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Abstract
We study the problem of third-order tensor completion based on lowCP rank recovery.
Due to the NP-hardness of the calculation of CP rank, we propose an approximation
method by using the sum of ranks of a few matrices as an upper bound of CP rank.
We show that such upper bound is between CP rank and the square of CP rank of a
tensor. This approximation would be useful when the CP rank is very small. Numer-
ical algorithms are developed and examples are presented to demonstrate that the
tensor completion performance by the proposed method is better than that of existing
methods.

Mathematics Subject Classification 15A69 · 90C25 · 90C30 · 65K10

1 Introduction

Tensor completion aims to recover a tensor frompartial observations under the assump-
tion of low dimensional structure in the underlying data. For the two-dimensional
(matrix) case, this is the low rank matrix completion problem and has been well stud-
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ied in the literature. Given a partially observed matrixM ∈ R
I1×I2 , the mathematical

formulation of low rank matrix completion problem is given by

min
X∈RI1×I2

rank(X) s.t. P�(X) = P�(M), (1)

where� is the set of all index pairs (i, j) of observed entries, andP� is the orthogonal
projector:

P�(X) =
{
xi j , if (i, j) ∈ �,

0, otherwise.

This problem isNP-hard. It has been shown in [10,11,35] that, under certain conditions,
low rank solutions of (1) can be recovered by replacing the objective function rank(·)
with a suitable convex relaxation – the nuclear norm of matrices:

min
X∈RI1×I2

‖X‖∗ s.t. P�(X) = P�(M).

On the other hand, tensor completion is quite intractable. The main issue lies in
how to define a low dimensional structure of a tensor, or how to extend matrix rank to
tensor rank. There are two commonly used definitions of tensor rank: (i) themultilinear
rank (see Definition 2.1), which is the ranks of unfolding matrices from a tensor; (ii)
the CANDECOMP/PARAFAC (CP) rank (see Definition 2.3), which is the smallest
number of the sum of rank-one tensors that can generate the original tensor.

Given a partially observed tensor T ∈ V := R
I1×I2×···×IN , tensor completion

methods basedonmultilinear rank aim tominimize the ranks of the unfoldingmatrices:

min
X∈V

N∑
d=1

αd rank(X(d)) s.t. P�(X) = P�(T),

where αd ’s are constants satisfying αd ≥ 0 and
∑N

d=1 αd = 1, and X(d) is the mode-
d unfolding matrix (see (5)). Like (1), this is still an NP-hard problem. Therefore,
researchers have proposed several computational models [17,18,33]. For example,
some models are based on the sum of nuclear norms of unfolding matrices:

min
X∈V

N∑
d=1

αd ‖X(d)‖∗ s.t. P�(X) = P�(T) (2)

or its variants with the alternating direction method of multipliers (ADMM) [6]; and
some models are based on the low rank factorization model [42,44]:
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min
�X, �Y,Z∈V

N∑
d=1

αd ‖XdYd − Z(d)‖2 s.t. P�(Z) = P�(T),

whereXd ∈ R
Id×rd ,Yd ∈ R

rd×∏� �=d I� with rd specified, and �X = (X1, . . . ,XN ), �Y =
(Y1, . . . ,YN ). In addition, Riemannian optimization [30] is employed for low multi-
linear rank tensor recovery. However, it has been shown in [49] that unfoldingmatrices
may fail to exploit the tensor structure and may lead to poor tensor recovery perfor-
mance.

Unlike multilinear rank, CP rank does not need to unfold a tensor into matrices.
However, there is no straightforward algorithm to determine the CP rank of a spe-
cific given tensor. Indeed, this problem is NP-hard [19,20]. For low CP rank tensor
completion, the approach can be formulated as follows [1,23]:

min
X∈V ,rank(X)≤R

‖P�(X − T)‖.

We note that the above best CP rank-R approximation problem has no solution in
general, see [14]. In [48,51], some algorithms are developed for solving such low rank
approximation problem and but there is no guarantee for their performance. In [4],
the authors prove that there is a polynomial time algorithm based on the sixth level of
the sum-of-squares hierarchy for tensor completion. In [49], the tensor nuclear norm
is considered for tensor completion, but this calculation is also NP-hard [16,20].

In the literature, there are some methods based on other tensor rank definitions.
The works [27,50] adopt the so-called tubal rank based on the tensor singular value
decomposition (t-SVD) proposed in [28]. The t-SVD is suitable for tensors with tube
structure. In [38], the researchers studyRiemannian optimization for high-dimensional
tensor completion based on tensor train rank minimization. This method is suitable
for tensors with order higher than three.

In practice, the observed data may be contaminated by noise, and there may not
exist low CP rank tensors that satisfy the constraint P�(X) = P�(T) exactly. The
unconstrained version of low CP rank tensor completion is formulated as follows:

min
X∈V rank(X) + λ

2
‖P�(X − T)‖2. (3)

Themain aim of this paper is to study third-order tensor completion by using a suitable
upper bound of CP rank. We review the rank invariance property of tensors [14,26],
and derive a quantity R(X) which is between the CP rank of a third-order tensor X
and its square. Specifically, R(X) is the sum of ranks of a few matrices.

Using matrix rank to bound or replace tensor rank is a common operation in ten-
sor completion. In multilinear rank based methods [17,18,33], the ranks of unfolding
matrices are used to represent the multilinear rank; the work [34] uses a new unfolding
strategy to convert a tensor completion problem into a matrix completion problem;
in [25], the authors use square unfoldings to bound CP ranks of even order tensors;
the works [24,47] construct a rank-1 equivalence property between a tensor and some
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special unfolding matrices, based on which the tensor optimization problem is con-
verted into a matrix optimization problem. We can observe that, in all these works,
the matrices are unfolding matrices of the original tensor. In this work, the matrices
are of the same size as a slice, and not an unfolding of the original tensor.

By replacing rank(·) with such upper bound R(X) in (3), we present and study a
new optimization model:

min
X∈V R(X) + λ

2
‖P�(X − T)‖2. (4)

The error bound of the solution of (4) can be characterized by the CP rank of the
underlying tensor. It follows that if the underlying tensor has a low CP rank, then
the solution of (4) will be a very good approximation to the underlying tensor. We
develop an iterative algorithm to solve (4) and establish its subsequence convergence.
The proposed method has been compared with some state-of-the-art algorithms and
shows superior performance both on synthetic data and real-world data.

The rest of this paper is organized as follows. In Sect. 2, we review the rank invari-
ance property of tensors and obtain an upper bound of a third-order tensor CP rank.
In Sect. 3, we present a new model for tensor completion and propose an iterative
algorithm to solve the model. Section 4 is the convergence analysis of the proposed
algorithm. Numerical examples are given in Sect. 5 to illustrate the results of the
proposed method. Conclusions are presented in Sect. 6.

2 Tensor rank

2.1 Notation

We use bold-face lowercase letters (a,b, . . .) for vectors, bold-face capitals (A,B, . . .)
for matrices, calligraphic letters (A,B, . . .) for tensors. The (i1, i2, . . . , iN )-th entry of
an N th-order tensorA is denoted by ai1i2···iN . We use ei to denote a vector of suitable
length, whose i th entry is 1 and all other entries are 0.

The Frobenius norm of a matrix A is denoted by ‖A‖, the nuclear norm of A is
denoted by ‖A‖∗, and the Frobenius norm of a tensor A ∈ R

I1×I2×···×IN is given by

‖A‖ =

√√√√√ I1∑
i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

a2i1i2···iN .

A mode-d fiber is a column vector defined by fixing every index but the dth index,
e.g., a matrix column is a mode-1 fiber and a matrix row is a mode-2 fiber. A slice
is a matrix defined by fixing every index but two indices. The mode-d unfolding of a
tensorA ∈ R

I1×I2×···×IN is denoted by A(d) and arranges the mode-d fibers to be the
columns of the resulting matrix. The (i1, i2, . . . , iN )-th entry is mapped to the matrix
entry (id , j), where
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j = 1 +
N∑

k=1,k �=d

(ik − 1)Jk with Jk =
k−1∏

m=1,m �=d

Im . (5)

The d-mode product of a tensor A by a matrix M, denoted by M ·d A, is a tensor
generated by multiplying each mode-d fiber of A by M. Following [14], we write
M1 ·1 M2 ·2 · · ·MN ·N A more concisely as

(M1,M2, . . . ,MN ) · A.

2.2 Upper bounds of third-order tensor CP rank

There are various ways to generalize the rank concept of matrices for tensors. Unlike
matrices, these concepts are not consistent with each other.

Definition 2.1 The d-rank of an N th-order tensorA, denoted by rd(A), is the dimen-
sion of the vector space spanned by all d-mode fibers.

The N -tuple
(
r1(A), r2(A), . . . , rN (A)

)
is called the multilinear rank of A.

Denote

Fd(A) := span {v : v is a mode-d fiber of A} .

Then

rd(A) = dim Fd(A) = rank
(
A(d)

)
, d = 1, . . . , N .

For a matrix A, F1(A) is the space spanned by all columns of A, which is just the
range of A.

Definition 2.2 An N th-order tensorA is rank-1 if it can be written as the outer product
of N vectors, i.e.,

A = a(1) ⊗ a(2) ⊗ · · · ⊗ a(N ),

where ⊗ represents the vector outer product.

Definition 2.3 The CANDECOMP/PARAFAC (CP) rank of an arbitrary tensor A,
denoted by rank(A), is the minimal number of rank-1 tensors that yield A in a linear
combination.

Given an N th-order tensor A, the following relationship [14, (2.16)] is useful in
our discussions:

rd(A) ≤ rank(A), d = 1, . . . , N . (6)

As already mentioned in the introduction, the calculation of CP rank is NP-hard.
Therefore, the low CP rank tensor completion cannot be realized by (3) directly. Our
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idea is to find a suitable upper bound of rank(X) and utilize it as a substitute of
rank(X) in (3). There exist some upper bounds of the CP rank in the literature. Given
A ∈ R

I1×I2×···×IN , a bound given in [26,32] is as follows:

rank(A) ≤
∏N

�=1 r�(A)

rd(A)
, ∀d ∈ {1, 2, . . . , N }. (7)

This bound is the product of some d-ranks and cannot be utilized directly in the model.
We will explore other bounds in the following parts. First, we have the following rank
invariance properties.

Lemma 2.4 (see [32, Proposition 3.1.3.1]) Let A ∈ R
I1×I2×···×IN ,Md ∈ R

Id×Jd for

d = 1, . . . , N and S =
(
MT

1 ,MT
2 , · · · ,MT

N

)
· A. Suppose F1(Md) ⊇ Fd(A) for

d = 1, . . . , N. Then,

rank(S) = rank(A), rd(S) = rd(A), d = 1, . . . , N .

The third-order tensor CP rank can be bounded by the sum of slice matrix ranks.
Noting that A(i, :, :) = eTi ·1 A,A(:, j, :) = eTj ·2 A and A(:, :, k) = eTk ·3 A, we
have the following lemma.

Lemma 2.5 (see [31]) Let A ∈ R
I1×I2×I3 . Then,

rank(A) ≤ min
1≤d≤3

Id∑
i=1

rank
(
eTi ·d A

)
. (8)

Equation (8) yields an upper bound for the CP rank. However, this bound is too
rough: We need to sum the ranks of all slice matrices of the same type. A refined
bound is given in the following corollary.

Corollary 2.6 Let A ∈ R
I1×I2×I3 and Md ∈ R

Id×Jd for d = 1, 2, 3. Suppose
F1(Md) ⊇ Fd(A) for d = 1, 2, 3. Then,

rank(A) ≤ min
1≤d≤3

Jd∑
i=1

rank
(
(Mdei )T ·d A

)
. (9)

Proof By noticing thatMT
3 ·3 A ∈ R

I1×I2×J3 , combining Lemma 2.4 and(8) leads to

rank(A) = rank(MT
3 ·3 A) ≤

J3∑
k=1

rank
(
(M3ei )T ·3 A

)
.

The other two inequalities can be shown similarly. �
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Remark 2.7 Let A ∈ R
I1×I2×I3,Md ∈ R

Id×rd (A) for d = 1, 2, 3 and S =(
MT

1 ,MT
2 ,MT

3

)
·A. Suppose F1(Md) = Fd(A) for d = 1, 2, 3. Then by Lemma 2.4

and (8),

rank(A) ≤ min
1≤d≤3

rd (A)∑
i=1

rank
(
eTi ·d S

)
.

This bound iswith respect to theTucker core tensorS.Note thatS ∈ R
r1(A)×r2(A)×r3(A)

andbyLemma2.4, rd(S) = rd(A). That is,Shas fullmultilinear rank.Hence, although
S has a smaller size than MT

d ·d A, d = 1, 2, 3 in (9), it is not suitable for low rank
completion.

Given A ∈ R
I1×I2×I3 , define

Bd(A) :=
{
M ∈ R

Id×rd (A) : F1(M) = Fd(A)
}

,

i.e., the columns of M form a basis of Fd(A); and define

B(A) = { �M = (M1,M2,M3) : Md ∈ Bd(A), d = 1, 2, 3
}
.

For any �A ∈ B(A), denote �d(A, �A) = ∑rd (A)
i=1 rank((Adei )T ·d A). By (9), we have

rank(A) ≤ min
1≤d≤3

�d(A, �A), ∀�A ∈ B(A). (10)

We will evaluate how good the upper bound of (10) is. First, we show that the rank of
every slice matrix is bounded by some d-rank.

Lemma 2.8 Let A ∈ R
I1×I2×I3 . Then

rank
(
eTi ·d A

) ≤ min
� �=d

r�(A), 1 ≤ d ≤ 3, 1 ≤ i ≤ Id .

Proof We prove the case d = 3. The other cases can be proved similarly.
Since the columns of eTi ·3A are mode-1 fibers and the rows of eTi ·3A are mode-2

fibers, eTi ·3 A is a submatrix of A(1) and
(
eTi ·3 A

)T
is a submatrix of A(2). It follows

that rank(eTi ·3 A) ≤ rank
(
A(1)

) = r1(A) and rank(eTi ·3 A) = rank
((
eTi ·3 A

)T ) ≤
rank

(
A(2)

) = r2(A). �

Combining Lemma 2.4 and Lemma 2.8 gives

rank((Adei )T ·d A) ≤ min
� �=d

r�(AT
d ·d A) = min

� �=d
r�(A), 1 ≤ d ≤ 3, (11)

and then

�d(A, �A) ≤ rd(A)min
� �=d

r�(A), 1 ≤ d ≤ 3. (12)
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Hence, the right side of (10) is less than or equal to min
1≤d≤3

∏3
�=1 r�(A)

rd (A)
. That is, (10)

is a tighter bound than (7). Actually, the advantage of (10) can be comprehended by
Lemma 2.8. A slice matrix is a submatrix of the unfolding matrix. Hence, using ranks
of slice matrixes can give a more accurate estimate of the CP rank. Applying (6) on
(12) yields the following result:

�d(A, �A) ≤ rank(A)2, d = 1, 2, 3. (13)

Example 2.9 Consider a 2 × 2 × 2 tensor A with

A(:, :, 1) =
[
1 0
0 0

]
, A(:, :, 2) =

[
0 0
0 1

]
.

It can be checked that r1(A) = r2(A) = r3(A) = 2 and rank(A) = 2. Since A is
symmetric,the situations for the three modes are the same. We can only consider the
case d = 3:

�3(A, �A) = rank(C1) + rank(C2),

where Ck = (A3ek)T ·3 A, k = 1, 2. Since r3(A) = 2, B3(A) consists of all 2 × 2
invertible matrices.

If we choose A3 =
[
1 0
0 1

]
, then C1 =

[
1 0
0 0

]
,C2 =

[
0 0
0 1

]
, and �3(A, �A) =

2. Ifwe chooseA3 =
[
1 0
1 1

]
, thenC1 =

[
1 0
0 1

]
,C2 =

[
0 0
0 1

]
, and�3(A, �A) = 3.

If we chooseA3 =
[
1 −1
1 1

]
, thenC1 =

[
1 0
0 1

]
,C2 =

[−1 0
0 1

]
, and �3(A, �A) =

4.
These results illustrate that (10) is a tighter bound than (7) and (13) is a tight bound

for �d(A, �A).

We want to convert (10) into one expression. For any �A ∈ B(A), define the follow-
ing function:

R(A, �A) =
3∑

d=1

αd�d(A, �A),

where αd ’s are constants satisfying αd ≥ 0 and
∑3

d=1 αd = 1. Combining (10) and
(13) gives that

rank(A) ≤ R(A, �A) ≤ rank(A)2, ∀�A ∈ B(A). (14)

3 Models and algorithm

We denote by V := R
I1×I2×I3 throughout the remaining part of this paper.
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By (14), we can relax (3) as

min
X∈V G (X) := min

�X∈B(X)

R(X, �X) + λ

2
‖P�(X − T)‖2. (15)

Denote G1(X) := rank(X)+ λ
2‖P�(X−T)‖2 and G2(X) := rank(X)2 + λ

2‖P�(X−
T)‖2. Also by (14), we have

G1(X) ≤ G (X) ≤ G2(X). (16)

Therefore, (15) is a convex combination of the following two models

min
X∈VG1(X), (17)

min
X∈VG2(X). (18)

Model (17) and (18) are the unconstrained versions of the following two models,
respectively,

min
X∈V rank(X) s.t. P�(X) = P�(T), (19)

min
X∈V rank(X)2 s.t. P�(X) = P�(T). (20)

By noting that (19) is equivalent to (20), both of (17) and (18) are models for low CP
rank tensor completion.

Lemma 3.1 Suppose the sets argminG1(X), argminG2(X), argminG (X)arenonempty.
Denote g1 = min

X
G1(X). Then,

0 ≤ G1(X∗) − g1 ≤ min
X∈argminG1(X)

rank(X)2 − rank(X), ∀X∗ ∈ argminG (X).

Proof The inequality 0 ≤ G1(X∗) − g1 follows directly from g1 = min
X

G1(X). For

the other inequality, we prove the following relationship:

G1(X∗) − g1 ≤ g2 − g1, ∀X∗ ∈ argminG (X), (21)

where g2 = min
X

G2(X). We only need to prove that

G1(X∗) ≤ g2, ∀X∗ ∈ argminG (X).

If G1(X∗) > g2, for any Y ∈ argminG2(X), we have

G (Y)
(16)≤ G2(Y) = g2 < G1(X∗)

(16)≤ G (X∗),
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which contradicts to X∗ ∈ argminG (X).
In addition, since g2 ≤ G2(X) for all X ∈ argminG1(X), we have

g2 − g1 ≤ G2(X) − G1(X), ∀X ∈ argminG1(X).

It follows that

g2 − g1 ≤ min
X∈argminG1(X)

G2(X) − G1(X) = min
X∈argminG1(X)

rank(X)2 − rank(X).

Combining the above inequality with (21) completes the proof. �

This lemma gives a bound of the approximation error between (15) and (17). When

rank(X) is small for X ∈ argminG1(X), (15) approximates (17) well. This is just the
target of low CP rank completion.

For G (X), note that (X1ei )T ·1 X ∈ R
I2×I3 and rank

(
(X1ei )T ·1 X

) ≤ min
d �=1

rd(X).

The matrix (X1ei )T ·1X has low rank. Hence, min
X1

rank
(
(X1ei )T ·1 X

)
can be relaxed

as min
X1

‖ (X1ei )T ·1 X‖∗, and (15) can be relaxed as

min
X∈V min

�X∈B(X)

3∑
d=1

αd

rd (X)∑
i=1

∥∥∥(Xdei )T ·d X
∥∥∥∗ + λ

2
‖P�(X − T)‖2. (22)

3.1 The algorithm for low CP rank completion

Problem (22) is difficult to solve, because and rd(X), B(X) depend on X. Our idea is
to use a not too bad estimate X0 to obtain a not too bad estimate of Fd(X) and rd(X),
avoiding the dependence of rd(X), B(X) on X. Define the following function:

F (X, �X) =
3∑

d=1

αd

R0
d∑

i=1

∥∥∥(Xdei )T ·d X
∥∥∥∗ + λ

2
‖P�(X − T)‖2,

where R0
d = rd(X0). Then (22) is converted into the following model

min
X∈W (X0)

min
�X∈B(X0)

F (X, �X), (23)

where

W (A) := {Z ∈ V : Fd(Z) ⊆ Fd(A), d = 1, 2, 3}.

The model (23) is still difficult to solve. One point is, if Xd does not have a good
structure, then min

X
F (X, �X) is difficult to solve. In Sect. 3.2, we will see that the
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requirement thatXd satisfiesXT
d Xd = I is crucial for the calculation of min

X
F (X, �X).

Therefore, we only consider some special Xd .
Given A ∈ V , define

Qd(A) :=
{
M ∈ R

Id×rd (A) : MTM = I and F1(M) = Fd(A)
}

,

i.e., the columns of M form an orthonormal basis of Fd(A); and define

Q(A) = { �M = (M1,M2,M3) : Md ∈ Qd(A), d = 1, 2, 3
}
.

An ideal strategy is to consider the following model:

min
X∈W (X0)

min
�X∈Q(X0)

F (X, �X). (24)

A natural thought is to follow the framework of the alternating minimization, i.e., two-
block coordinate descentmethod [43], to solve this problem.That is, startingwith some
given initial point, we generate a sequence {(Xn+1, �Xn)}n∈N via the scheme

�Xn ∈ arg min
�X∈Q(X0)

F (Xn, �X) (25)

Xn+1 ∈ arg min
X∈W (X0)

F (X, �Xn). (26)

The problem (26) is convex and not very difficult to solve. For (25), because the
computations of the three entries of �Xn are mutually independent and similar to each
other, we only need to consider the computation of one entry. We write it as a formal
optimization problem as follows:

min
M∈Q1(A)

T (M) :=
r1(A)∑
i=1

∥∥∥(Mei )T ·1 A
∥∥∥∗ , (27)

where A ∈ V is a given tensor. This is an optimization problem with generalized
orthogonality constraints. See [15]. This type of problem is difficult because the con-
straints are not only non-convexbut numerically expensive to preserve during iterations
[41]. The case is even worse for (27), because the computation of the subgradient ∂T

∂M
1

is rather expensive.
Therefore, we consider finding a closed form quasi-minimizer as a compromise. For

a matrix A ∈ R
I×J , suppose rank(A) = r . Let A = U6VT be the compact singular

1 Denote Y = ∑I1
�=1 m� jA(�, :, :). Let the SVD of Y be U�VT . The chain rule gives

∂T

∂M
(i, j) =

{
tr
(
(UVT + W)TA(i, :, :)

)
: W ∈ R

I2×I3 ,UTW = 0,WV = 0, ‖W‖2 ≤ 1

}
,

where ‖W‖2 is the spectral norm ofW and tr(·) is the trace of a matrix.
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value decomposition (SVD) of A, where U ∈ R
I×r , 6 ∈ R

r×r ,V ∈ R
J×r . We call U

the compact left singular matrix of A. This matrix has the following property.

Proposition 3.2 Let A ∈ R
I1×I2×I3 , and U1 ∈ R

I1×r1(A) be the compact left singular
matrix of A(1). Then for any M ∈ Q1(A), one has

‖A(1)‖∗ =
r1(A)∑
i=1

∥∥∥(U1ei )T ·1 A
∥∥∥ ≤

r1(A)∑
i=1

∥∥∥(Mei )T ·1 A
∥∥∥ . (28)

Proof First, we prove the following claim: For any C ∈ R
I×J , one has

‖C‖∗ ≤
I∑

i=1

‖C(i, :)‖. (29)

Since the dual norm of the nuclear norm is the spectral norm, it follows that

‖C‖∗ = max‖Y‖2≤1
tr(YTC),

where ‖Y‖2 is the spectral norm ofY and tr(·) is the trace of a matrix. Therefore, there
exists a matrix B with ‖B‖2 ≤ 1 such that

‖C‖∗ = ‖CT ‖∗ = tr(BTCT ) = tr(CB) =
I∑

i=1

(CB)i i

≤
I∑

i=1

‖(CB) (i, :)‖ =
I∑

i=1

‖(C(i, :))B‖ ≤
I∑

i=1

‖B‖2 ‖C(i, :)‖ ≤
I∑

i=1

‖C(i, :)‖,

which proves the claim (29).
By the definition of unfolding matrix, we can verify that

∥∥∥(Mei )T ·1 A
∥∥∥ =

∥∥∥(MTA(1)

)
(i, :)

∥∥∥ , ∀i = 1, . . . , r1(A).

Let the nonzero singular values of A(1) be σ1, . . . , σr1(A). Then

r1(A)∑
i=1

∥∥∥(U1ei )T ·1 A
∥∥∥ =

r1(A)∑
i=1

∥∥∥(UT
1 A(1)

)
(i, :)

∥∥∥ =
r1(A)∑
i=1

σi = ‖A(1)‖∗. (30)

For anyM ∈ Q1(A), there exists an orthogonal matrix M̂ ∈ R
I1×I1 such that M̂(:, 1 :

r1(A)) = M. Then (Mei )T ·1 A = 0 for i = r1(A) + 1, . . . , I3 and

r1(A)∑
i=1

∥∥∥(Mei )T ·1 A
∥∥∥ =

I1∑
i=1

∥∥∥∥(M̂ei
)T ·1 A

∥∥∥∥
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=
I1∑
i=1

∥∥∥(M̂TA(1)

)
(i, :)

∥∥∥ (29)≥
∥∥∥M̂TA(1)

∥∥∥∗ = ‖A(1)‖∗.

Combining the above inequality with (30) gives (28). �

Denote by Mi := (Mei )T ·1 A, i = 1, . . . , r1(A) and v(M) := ( ‖M1‖ , . . . ,∥∥Mr1(A)

∥∥ ). Then∑r1(A)
i=1

∥∥(Mei )T ·1 A
∥∥ = ‖v(M)‖�1 , where ‖ · ‖�1 is the �1 norm.

Inequality (28) implies that

‖v(U1)‖�1 ≤ ‖v(M)‖�1 , ∀M ∈ Q1(A). (31)

Note that

‖v(M)‖ = ‖A‖, ∀M ∈ Q1(A). (32)

The mapping A �→ MT ·1 A can be regarded as a rearrangement of the energy of A:
A smaller �1 norm means the energy of v(U1) is more concentrated in general.

Corollary 3.3 Let A ∈ R
I1×I2×I3 , and U1 ∈ R

I1×r1(A) be the compact left singular
matrix of A(1). Denote by R = min{r2(A), r3(A)}. Then for any M ∈ Q1(A), one
has

r1(A)∑
i=1

∥∥∥(U1ei )T ·1 A
∥∥∥∗ ≤ √

R
r1(A)∑
i=1

∥∥∥(Mei )T ·1 A
∥∥∥∗ .

Proof Denote byu(M) := ( ‖M1‖∗ , . . . ,
∥∥Mr1(A)

∥∥∗
)
. Then

∑r1(A)
i=1

∥∥(Mei )T ·1 A
∥∥∗ =

‖u(M)‖�1 . By (11) and the fact that ‖C‖ ≤ ‖C‖∗ ≤ √
rank(C)‖C‖ for any matrix C,

we have

‖u(M)‖�1 ≤ √
R‖v(M)‖�1 ≤ √

R‖u(M)‖�1 . (33)

It follows that, for all M ∈ Q1(A),

‖u(U1)‖�1

(33)≤ √
R‖v(U1)‖�1

(31)≤ √
R‖v(M)‖�1

(33)≤ √
R‖u(M)‖�1 .

�

Corollary 3.4 Let A ∈ R

I1×I2×I3 . Denote by R = min{r2(A), r3(A)}. Then for any
M,G ∈ Q1(A), one has

r1(A)∑
i=1

∥∥∥(Mei )T ·1 A
∥∥∥∗ ≤ √

Rr1(A)

r1(A)∑
i=1

∥∥∥(Gei )T ·1 A
∥∥∥∗ .
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Proof Noting that ‖x‖ ≤ ‖x‖�1 ≤ √
I‖x‖ for any x ∈ R

I , we have

‖u(M)‖�1

(33)≤ √
R‖v(M)‖�1 ≤ √

Rr1(A)‖v(M)‖ (32)= √
Rr1(A)‖A‖.

On the other hand,

‖u(G)‖�1

(33)≥ ‖v(G)‖�1 ≥ ‖v(G)‖ = ‖A‖.

Combining the above two inequalities yields the result. �


Corollary 3.3 implies thatU1 is a quasi-minimizer of (27).We propose the following
approximation method for low CP rank completion (ACPC) of third-order tensors.

ACPC of third-order tensors
1. Inputα1, α2, α3, λ and initial valueX0, R0

d = rd(X0), a compact left singular
matrix U0

d of X0
(d), where d = 1, 2, 3.

2. For each n = 0, 1, . . ., compute Xn+1 by solving

min
X∈Wn

E n(X) :=
3∑

d=1

αd

Rn
d∑

i=1

∥∥∥(Un
dei
)T ·d X

∥∥∥∗ + λ

2
‖P�(X − T)‖2, (34)

whereWn = W (Xn), Rn
d = rd(Xn), andUn

d is a compact left singular matrix
of Xn

(d).

The initial value X0 is crucial for ACPC. The criterion for finding X0 is that the algo-
rithm is fast and the output is not so bad. The low multilinear rank tensor completion
(2) solved by HaLRTC [33] satisfies such criterion. We will use the initialization by
HaLRTC in our experiments. The parameter αd ’s can be set based on the estimate of

the multilinear rank of the original tensor. A simple strategy is to set αd = R0
d

R0
1+R0

2+R0
3
.

3.2 Implementation of ACPC

Since (34) is a convex optimization problem, we can solve it by the ADMM.
For each X ∈ Wn , since F3(X) ⊆ F3(Xn) = F1(Un

3), there exists S3 ∈ R
I1×I2×Rn

3

such that X = Un
3 ·3 S3. Then,

Un
3
T ·3 X =

(
Un
3
TUn

3

)
·3 S3 = S3. (35)
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Therefore, by introducing an auxiliary variable �S = (S1,S2,S3), where S1 ∈
R

Rn
1×I2×I3 , S2 ∈ R

I1×Rn
2×I3 and S3 ∈ R

I1×I2×Rn
3 , (34) is reformulated as

min
�S,X∈V

3∑
d=1

αd

Rn
d∑

i=1

∥∥∥eTi ·d Sd

∥∥∥∗ + λ

2
‖P�(X − T)‖2

s.t. X = Un
d ·d Sd , d = 1, 2, 3.

The augmented Lagrangian function for the above problem is defined as

L (�S,X, �Y) =
3∑

d=1

αd

Rn
d∑

i=1

∥∥∥eTi ·d Sd

∥∥∥∗ +
3∑

d=1

〈Yd ,X − Un
d ·d Sd〉

+ βd

2
‖X − Un

d ·d Sd‖2 + λ

2
‖P�(X − T)‖2,

where �Y = (Y1,Y2,Y3) is the Lagrange multiplier. The iterative scheme of ADMM
for (34) reads

⎧⎨
⎩

�St+1 ∈ argmin
�S

L (�S,Xt , �Yt
);Xt+1 ∈ arg min

X∈V L (�St+1
,X, �Yt

); (36)

Yt+1
d = Yt

d + δβd(Xt+1 − Un
d ·d St+1

d ), (37)

where δ > 0 is the step length. The two subproblems in the above algorithm are
calculated as follows.

1. The �S-subproblem (36): For d = 1, we can simplify (36) as

St+1
1 ∈ argmin

S1
α1

Rn
1∑

i=1

‖eTi ·1 S1‖∗ + β1

2

∥∥∥∥Un
1 ·1 S1 −

(
Xt + 1

β1
Yt
1

)∥∥∥∥
2

. (38)

Let Ŝ1 ∈ R
I1×I2×I3 satisfy Ŝ1(1 : Rn

1 , I2, I3) = S1 and ŝi jk = 0, ∀i > Rn
1 ; and

Û1 ∈ R
I1×I1 be orthogonal and Û1(:, 1 : Rn

1 ) = Un
1. Then (38) is equivalent to

St+1
1 ∈ argmin

S1
α1

Rn
1∑

i=1

‖eTi ·1 S1‖∗ + β1

2

∥∥∥∥Û1 ·1 Ŝ1 −
(
Xt + 1

β1
Yt
1

)∥∥∥∥
2

= argmin
S1

α1

Rn
1∑

i=1

‖eTi ·1 S1‖∗ + β1

2

∥∥∥∥Ŝ1 − ÛT
1 ·1

(
Xt + 1

β1
Yt
1

)∥∥∥∥
2

.

Note that∥∥∥∥Ŝ1 − ÛT
1 ·1

(
Xt + 1

β1
Yt
1

)∥∥∥∥
2

=
∥∥∥∥S1 − Un

1
T ·1

(
Xt + 1

β1
Yt
1

)∥∥∥∥
2
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+
∥∥∥∥Xt + 1

β1
Yt
1

∥∥∥∥
2

−
∥∥∥∥Un

1
T ·1

(
Xt + 1

β1
Yt
1

)∥∥∥∥
2

.

Let Zt
1 = Un

1
T ·1

(
Xt + 1

β1
Yt
1

)
. Then, for i = 1, . . . , Rn

1 ,

St+1
1 (i, :, :) ∈ argmin

S1

{
α1‖eTi ·1 S1‖∗ + β1

2

∥∥∥eTi ·1 S1 − eTi ·1 Zt
1

∥∥∥2 }.

Given M ∈ R
I×J and γ > 0, let M = U6VT be the SVD of M. We define the

following shrinkage operator

Dγ (M) := U(6 − γ I)+VT ,

where (a)+ := max{a, 0}. Then, it follows from [9, Theorem 2.1] that

St+1
1 (i, :, :) = Dα1/β1

(
eTi ·1 Zt

1

)
, i = 1, . . . , Rn

1 .

Similarly, we can obtain the formulae of St+1
2 and St+1

3 . We list a unified result
here:

eTi ·d St+1
d = Dαd/βd

(
eTi ·d Zt

d

)
, d = 1, 2, 3, i = 1, . . . , Rn

d ,

where Zt
d = Un

d
T ·d

(
Xt + 1

βd
Yt
d

)
.

2. The X-subproblem (37): We can simplify (37) as

Xt+1 ∈ arg min
X∈V

{
3∑

d=1

(〈
Yt
d ,X

〉+ βd

2

∥∥∥X − Un
d ·d St+1

d

∥∥∥2)+ λ

2
‖P�(X − T)‖2

}
.

This is a least squares problem. By noting P∗
� = P�, where P∗

� is the adjoint
of P� in V , and P2

� = P�, the corresponding normal equation of the above
problem is

(
λ

β
P� + I

)
X = λ

β
P�(T) + 1

β

3∑
d=1

βdUn
d ·d St+1

d − 1

β

3∑
d=1

Yt
d ,

where β = β1+β2+β3. By [46, (2.2)], we have ( λ
β
P� +I )−1 = I − λ

λ+β
P�.

Then

Xt+1 = λ

λ + β
P�(T) + 1

β

(
I − λ

λ + β
P�

)( 3∑
d=1

βdUn
d ·d St+1

d −
3∑

d=1

Yt
d

)
.
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4 Convergence analysis of ACPC

The coordinate descent method for nonconvex problems has attracted a lot of atten-
tion in recent years. One of the best results on global convergence is about proximal
alternating minimization for the so-called Kurdyka-Łojasiewicz (KL) functions. See
[2,5,45]. The coordinate descent method has also been used in tensor computations,
e.g., the alternating least squares (ALS) for computingCP decompositions [29] and the
alternating linear schemes for computing tensor train decompositions [21]. The local
convergence properties of these two algorithms are established via the contraction
principle in [36,39], respectively.

Since �Un := (Un
1,U

n
2,U

n
3) in ACPC is only a quasi-minimizer of the function

�X �→ F (Xn, �X) and it is difficult to estimate the distance between �Un and the set
of the critical points of the function �X �→ F (Xn, �X), we cannot obtain the global or
local convergence of ACPC. However, based on the properties of the feasible domain,
we can establish its subsequence convergence.

By definition, we have Xn ∈ Wn and any A ∈ Wn satisfies

rankd(A) ≤ Rn
d , d = 1, 2, 3. (39)

It can be verified that Wn is a linear space and dimWn ≥ 1 is equivalent to Rn
d ≥ 1

for d = 1, 2, 3. If dimWn = 0, then Xm = 0 for m ≥ n and the convergence holds
trivially. Therefore, we suppose dimWn ≥ 1 in the following discussion.

Lemma 4.1 The function E n(X) in (34) is coercive on Wn. Hence, the solution of (34)
always exists.

Proof By (35), for each X ∈ Wn , there exists S3 ∈ R
I1×I2×Rn

3 such that X =
Un
3 ·3 S3, ‖X‖ = ‖S3‖ and Un

3
T ·3 X = S3. Therefore, the function X �→∑Rn

3
i=1

∥∥∥(Un
3ei
)T ·3 X

∥∥∥∗ = ∑Rn
3

i=1

∥∥eTi ·3 S3
∥∥∗ is coercive and then E n(X) is coercive

on Wn . �


4.1 Basic convergence properties

Lemma 4.2 For d = 1, 2, 3, the sequence {Rn
d } satisfies Rn

d ≥ Rn+1
d , and {Rn

d } will
converge within finite steps.

Proof It follows from the algorithm that Xn+1 ∈ Wn . By (39), we have Rn+1
d =

rankd(Xn+1) ≤ Rn
d . Since R

n
d ∈ {1, . . . , Id}, it follows that {Rn

d } will converge within
finite steps. �

Lemma 4.3 The subspace sequence {Fd(Xn)} satisfies Fd(Xn) ⊇ Fd(Xn+1) and
{Fd(Xn)} will converge within finite steps in R

Id , where d = 1, 2, 3.

Proof It follows from Xn+1 ∈ Wn and the definition of Wn that Fd(Xn+1) ⊆
F1(Un

d) = Fd(Xn). Since dim Fd(Xn) = Rn
d , {Fd(Xn)} will converge within finite

steps in R
Id . �
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The following corollary is immediate from the above lemma.

Corollary 4.4 The space sequence {Wn} satisfies Wn ⊇ Wn+1 and {Wn}will converge
within finite steps in V .

For the coordinate descent method, the decreasing of the objective function is a
basic property. For ACPC, we can only obtain the following result on the objective
functions.

Lemma 4.5 Denote by Rn = max{Rn
1 , R

n
2 , R

n
3 }. Then

E n(Xn+1) ≤ √
RnE n−1(Xn).

Proof By the algorithm and Corollary 3.3, we have E n(Xn+1) ≤ E n(Xn) ≤√
RnE n−1(Xn). �


4.2 Convergence behavior of {(Xn+1, �Un)}

By Lemmas 4.2, 4.3 and Corollary 4.4, there exists M > 0 such that

Rn
d = RM

d , Fd(Xn) = Fd(XM ) and Wn = WM , ∀n ≥ M, d = 1, 2, 3.

Denote R̄d = RM
d , F̄d = Fd(XM ) and W̄ = WM . Define the following function:

F (X, �U) =
3∑

d=1

αd

R̄d∑
i=1

∥∥∥(Udei )T ·d X
∥∥∥∗ + λ

2
‖P�(X − T)‖2,

and the following set

Q̄ = { �Y = (Y1,Y2,Y3) : YT
d Yd = I, F1 (Yd) = F̄d , d = 1, 2, 3

}
.

By Lemma 4.1,

H ( �U) := min
X∈W̄

F (X, �U)

is well defined on Q̄. Then, when n ≥ M ,

F (Xn+1, �Un) = E n(Xn+1) = min
X∈W̄

E n(X) = min
X∈W̄

F (X, �Un) = H ( �Un). (40)

First, we prove some properties of Q̄ and H ( �U).

Lemma 4.6 The set Q̄ is compact.
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Proof Define

Q̄d =
{
Y ∈ R

Id×R̄d : YTY = I, F1(Y) = F̄d
}

.

Then Q̄ is the Cartesian product of Q̄1, Q̄2, Q̄3. We only need to prove that Q̄d is
compact.

Let Ȳ be a fixed element of Q̄d . By the properties of orthonormal basis, Y ∈ Q̄d if
and only if there exists an orthogonal matrixN ∈ R

R̄d×R̄d , such thatY = ȲN. Define

Q̂d =
{
N ∈ R

R̄d×R̄d : NTN = I
}

.

That is, Q̂d is the orthogonal group and compact [22, p. 85]. Then, Q̄d is the image
of Q̂d under the linear transformation: N �→ ȲN. Therefore, the compactness of Q̄d

follows from the compactness of Q̂d . �

Lemma 4.7 The function H ( �U) is continuous on Q̄.

Proof Since F (X, �U) is defined by the sum of some norms, it is continuous. For a
given �M0 ∈ Q̄ and every ε > 0, there exists a δ > 0, such that when �M1 ∈ Q̄ satisfies
‖ �M1 − �M0‖2 = ‖M1

1 − M0
1‖2 + ‖M1

2 − M0
2‖2 + ‖M1

3 − M0
3‖2 < δ, we have

∣∣∣F (X, �M0) − F (X, �M1)

∣∣∣ < ε, ∀X ∈ V . (41)

Suppose H ( �M0) = F (X̃0
, �M0),H ( �M1) = F (X̃1

, �M1), where X̃0
, X̃1 ∈ W̄ . It

follows that

F (X̃0
, �M0) ≤ F (X̃1

, �M0)
(41)
< F (X̃1

, �M1)

+ε ≤ F (X̃0
, �M1) + ε

(41)
< F (X̃0

, �M0) + 2ε.

Therefore,

−ε < F (X̃1
, �M1) − F (X̃0

, �M0) < ε,

which is

|H ( �M1) − H ( �M0)| =
∣∣∣F (X̃1

, �M1) − F (X̃0
, �M0))

∣∣∣ < ε

and completes the proof. �

The following corollary follows from Lemma 4.6.

Corollary 4.8 The sequence { �Un} is bounded, and there exists M > 0 such that when
n ≥ M, the columns of Un

d form an orthonormal basis of F̄d , d = 1, 2, 3.
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Theorem 4.9 The sequence {Xn} is bounded and has at least one convergent subse-
quence with a limit X∗ satisfying that there exists �U∗ ∈ Q̄ such that

F (X∗, �U∗) = min
X∈W̄

F (X, �U∗).

Proof First, we prove that {Xn} has at least one convergent subsequence.
By Corollary 4.8, there exists a convergent subsequence { �Unk } of { �Un}:

lim
nk→∞

�Unk = �U∗, (42)

where �U∗ ∈ Q̄. It follows from (40) and Lemma 4.7 that

lim
nk→∞F (Xnk+1, �Unk ) = lim

nk→∞H ( �Unk ) = H ( �U∗).

Combining the continuity of F and (42) yields

lim
nk→∞F (Xnk+1, �U∗) = H ( �U∗). (43)

Hence, the sequence {F (Xnk+1, �U∗)} is convergent and bounded. By Lemma 4.1, the
function X �→ F (X, �U∗) is coercive on W̄ . Therefore, {Xnk+1} is bounded and there
exists a convergent subsequence {Xnl }: limnl→∞ Xnl = X∗ such that

F (X∗, �U∗) = lim
nl→∞F (Xnl , �U∗) (43)= H ( �U∗) = min

X∈W̄
F (X, �U∗).

Now we prove {Xn} is bounded. If {Xn} is not bounded, then there exists
a subsequence {Xni } satisfying limni→∞ ‖Xni ‖ = ∞. Consider the sequence
{F (Xni , �Uni−1)}. We haveF (Xni , �Uni−1) = H ( �Uni−1). Like the discussion above,
there exists a subsequence {Xn j } of {Xni }, such that

lim
n j→∞F (Xn j , �U′) = H ( �U′), (44)

where �U′ is a limit point of { �Uni−1}. Since limn j→∞ ‖Xn j ‖ = ∞, (44) contradicts the

coercivity of the function X �→ F (X, �U′) on W̄ , which completes the proof. �

Now we explore the relationship between the limit points of the sequence

{(Xn+1, �Un)} and the solution of the original problem (24). If Rn
d < R0

d for some
n ≥ 1 and d ∈ {1, 2, 3}, then Q̄ � Q(X0) and W̄ � W (X0), entailing difficulties
in constructing the relationship. We assume that Rn

d = R0
d holds for all n ≥ 1 and

d = 1, 2, 3. Then (40) becomes

F (Xn+1, �Un) = E n(Xn+1) = min
X∈W (X0)

E n(X) = min
X∈W (X0)

F (X, �Un).
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Theorem 4.10 Suppose that Rn
d = R0

d for all n ≥ 1 and d = 1, 2, 3. Denote by

ρ = max1≤k �=�≤3 R0
k R

0
� . Let (X, �X) be any minimizer of (24). Then any limit point

(X∗, �U∗) of {(Xn+1, �Un)} satisfies

F (X∗, �U∗) − F (X, �U) ≤ (
√

ρ − 1)
3∑

d=1

αd

R0
d∑

i=1

∥∥∥(Xdei
)T ·d X

∥∥∥∗ .

Proof Assume that there is a subsequence {(Xnk+1, �Unk )} such that (Xnk+1, �Unk ) →
(X∗, �U∗) as k → ∞. Then

F (Xnk+1, �Unk ) ≤ F (X, �Unk ), ∀X ∈ W (X0).

Letting k → ∞, we obtain

F (X∗, �U∗) ≤ F (X, �U∗), ∀X ∈ W (X0).

Substituting X by X in the above inequality, we obtain

F (X∗, �U∗) − F (X, �U) ≤ F (X, �U∗) − F (X, �X)

=
3∑

d=1

αd

R0
d∑

i=1

(∥∥∥(U∗
dei
)T ·d X

∥∥∥∗ −
∥∥∥(Xdei

)T ·d X
∥∥∥∗

)

≤(
√

ρ − 1)
3∑

d=1

αd

R0
d∑

i=1

∥∥∥(Xdei
)T ·d X

∥∥∥∗ ,

where the last inequality follows from Corollary 3.4. �


5 Numerical experiments

Wepresent some numerical results to show the performance ofACPC.All experiments
are performed on MATLAB R2016a with Tensor Toolbox, version 3.0 [3] on a laptop
(Intel Core i5-6300HQ CPU at 2.30GHz, 8.00G RAM).

Given a tensor with size I1 × I2 × I3, the sample ratio (SR) is defined as

SR := |�|
I1 I2 I3

,

where |�| is the number of entries of �. The test tensors include synthetic and real-
world data. We use the relative error (RErr) to evaluate the results:

RErr := ‖X − X∗‖
‖X∗‖ ,
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where X∗ is the original tensor and X is the recovered result.

We use the initialization by HaLRTC for all experiments. We set αd = R0
d

R0
1+R0

2+R0
3

and λ = 1000 for all experiments. The inner iterations of ACPC, i.e., the iterations of
ADMM presented in Sect. 3.2 for solving (34), are terminated whenever

‖Xn,t+1 − Xn,t‖
max(‖Xn,t‖, 1) ≤ tol,

where Xn,t+1 is the solution of (37), or the iteration number reaches 500. The outer
iterations of ACPC are terminated whenever

‖Xn+1 − Xn‖
max(‖Xn‖, 1) ≤ Tol,

or the iteration number reaches N . The tolerances tol, Tol and the maximum outer
iteration number N will be specified below.

We will test the convergence behaviour of ACPC in Sect. 5.1, and compare ACPC
with HaLRTC [33], TMac [44], FBCP [51] and TNN [50] on synthetic data in Sect. 5.2
and real-world data in Sect. 5.3, where HaLRTC and TMac are based on multilinear
rank, FBCP is based on CP rank and TNN is based on tubal rank.

The synthetic tensors are generated based on the Tucker decomposition [13] and
the CP decomposition [29]. To generate a Tucker decomposition based tensor A ∈
R

I×I×I , we first generate one tensor C and three matricesA1,A2,A3 by the following
MATLAB script

C = randn(r , r , r), Ad = randn(I , r), d = 1, 2, 3,

where r is a fixed integer. Then A with multilinear rank (r , r , r) is given by A =
(A1,A2,A3) · C. To generate a CP decomposition based tensor B ∈ R

I×I×I , we first
generate three matrices B1,B2,B3 by the following MATLAB script

Bd = randn(I , r), d = 1, 2, 3,

where r is a fixed integer. Then B with rank(B) = r is given by

B =
r∑

�=1

λ� B1(:, �) ⊗ B2(:, �) ⊗ B3(:, �), (45)

where λ� is a fixed weight.

5.1 Convergence behaviour of ACPC

We test two synthetic tensors: a Tucker decomposition based tensorA ∈ R
100×100×100

with multilinear rank (10, 10, 10); and a CP decomposition based tensor B ∈
R
100×100×100 with rank(B) = 10 and λ� = 1 for � = 1, . . . , 10 in (45).
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Fig. 1 The values of ‖Xn+1−Xn‖
max(‖Xn‖,1) and E

n(Xn+1) versus the outer iteration number in ACPC. The first row

is for tensor A, and the second row is for B

The inner tolerance tol is set as 10−6. Because we want to show the convergence
behaviour of ACPC, the outer iterations are terminated only when the iteration number
reaches the maximum outer iteration number, which is set as 20, and Tol is ignored.

Figure 1 shows ‖Xn+1−Xn‖
max(‖Xn‖,1) and E

n(Xn+1) versus the outer iteration number in ACPC.
From the curves, we can observe that ACPC has a good performance in convergence.
The sequence of {E n(Xn+1)} is monotonically decreasing for these two tensors.

5.2 Synthetic data

We compare ACPC with HaLRTC, TMac, FBCP and TNN on four types of synthetic
tensors: Tucker decompositionbased tensorswith size 50×50×50 andmultilinear rank
(5, 5, 5); Tucker decompositionbased tensorswith size 100×100×100 andmultilinear
rank (10, 10, 10); CP decomposition based tensors with size 50 × 50 × 50 and with
r = 5, λ� = �2 in (45); CP decomposition based tensors with size 100 × 100 × 100
and with r = 10, λ� = �2 in (45).

Remark 5.1 Most methods for fitting CP decompositions, including the ALS, perform
not very well on tensors with power-law increasing weights in the form (45). This
appears to be related to the condition numbers of factor matrices versus rank-1 tensors,
as discussed in [8,40][7, Sect. 2]. Also in [7], the authors propose a Riemannian
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optimization method to tackle this issue. Because FBCP is a method generalized from
the ALS, it has an overwhelming advantage over other methods if the original tensor
can be fitted verywell by theALS.Hencewe consider CP decomposition based tensors
with power-law increasing weights like [44].

We set the inner tolerance tol = 10−6, the outer tolerance Tol = 10−5 and the
maximum outer iteration number N = 5. The tolerances of all the other methods
are set as 10−6. We generate ten tensors for each type of synthetic tensors and report
the average results. Table 1 shows the RErrs and CPU time (measured in seconds)
on synthetic tensors without noise and Table 2 shows the results on synthetic tensors
with Gaussian noise of zero mean and standard deviation 10−3. Here, the CPU time
of ACPC includes the time for generating the initial value X0.

ForRErr, we can observe thatACPChas the best performance on all cases. HaLRTC
has a stable performance on all cases and the results are not so bad. TMac performs
well on the Tucker decomposition based tensors, while performs badly on the CP
decomposition based tensors. FBCP performs not so well on some Tucker decompo-
sition based tensors and is sensitive to noise. TNN performs badly when the sample
ratio is low.

For CPU time, HaLRTC or TMac has the best performance on all cases. The CPU
time of ACPC includes the initialization time by HaLRTC, but the gap between ACPC
time and HaLRTC time is not so great on most cases. In addition, ACPC time is much
shorter than FBCP time and TNN time on most cases.

5.3 Real-world data

We test three real-world data: a hyperspectral image2 with size 200 × 200 × 89; an
MRI3 with size 152 × 188 × 121; and a video4 with size 144 × 176 × 100. The

For ACPC, we set the inner tolerance tol = 10−5, the outer tolerance Tol = 10−4

and the maximum outer iteration number N = 3. The tolerances of all the other
methods are set as 10−5.

We compare ACPCwith HaLRTC, TMac, FBCP and TNN. The results for different
methods under different SRs are presented in Table 3. The comparisons show that
ACPC is the best-performing method in terms of relative error. As for the CPU time,
the ACPC time is much longer than HaLRTC and is close to the TNN time, but much
shorter than the FBCP time.

The visual comparisons of these methods are shown in Figs. 2, 3, and 4. We show
one slice of the recovered results of different methods. From all visual comparisons,
we can observe that ACPC has the best performance.

2 The data are available at http://peterwonka.net/Publications/code/LRTC_Package_Ji.zip and have been
used in [44].
3 The data are from BrainWeb [12] and available at http://brainweb.bic.mni.mcgill.ca/brainweb/
selection_normal.html.
4 The data are from the video trace library [37] and available at http://trace.eas.asu.edu/yuv/.
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Table 3 Comparison results for different methods under different SRs: real-world data

Data SR HaLRTC TMac FBCP TNN ACPC

Hyperspectral image 10% RErr 7.23e–2 6.22e–2 5.65e–2 7.46e–2 3.26e–2

CPU 20 38 1777 131 313

20% RErr 2.88e–2 4.05e–2 3.18e–2 5.18e–2 1.55e–2

CPU 33 54 5039 315 449

30% RErr 2.01e–2 2.96e–2 2.46e–2 4.06e–2 1.25–2

CPU 23 27 4701 394 461

40% RErr 1.58e–2 2.32e–2 2.09e–2 3.29e–2 1.14–2

CPU 6 7 2627 109 144

MRI 10% RErr 2.70e–1 6.09e–1 1.42e–1 1.93e–1 1.16e–1

CPU 22 25 2015 98 135

20% RErr 1.66e–1 2.71e–1 9.77e–2 1.03e–1 6.87e–2

CPU 18 17 3007 102 163

30% RErr 1.10e–1 1.17e–1 7.79e–2 6.80e–2 4.85–2

CPU 15 16 2947 60 101

40% RErr 7.47e–2 5.90e–2 5.49e–2 4.99e–2 3.70–2

CPU 5 6 1997 55 99

Video 10% RErr 1.31e–1 4.81e–1 1.20e–1 1.28e–1 8.36e–2

CPU 10 9 2033 64 106

20% RErr 8.67e–2 1.79e–1 8.61e–2 6.97e–2 5.59e–2

CPU 8 12 1775 60 99

30% RErr 6.17e–2 5.28e–2 6.21e–2 5.04e–2 4.12–2

CPU 8 11 1502 58 92

40% RErr 4.53e–2 4.12e–2 4.72e–2 3.93e–2 3.10–2

CPU 6 8 1344 52 76

The best results are highlighted in boldface

5.4 Summary

The results show that ACPC has a significant improvement over HaLRTC, which is
used as initialization, in terms of relative error. The key reason is that ACPC converts
the tensor completion problem into a series of slicematrix completion problems, rather
than unfoldingmatrix completion problems. As alreadymentioned in the introduction,
it has been shown in [49] that unfoldingmatricesmay fail to exploit the tensor structure
and may lead to poor tensor recovery performance. On the other hand, a slice matrix
is a submatrix of the unfolding matrix5 and can give a more accurate estimate of the
rank information.

As for the CPU time, ACPC performs very well on synthetic data but consumes
much more time than HaLRTC on real-world data. This is because for synthetic data,
the multilinear rank of the initialization is rather small, while for real-world data, the

5 To be more accurate, the slices that we utilize are submatrices of the unfolding matrix from the original
tensor after some linear transform. See Corollary 2.6.
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Observed Original HaLRTC TMac

FBCP TNN ACPC

Observed Original HaLRTC TMac

FBCP TNN ACPC

Fig. 2 Recovered results for the hyperspectral image with 10% SR

Observed Original HaLRTC TMac

FBCP TNN ACPC

Fig. 3 The recovered results recovered results for the MRI with 20% SR

Fig. 4 Recovered results for the video with 30% SR
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multilinear rank of the initialization is not very small. A greater multilinear rank of
the initialization means that Rn

d is greater in (34) and thus increases the CPU time. To
handle this issue, one strategy is to set a smaller maximum outer iteration number. In
our experience, N = 1 or 2 is enough for most real-world data. Another strategy is
that we can use a truncated left singular matrix of X0

d as the initial U0
d for ACPC.

6 Conclusions

We review the rank invariance properties of tensors. Based on these properties, we
obtain an upper bound of CP rank for third-order tensors, which is the sum of ranks of
a few matrices. By replacing the CP rank with this bound, the problem of low CP rank
tensor completion is converted into the problem of low rank matrix completion prob-
lem. The new problem can be implemented by the ADMM easily. The subsequence
convergence is also established. We test numerical examples on both synthetic and
real-world data. The results show the advantage of the proposed method over some
state-of-the-art algorithms.

A considerable problem is how to extend this work to tensors with order higher than
three. The core issue is how to extend (9) for higher-order tensors. For a third-order
tensor, we use the sum of the ranks of some matrices, which are second-order tensors,
to bound the CP rank. For an N th-order tensor, it is natural to use the sum of the CP
ranks of some (N − 1)st-order tensors to bound the CP rank. However, the CP ranks
of (N − 1)st-order tensors also need to be bounded, leading to a complicated bound
for the original N th-order tensor. The consequence is that this strategy is not practical
for higher-order tensors. This problem will be explored in the future.

Acknowledgements We are extremely grateful to two anonymous referees for their valuable feedback,
which improved this paper significantly.
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