail to do so. The rain streaks image by the proposed
KGCNN is the closest to the true rain streaks and does not
contain structures of the details. This demonstrates that the
proposed KGCNN preserves the details very well too.

The running time of different methods is also reported
in Tables II-IV. All the methods are very fast except LP.
Although our KGCNN is slower than DID and DDN because
of its patchwise operation, it achieves the best quantitative
metrics in Tables II-1V.

C. Experimental Results on Real-World Data

In this section, we exhibit the results on real-world rainy
data. Seven images are selected in our experiment. The
first two are selected from the rain streaks removal litera-
ture [12], [21], respectively, whereas the other five are down-
loaded from the Internet. We display the deraining images and
the corresponding rain streaks images in Fig. 7.

From the top six rows of Fig. 7 (corresponding to the first
three rainy images), we can observe that DDN, DID, and the
proposed KGCNN obtain similar visual results and remove
rain streaks completely, whereas LP fails to remove all rain
streaks and UGSM remains a lot of artifacts. We can find that
DID and DDN fail to separate the rain streaks and details well
and extract some details (e.g., the grasses in the zoomed-in
area of the second rainy image and the truck with the vertical
and white appearance in the zoomed-in area of the third rainy
image) to rain streaks, which demonstrates that DID and
DDN could not distinguish details and the rain streaks well.

The rain streaks, in the fourth and fifth rainy images of
Fig. 7, are of different directions. From the zoomed-in area in
the seventh row, we can observe that our method removes the
rain streaks well, whereas compared methods remain obvious
rain streaks. Although UGSM and our KGCNN remove almost
all the rain streaks, performing better than the other three
methods, on the fifth rainy image, we can observe from the
rain streak images that UGSM incorrectly removes the line
patterns on the red dress of the girl. The similar phenomena
of this improper removal also appear in the rain streak images
by LP and DID in the ninth or tenth row of Fig. 7.

The results on the sixth and seventh rainy images (11-14
rows in Fig. 7) also illustrate that our KGCNN can remove all
the rain streaks and preserve the background well. In Fig. 7,
another direct-viewing evidence of our method preserving
background well is that we can hardly identify the scene
from the rain streak images by KGCNN, while we can readily
recognize human beings or roads in the rain streak images by
compared methods. It is noteworthy that the preservation of
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Rainy

Fig. 5.

DDN [12]
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DID [11] KGCNN Ground truth

From top to bottom, rain streaks removal results by different methods on four rainy images in data set 2. For each image: the first row exhibits the

rainy image, the rain streaks removal results by different methods, and the clean image; the second row displays the rain streaks images and the true rain

streaks images.

TABLE IV

QUANTITATIVE COMPARISONS (AVERAGE VALUES) OF RAIN STREAKS
REMOVAL RESULTS BY DIFFERENT METHODS ON DATA SET 3. THE
BEST QUANTITATIVE VALUES ARE HIGHLIGHTED IN BOLDFACE

Images Method PSNR SSIM FSIM UIQI GMSD Time (s)
rainy 25.336  0.903 0.885 0.967 0.178 -
LP [20] 27.533 0929 0.907 0971 0.124 404.809
100L UGSM [16] 28918 0.946 0.926 0.982 0.110 0.947
DDN [12] 25.894 0.918 0910 0.945 0.129 0.117
DID [11] 23.869 0.880 0.884 0.920 0.138 0.263
KGCNN 29953 0.959 0.944 0.981 0.105 2.806
rainy 11.678 0.484 0.619 0.732 0.292 -
LP [20] 13.234 0.551 0.662 0.771 0.277 340.091
100H UGSM [16] 14.804 0.653 0.732 0.803 0.237 1.894
DDN [12] 14.735 0.590 0.676 0.828 0.266 0.115
DID [11] 15373 0.679 0.743 0.836 0.233 0.242
KGCNN 17.774 0.720 0.759 0.883 0.240 2.373

the background is of great importance when we position the
rain streaks removal approaches at the preprocessing stage.
Incorrect removal may cause serious consequences in the
applications, the automatic driving technique for example.

D. Discussion

1) Influence of the Motion Blur Kernel: In this article,
we propose a KGCNN method for the single image rain

streaks removal application. The motion blur kernel plays
a vitally important role both in our generation mechanism
and the deraining framework. However, there are still two
uncertainties: 1) how is the performance if we directly use
the deraining network, which is trained regularly in our
framework, without the kernel information? 2) how is the
performance if we independently train the deraining network
with the rainy and clean image pairs?

To show the significance of the motion blur kernel in our
method, we do the ablation analysis on data set 2. We use
KGCNN? to denote the proposed method with the kernel being
zeros, i.e., without the kernel information, and KGCNNP to
represent the deraining network trained independently with our
training data. It is notable that the structure of KGCNNP is
very similar to that of DDN. Fig. 8 shows the visual results
of three images in data set 2. It is not difficult to see that the
kernel plays an important role in KGCNN. The performance
of KGCNN® and KGCNNP is not desirable. The quantitative
results in Table V also demonstrate the same conclusion. In
summary, the motion blur kernel is very important in the
framework of the proposed KGCNN method.

Next, we discuss the influence of the directionality at the
deraining stage. The information of the rain streaks’ direction
would help the deraining network to specify the particular
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Rainy LP [20] UGSM [16]

Fig. 6.

DDN [12]

DID [11] KGCNN Ground truth

From top to bottom, rain streaks removal results by different methods on four rainy images in data set 3. For each image, the first row exhibits the

rainy image, the rain streaks removal results by different methods, and the clean image; the second row displays the rain streaks images and the ground truth

rain streaks.

TABLE V

QUANTITATIVE COMPARISONS (AVERAGE VALUE) OF RAIN STREAKS
REMOVAL RESULTS BY KGCNN¢?, KGCNNb, AND THE PROPOSED
KGCNN ON DATA SET 2. THE BEST QUANTITATIVE VALUES ARE

HIGHLIGHTED IN BOLDFACE

Method PSNR SSIM FSIM UIQI GMSD Time (s)
rainy 28.822 0910 0910 0.968 0.134 -
KGCNN?*  29.668 0924 0919 0972 0.126 2.501
KGCNN®  33.154 0960 0.950 0.986 0.065 0.269
KGCNN 34907 0975 0969 0.990 0.048 2.856

target. To clarify the role of the direction property, we conduct
the experiments, in which the input motion blur kernels are
with incorrect angles. The results are shown in Table VI. Ag
is the difference value between the angle estimated by our
parameter network and the angle of the motion blur kernel
input into the deraining network. From the quantitative metrics
in Table VI, we can conclude that the directionality is crucial
in our framework and the estimation of the parameter network
is accurate. This also reveals the reason why our method
preserves the vertical line pattern of the grass well in the
zoomed-in red boxes in Fig. 1.

2) Parameters: In our framework, some preset parameters
related to the network structure, e.g., the depth and width of the

TABLE VI

QUANTITATIVE COMPARISONS OF RAIN STREAKS REMOVAL RESULTS
BY KGCNN WITH INCORRECT ANGLES OF MOTION BLUR KERNELS
ON DATA SET 2. THE BEST QUANTITATIVE VALUES ARE
HIGHLIGHTED IN BOLDFACE

Ay PSNR SSIM FSIM UIQI GMSD

-10° 31.107 0.943 0.934 0.970 0.107
-5° 33.600 0.966 0.958 0.996 0.068
0 34.907 0.975 0.969 0.990 0.048
5° 32.640 0.957 0.950 0.989 0.081
10° 30.423 0.933 0.927 0.968 0.114

ResNet backbone and the stride in patchwise deraining, would
affect the performance and running time. To figure out their
impacts, we conduct experiments with different parameter
settings. Since that the parameter network could accurately
estimate the motion blur kernel with a simple structure,
we omit the discussion on the parameters of its structure.

As for the deraining network, we test our method on data
set 2 by setting the network depth as 18, 26, and 34 and
the network width as 24, 36, and 48. The depth indicates the
number of “Conv 4+ ReLU + BN” layers shown in Fig. 2. The
width is the number of the convolutional filers in each layer.
Table VII shows the average values of the quantitative results.
It can be seen that our method achieves good performances
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Rainy LP [20] UGSM [16] DDN [12] DID [11] KGCNN

Fig. 7. From top to bottom, rain streaks removal results by different methods on real rainy images. For each image, the first row exhibits the rainy image
and the rain streaks removal results by different methods; the second row displays the rain streaks images.
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KGCNN*

Rainy
Fig. 8.

TABLE VII

QUANTITATIVE COMPARISONS (AVERAGE VALUE) OF RAIN STREAKS
REMOVAL RESULTS WITH DIFFERENT DEPTHS (# LAYERS) AND
WIDTHS (# FILTERS) ON DATA SET 2. THE BEST QUANTITATIVE
VALUES ARE HIGHLIGHTED IN BOLDFACE

# layers # filter PSNR SSIM FSIM UIQI GMSD Time (s)
24 34252 0973 0.967 0.979 0.050 1.938
18 36 34972 0977 0970 0.992 0.045 2.393
48 35251 0977 0971 0.988 0.044 2.655
24 34936 0.976 0.970 0.986 0.045 2252
26 36 34907 0975 0.969 0.990 0.048 2.856
48 35403 0.978 0.972 0.990 0.044 3.333
24 35335 0977 0971 0.991 0.043 2.592
34 36 35.123 0.977 0971 0.985 0.044 3.477
48 35203 0975 0969 0.981 0.049 3.999
TABLE VIII

QUANTITATIVE COMPARISONS (AVERAGE VALUE) OF RAIN STREAKS
REMOVAL RESULTS OF THE PROPOSED METHOD WITH DIFFERENT
STRIDES ON DATA SET 2. THE BEST QUANTITATIVE VALUES
ARE HIGHLIGHTED IN BOLDFACE

Stride PSNR SSIM  FSIM  UIQI GMSD  Time (s)
16 34907 0975 0.969  0.990 0.048 2.856
32 34782 0975 0969  0.984 0.049 0.896
48 34.634 0974 0.968  0.985 0.051 0.473

with respect to different settings of the network depth and
width, showing robustness in the selected ranges. Generally,
increasing the number of layers and the number of filters in
each layer generally help the network to achieve a better repre-
sentation ability but increase the computational time. However,
we could see that when the depth is 34 and the filter number
is 48, the PSNR decreases. This may be caused by overfitting,
i.e., the network could not deal with the data that are different
from the training data. To balance the performance and the
computation time, we set the layer number as 26 and the filter
number as 36 in the “deraining network”.

Finally, we test our method on data set 2 by setting the
stride as 16, 32, and 48. For an image of size M x N,
the number of patches whose size is m x n for the stride
sis [(M —m +1)/s)] x [((N—n + 1)/s)], where [-] is the
ceiling function. Table VIII reports the quantitative metrics and
the running time with respect to different strides. Since the
number of patches increases inversely with the stride, we can

KGCNNP

KGCNN Ground truth

Rain streaks removal results by KGCNN#?, KGCNNP, and the proposed KGCNN on three rainy images in data set 2.

observe that the proposed method could run faster with a
small loss of performance metrics. Meanwhile, the running
time is also acceptable when s = 16. Therefore, for a better
performance of the proposed KGCNN, we set the default stride
as 16 in our experiment.

V. CONCLUSION

We present a deep learning architecture called KGCNN
for removing rain streaks in single rainy images. With the
guidance of the motion blur kernel, our approach learns the
mapping function between the rainy image on the detail layer
and the rain streaks on the detail layer. We show that the
simple CNN guided by the generation mechanism can tackle
natural images under bad weather conditions successfully. The
extensive experimental results also validate that the proposed
KGCNN noticeably outperforms state-of-the-art methods qual-
itatively and quantitatively. In the future work, we can develop
our method in a recursive manner as in [32]-[34] to flexibly
handle very complex rainy scenarios.
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