supplementary material for "Degradation Accordant Plug-and-Play for Low-Rank Tensor Completion"

Anonymous IJCAI Submission Paper ID 1331

Abstract

In this Supplementary Material, we provide i) the update of multipliers, ii) experimental results on the MRI data, iii) additional results on color images, videos, and multispectral images (MSIs).

1 Multipliers updating

At the k-th iteration, multipliers in our method are updated as follows

$$\begin{cases} \Lambda_{1}^{k+1} = \Lambda_{1}^{k} + \beta_{1}(\mathcal{A}(\mathcal{X}^{k+1}) - b) \\ \Lambda_{2}^{k+1} = \Lambda_{2}^{k} + \beta_{2}(\mathcal{A}(\mathcal{X}^{k+1}) - \mathcal{A}(\mathcal{Y}^{k+1})) \\ \Lambda_{3}^{k+1} = \Lambda_{3}^{k} + \beta_{3}(\mathcal{Y} - \mathcal{Z}^{k+1}) \end{cases}$$
(1)

2 Experimental Settings

For the readers' convenience, we restate our settings for experiments here. Compared methods are: the Tucker-rank based method HaLRTC¹ [Liu *et al.*, 2013], a t-SVD based method (TNN)² [Zhang and Aeron, 2017], a DCT induced TNN minimization method (DCTNN)³ [Lu *et al.*, 2019], a framelet represented TNN minimization method (FTNN)⁴ [Jiang *et al.*, 2020], a deep denoiser regularized TNN minimization method (DP3LRTC)⁵ [Zhao *et al.*, 2020], and a deep video inpainter called Onion-peel networks (OPN)⁶ [Oh *et al.*, 2019].

For all experiments, two numerical metrics are employed, including the Peak signal-to-noise ratio (PSNR), the structural similarity index (SSIM) [Wang *et al.*, 2004]. Higher PSNR and SSIM values mean better performance. Additionally, we introduce the mean spectral angle mapper (SAM) for MSIs, and lower SAM indicates better results. We report results on color images, videos, and multispectral images in the following part. Please refer to Supplementary Material for results on the MRI data and the parameter analysis.

The training images of the CRUnet consists of 400 images from the Berkeley segmentation dataset (BSD) [Chen

Table 1: The quantitative results by different methods on the MR	l
data with different sample rates. The best and the second best	
values are respectively highlighted by red, blue.	

SR	10	%	20	%	30	Time	
Method	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	(s)
Observed	8.09	0.043	8.60	0.070	9.18	0.099	
HaLRTC	18.07	0.421	21.99	0.636	25.27	0.783	13.1
TNN	22.19	0.568	27.29	0.803	30.24	0.886	74.2
DCTNN	23.67	0.639	27.61	0.810	30.58	0.890	48.4
FTNN	25.05	0.755	29.05	0.884	32.06	0.936	362.3
DP3LRTC	28.38	0.878	32.56	0.948	35.44	0.972	201.4
OPN	16.08	0.376	19.03	0.515	24.54	0.781	17.2
CRUnet	27.63	0.876	31.87	0.946	35.77	0.976	6.3
DAP	28.24	0.884	32.57	0.951	36.39	0.978	121.1

and Pock, 2016], 900 images of the DIV2K dataset [Timofte *et al.*, 2017], 4744 images from the Waterloo Exploration Database [Ma *et al.*, 2016], and 2750 images from the Flick2K dataset [Lim *et al.*, 2017]. Before the training, all the color images are converted into gray-scale images. In each iteration during training, 64 patches of size 128×128 were randomly sampled from The SR we used to generate observations for training is set as 10%. The network parameters are optimized by minimizing the ℓ_1 loss with the ADAM [Kingma and Ba, 2014] optimizer. The learning rate (LR) starts from 10^{-4} and then decrease by half every 40000 iterations until 5×10^{-7} . the images and the patches are normalized to [0,1].

3 MRI Data

We test our method and compared methods on the MRI⁷ data of the size $142 \times 178 \times 121$. The random sampling rates (SRs) are selected as 10%, 20%, and 30%. Tab.1 exhibits the PSNR and SSIM values of results by different methods. Our method obtain the highest quality metrics except for the PSNR value when SR= 10%. As the three modes of the MRI are all spatial direction, we illustrate the 110-th frontal slice, the 165-th horizontal slice, and the 50-th lateral slice of all results by different methods in Fig. 1. We can see that our method and CRUnet recover the frontal slice well while our method recoveries horizontal and lateral slices better.

¹https://www.cs.rochester.edu/~jliu/code/TensorCompletion.zip

²https://github.com/jamiezeminzhang/Tensor_Completion_and_Tensor_RPCA

³Implemented by ourselves based on the code of TNN

⁴https://github.com/TaiXiangJiang/Framelet-TNN

⁵https://taixiangjiang.github.io/

⁶https://github.com/seoungwugoh/opn-demo

⁷Available at https://brainweb.bic.mni.mcgill.ca/brainweb.

Figure 1: The 110-th frontal slice (top two rows), the 165-th horizontal slice (middle two rows), and the 50-th lateral slice (bottom two rows) of all results by different methods on the MRI data with SR = 10%.

4 Additional Results on Color Images and Videos

Tab.2 reports the PSNR and SSIM values of results on color images (*Airplane*, *House*, *Lena*, and *Redhosue*) by different methods with different structural missing types. The best and

second best values are respectively highlighted in red and blue colors. Figs.2-5 shows the visual results by different methods on color images with different structural missing.

Tab.3 shows the PSNR values, SSIM values of the results on the video *Highway* with different numbers of miss-

Table 2: Quantitative metrics of the results by different methods on color images with different structural missing types.

Structural Missing	Type-4	Type-5	Type-6	Type-7	Time
Method	PSNR SSIM	I PSNR SSIM	PSNR SSIM	PSNR SSIM	(s)
Observed	14.49 0.822	2 16.24 0.888	13.11 0.758	9.35 0.392	_
HaLRTC	31.21 0.958	33.59 0.968	26.51 0.919	24.20 0.789	27.1
TNN	27.19 0.919	27.05 0.943	20.14 0.845	22.65 0.760	6.4
DCTNN	31.65 0.967	34.12 0.974	26.18 0.916	24.35 0.799	3.4
FTNN	23.25 0.904	27.01 0.964	23.60 0.891	24.57 0.821	28.9
DP3LRTC	34.22 0.980	37.91 0.987	27.79 0.938	28.46 0.881	7.2
OPN	33.73 0.982	36.57 0.986	28.02 0.947	28.68 0.868	1.3
Deepfillv2	33.50 0.981	38.94 0.989	27.83 0.950	27.68 0.842	38.4
DAP	34.53 0.984	40.25 0.992	29.33 0.957	31.05 0.911	123.3

ObservedHaLRTCTNNDCTNNFTNNImage: Description of the served of the served

Figure 2: The visual results by different methods on the color image Airplane.

Figure 3: The visual results by different methods on the color image Fruits.

ing blocks (12 by 12). The visual examples of the results are shown in Fig.6. Tab.4 shows the PSNR values, SSIM values

of the results on the video *Suzie* with different random sample rates. The visual examples of the results are shown in Fig.7.

Figure 4: The visual results by different methods on the color image House.

Figure 5: The visual results by different methods on the color image Redhouse.

Table 3: Quantitative results by different methods on the **video** *Highway* with different number of missing blocks (12 by 12).

Number	#5	50	#7	70	#9	Time	
Method	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	(s)
Observed	9.25	0.517	7.56	0.326	6.70	0.272	
HaLRTC	29.63	0.915	29.07	0.874	28.56	0.844	8.3
TNN	16.28	0.670	12.43	0.476	10.94	0.399	18.5
DCTNN	31.96	0.933	31.20	0.899	30.85	0.875	11.9
FTNN	31.34	0.932	29.40	0.881	27.57	0.863	263.6
DP3LRTC	32.85	0.944	32.14	0.918	32.71	0.907	46.7
OPN	34.95	0.952	32.64	0.924	32.90	0.914	12.0
Deepfillv2	33.64	0.940	32.61	0.917	32.57	0.906	3.7
DAP	35.03	0.953	33.44	0.930	33.39	0.920	98.2

 Table 4: Quantitative results by different methods on the video

 Suzie for random missing.

SR	59	%	10	%	20	Time	
Method	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	(s)
Observed	6.61	0.009	6.84	0.013	7.36	0.019	
HaLRTC	19.33	0.563	21.90	0.649	24.90	0.767	9.7
TNN	18.92	0.415	26.74	0.766	28.13	0.864	16.6
DCTNN	24.72	0.625	26.19	0.765	28.19	0.852	12.2
FTNN	25.21	0.745	27.62	0.826	29.00	0.897	106.1
DP3LRTC	26.19	0.810	28.01	0.870	29.47	0.922	46.5
OPN	19.77	0.605	19.76	0.629	24.11	0.759	5.2
CRUnet	26.17	0.813	28.02	0.877	29.50	0.928	1.0
DAP	26.37	0.817	28.20	0.881	29.58	0.932	17.1

Tab.5 shows the PSNR values, SSIM values of the results on the video *Bridge-far* with a random block missing. The visual

examples of the results are shown in Fig.8. For all results, the temporal vectors in the missing area of the video *Bridge-far*,

Figure 6: The visual results by different methods on the video Highway (the 39-th frame) with 50 blocks (12 by 12) missing.

Figure 7: The visual results by different methods on the video suzie (the 1-st frame) for random missing with SR = 20%.

Observed	HaLRTC	TNN	DCTNN	FTNN
DP3LRTC	OPN	Deepfillv2	DAP	Original

Figure 8: The visual results by different methods on the video Bridge-far (the 39-th frame) with a random block (30 by 30) missing.

Figure 9: The temporal curves of the recovered video Bridge-far by different methods.

Table 5: Quantitative results by different methods on the **video** *Bridge-far* with a random block (30 by 30) misssing.

Video	Bridg	Time	
Method	PSNR	SSIM	(s)
Observed	19.95	0.938	
HaLRTC	47.87	0.993	3.6
TNN	31.45	0.975	19.6
DCTNN	47.65	0.994	24.5
FTNN	24.11	0.954	75.1
DP3LRTC	48.34	0.994	47.4
OPN	45.11	0.990	10.5
Deepfillv2	47.29	0.987	3.4
DAP	51.89	0.995	83.7

are plotted in Fig.9.

4.1 Additional Results on MSIs

In Tab.6, we list the quantitative metrics of the results by different methods on MSIs with different sampling rates. We display the pseudo-color images (composed by 25-th, 15-th, and 1-st bands) of the reconstructed MSIs by different methods in Fig.10.

References

[Chen and Pock, 2016] Yunjin Chen and Thomas Pock. Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 39(6):1256–1272, 2016.

- [Jiang et al., 2020] Tai-Xiang Jiang, Michael K Ng, Xi-Le Zhao, and Ting-Zhu Huang. Framelet representation of tensor nuclear norm for third-order tensor completion. *IEEE Transactions on Image Processing*, 29:7233–7244, 2020.
- [Kingma and Ba, 2014] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv* preprint arXiv:1412.6980, 2014.
- [Lim et al., 2017] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. Enhanced deep residual networks for single image super-resolution. In Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pages 136–144, 2017.
- [Liu et al., 2013] Ji Liu, Przemysław Musialski, Peter Wonka, and Jieping Ye. Tensor completion for estimating missing values in visual data. *IEEE Transactions on Pat*tern Analysis and Machine Intelligence, 35(1):208–220, 2013.
- [Lu *et al.*, 2019] Canyi Lu, Xi Peng, and Yunchao Wei. Lowrank tensor completion with a new tensor nuclear norm induced by invertible linear transforms. In *Proceedings* of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5996–6004, 2019.
- [Ma et al., 2016] Kede Ma, Zhengfang Duanmu, Qingbo Wu, Zhou Wang, Hongwei Yong, Hongliang Li, and Lei Zhang. Waterloo exploration database: New challenges for image quality assessment models. *IEEE Transactions* on *Image Processing*, 26(2):1004–1016, 2016.
- [Oh et al., 2019] Seoung Wug Oh, Sungho Lee, Joon-Young Lee, and Seon Joo Kim. Onion-peel networks for deep

Table 6: Quantitative results by different methods on MSIs with random missing.

MSI		Balloons					Clay						Paints					
SR	39	%	5%			3%			5%			3%			5%		m.	
Method	PSNR SSI	M SAM	PSNR SSIM	SAM	PSNR	SSIM	SAM	PSNR	SSIM	SAM	PSNR	SSIM	SAM	PSNR	SSIM	SAM	Time (s)	
Observed HaLRTC TNN DCTNN FTNN DP3LRTC OPN CRUnet DAP	13.41 0.1 26.07 0.8 18.80 0.6 29.18 0.8 38.02 0.9 38.28 0.9 11.97 0.4 38.38 0.9 39.52 0.9	14 — 77 10.035 80 24.808 91 10.856 86 3.391 78 4.682 92 29.121 89 3.124 91 2.725	$\begin{array}{c} 13.50 \ 0.136\\ 30.37 \ 0.928\\ 23.08 \ 0.810\\ 36.41 \ 0.967\\ 41.05 \ 0.993\\ 40.92 \ 0.990\\ 16.09 \ 0.500\\ 40.95 \ 0.994\\ 42.11 \ 0.995 \end{array}$	7.061 17.313 5.941 2.622 3.141 25.452 2.115 2.067	15.83 28.98 20.74 27.51 35.10 38.81 9.16 37.04 39.98	$\begin{array}{c} 0.391 \\ 0.940 \\ 0.722 \\ 0.808 \\ 0.971 \\ 0.929 \\ 0.169 \\ 0.980 \\ 0.987 \end{array}$	7.500 29.397 15.930 4.552 7.645 55.584 5.867 4.485	$\begin{array}{r} 15.92\\ 34.03\\ 24.51\\ 33.05\\ 37.67\\ 41.68\\ 15.39\\ 41.58\\ 42.67\end{array}$	0.408 0.964 0.795 0.914 0.985 0.979 0.259 0.990 0.992	5.681 21.182 10.476 3.885 5.018 47.390 3.853 3.762	10.45 21.56 14.33 23.33 28.82 28.61 10.35 28.21 28.96	0.084 0.801 0.545 0.824 0.952 0.941 0.223 0.954 0.959		10.54 24.43 16.79 28.84 31.98 31.99 13.36 31.74 32.18	0.103 0.876 0.679 0.934 0.979 0.974 0.295 0.979 0.980	8.820 22.417 7.524 4.260 3.879 29.426 3.476 3.308		
	Observed		HaLR	ГС			TNN			Γ	OCTN	N		I	FTNN			
Ι	OP3LRTC		OPN	[CRUne	et			DAP			0	rigina	1		
																1		
(Observed		HaLR	ГС			TNN			Ι	OCTN	V		l	FTNN		_	
Ι	OP3LRTC		OPN	[CRUne	et			DAP			0	rigina	.1		
															Cally			

Figure 10: The pseudo color image (composed of the 25-th, 15-th, and the 1-st bands) of recovered results by different methods on **MSIs** Clay (top two rows) and Balloons (bottom two rows) with SR= 3% and 5%, respectively.

video completion. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 4403– 4412, 2019. [Timofte *et al.*, 2017] Radu Timofte, Eirikur Agustsson, Luc Van Gool, Ming-Hsuan Yang, and Lei Zhang. Ntire 2017 challenge on single image super-resolution: Methods and results. In *Proceedings of the IEEE conference on computer vision and pattern recognition workshops*, pages 114–125, 2017.

- [Wang *et al.*, 2004] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error visibility to structural similarity. *IEEE Transactions on Image Processing*, 13(4):600–612, 2004.
- [Zhang and Aeron, 2017] Zemin Zhang and Shuchin Aeron. Exact tensor completion using t-SVD. *IEEE Transactions* on Signal Processing, 65(6):1511–1526, 2017.
- [Zhao et al., 2020] Xi-Le Zhao, Wen-Hao Xu, Tai-Xiang Jiang, Yao Wang, and Michael K Ng. Deep plug-and-play prior for low-rank tensor completion. *Neurocomputing*, 400:137–149, 2020.