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Abstract

Tensor completion aims at estimating missing val-
ues from an incomplete observation, playing a fun-
damental role in many applications. This work pro-
poses a novel low-rank tensor completion model,
in which the inherent low-rank prior and external
degradation accordant data-driven prior are simul-
taneously utilized. Specifically, the tensor nuclear
norm (TNN) is adopted to characterize the over-
all low-dimensionality of the tensor data. Mean-
while, an implicit regularizer is formulated and its
related subproblem is solved via a deep convolu-
tional neural network (CNN) under the plug-and-
play framework. This CNN, pretrained for the in-
painting task on a mass of natural images, is ex-
pected to express the external data-driven prior and
this plugged inpainter is consistent with the orig-
inal degradation process. Then, an efficient alter-
nating direction method of multipliers (ADMM) is
designed to solve the proposed optimization model.
Extensive experiments are conducted on different
types of tensor imaging data with the comparison
with state-of-the-art methods, illustrating the effec-
tiveness and the remarkable generalization ability
of our method.

1 Introduction
The main aim of tensor completion is to fill the missing val-
ues of the data in the tensor format when the observation is
incomplete owing to objective conditions. It has been widely
studied for many real-world applications, such as, color im-
age and video processing [Liu et al., 2013], personalized
web search [Sun et al., 2005], high-order web link analy-
sis [Kolda et al., 2005], and fine-grained indoor localiza-
tion [Liu et al., 2015]. As many types of real-world high-
dimensional tensor data, e.g., imaging data, seismic data, and
traffic data, maintain low-dimensional structures, the tensor
low-rankness is widely utilized for the tensor completion [Liu
et al., 2013], and low-rank tensor completion (LRTC) meth-
ods have achieved great successes in the past decade.

∗Corresponding author.

In this work, we mainly focus on the completion of mul-
tidimensional imaging data, including color images, videos,
magnetic resonance imaging (MRI) data, multispectral im-
ages (MSIs). Meanwhile, although the rank of the tensor is
not uniquely defined, we fix our attention on the tensor tubal
rank defined based on the tensor singular value decomposi-
tion (t-SVD) [Kilmer and Martin, 2011] framework since that
the t-SVD is specialized for third-order (namely, cubic) ten-
sors, being suitable for multidimensional imaging data, and
the data would be processed integrally within the t-SVD alge-
braic framework avoiding the loss of information inherent in
matricization [Kilmer et al., 2013]. Zhang et al. minimize the
tensor tubal nuclear norm (TNN) [Zhang and Aeron, 2017],
which is a convex surrogate of the tensor tubal rank, for LRTC
and given the theoretical guarantee for exact recovery.

As we know, multidimensional images reserve abundant
spatial details, making themselves not strictly low-rank.
Thus, to better address this inverse problem, additional prior
knowledge is needed to better preserve those details. For ex-
ample, the total variation (TV) regularizer is introduced to
characterize the piece-wise local smoothness in [Jiang et al.,
2018]. More recently, Zhao et al. [Zhao et al., 2020] formu-
late an implicit regularizer and adopt a deep convolution neu-
ral network (CNN), which is pretrained on a large number of
natural images for denoising, to express the deep denoising
prior under the plug-and-play (PnP) framework [Venkatakr-
ishnan et al., 2013].

Within the flexible PnP framework, the degradation and the
prior knowledge can be well decoupled after variable splitting
via half-quadratic splitting [Nikolova and Ng, 2005] or the al-
ternating direction method of multipliers (ADMM) [Boyd et
al., 2011], and one can directly employ off-the-shelf denois-
ing algorithms to express the prior knowledge for various im-
age inverse problems, such as deblurring and superresolution.
When the well-known BM3D [Dabov et al., 2007] is plugged
in, it is believed to enhance the nonlocal self-similarity. With
the rapid development of deep learning, we can also use deep
CNN denoisers to utilize the data-driven prior learned from
a mass of training images. Thanks to the high model capac-
ity of the CNN, the method in [Zhao et al., 2020] achieves
promising performance for tensor completion.

We would like to take a further step to plug in a CNN in-
painter for LRTC in this work. Two facts motivate us to con-
duct this.First, the plugged-in inpainter is designed for the
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inpainting task, which is naturally consistent with the degra-
dation in tensor completion, being more suitable than denois-
ers. Second, as the model capacity of the CNN is quite high,
it is reasonable to resort to the plugged-in CNN for undertak-
ing parts of the degradation as well as expressing the image
prior. Thus, our model is given by combining the internal
low-rank prior with the external degradation accordant data-
driven prior together. On the one hand, the TNN regularizer
characterizes the global low-dimensional structure and inher-
ent connection of the multi-dimensional data. On the other
hand, an off-the-shelf CNN, which is pretrained for the im-
age inpainting task on images, is employed to preserve the
spatial details. Our contributions are summarised as follows.
• A novel degradation accordant PnP LRTC model is pro-

posed for multidimensional images. In our model, the TNN
is utilized to depict the inherent global low-rank structure of
underlying multidimensional images. An implicit regularizer
is formulated to better preserve the abundant details in multi-
dimensional images via plugging in a CNN image inpainters.
Those two terms are organically complementary to each other
and our model is therefore expected to be effective.
• We customize the ADMM for the proposed model and

the subproblem corresponding to the implicit regularizer is
solved via the CNN inpainter, which is in accord with the
original degradation process. This inpainter is pretrained on
natural images, which are readily accessible, to faithfully ex-
press the data-driven image prior. Numerical experiments
are conducted on various types of multidimensional images.
Comparisons with state-of-the-art methods illustrate the ex-
cellent performance and generalization ability to different
types of data of our method.

The outline of this paper is given as follows. Sec. 2 gives
the basic preliminaries of the tensor. Sec. 3 presents main
results. Sec. 4 illustrates experimental results. Finally, con-
clusions are drawn in Sec. 5.

2 Preliminaries
Throughout this paper, lowercase letters, e.g., x, boldface
lowercase letters, e.g., x, boldface uppercase letters, e.g., X,
and boldface calligraphic letters, e.g., X , are used to denote
scalars, vectors, matrices, and tensors, respectively. Given a
third-order tensor X ∈ Rn1×n2×n3 , we use Xijk to denote
its (i, j, k)-th element. The k-th frontal slice of X is denoted
as X (k) (or X (:, :, k), Xk). We use the notation Â to denote
the Fourier transformed (along the third mode) tensor of A.
The conjugate transpose of a tensorA ∈ Cn2×n1×n3 is tensor
AH ∈ Cn1×n2×n3 obtained by conjugate transposing each of
the frontal slice and then reversing the order of transposed
frontal slices 2 through n3.
Definition 1 (T-prod [Kilmer and Martin, 2011]). The tensor-
tensor-product (t-prod) C = A ∗ B of A ∈ Rn1×n2×n3 and
B ∈ Rn2×n4×n3 is a tensor of the size n1×n4×n3, where the
(i, j)-th tube cij: is given by C(i, j, :) =

∑n2

k=1A(i, k, :) ~
B(k, j, :), where ~ denotes the circular convolution between
two tubes of the same size.
Definition 2 (Special tensors [Kilmer and Martin, 2011]).
The identity tensor I ∈ Rn1×n1×n3 is the tensor whose first
frontal slice is the n1 × n1 identity matrix, and whose other

frontal slices are all zeros. A tensor Q ∈ Cn1×n1×n3 is or-
thogonal if it satisfies QH ∗ Q = Q ∗ QH = I. A tensor A
is called f-diagonal if each frontal slice A(i) is a diagonal
matrix.
Theorem 1 (T-SVD [Kilmer and Martin, 2011]). For A ∈
Rn1×n2×n3 , the t-SVD of A is given by

A = U ∗ S ∗ VH (1)

where U ∈ Rn1×n1×n3 and V ∈ Rn2×n2×n3 are orthogonal
tensors, and S ∈ Rn1×n2×n3 is an f-diagonal tensor.
Definition 3 (Tensor tubal-rank [Zhang and Aeron, 2017]).
The tubal-rank of a tensor A ∈ Rn1×n2×n3 , denoted as
rankt(A), is defined to be the number of non-zero singu-
lar tubes of S , where S comes from the t-SVD of A: A =
U ∗ S ∗ V>.
Definition 4 (Tubal-nuclear-norm (TNN) [Zhang and Aeron,
2017]). The tensor nuclear norm of a tensor A ∈
Rn1×n2×n3 , denoted as ‖A‖TNN, is defined as

‖A‖TNN ,
n3∑
i=1

‖Â(:, :, i)‖∗, (2)

where ‖ · ‖∗ is the matrix nuclear norm.

3 Main Results
Our LRTC model is formulated as

min
X

λ‖X‖TNN + Φ(X )

s.t. A(X ) = O.
(3)

where A is a linear degradation operator, O ∈ Rn1×n2×n3

is the observed multidimensional image1 and Φ(·) is an im-
plicit regularizer. We introduce two auxiliary variables and
reformulate (3) as

min
X ,Y,Z

λ‖Z‖TNN + Φ(X )

s.t. A(X ) = O, A(X ) = A(Y),

Z = Y.
(4)

Generally, one auxiliary variable is enough to decouple the
low-rank regularizer and the implicit regularizer. We adopt
two to formulate the implicit regularizer related subproblem
in the image restoration format instead of denosing. This
makes our method different from previous PnP methods.

Then, the augmented Lagrangian function is

L(X ,Y,Z,Λi)

=λ‖Z‖TNN+Φ(X )+
β2

2
‖A(X )−A(Y)+

Λ2

β2
‖2F

+
β1

2
‖A(X )−O+

Λ1

β1
‖2F +

β3

2
‖Y−Z+

Λ3

β3
‖2F ,

where Λis (i = 1, 2, 3) are the Lagrangian multipliers, and
βis (i = 1, 2, 3) are nonnegative parameters. Next, we set up
ADMM iterations via solving following subproblems.

1The spatial resolution is n1 × n2 and the spectral (or temporal)
length of the multidimensional image is n3.
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Z-subproblem: At the k-th iteration, the subproblem with
respect to Z is

min
Z

λ‖Z‖TNN +
β3

2
‖Yk −Z +

Λk3
β3
‖2F . (5)

Let the t-SVD of (Yk +
Λk

3

β3
) be U ∗ S ∗ VH , the closed-form

solution of (5) is
Zk+1 = U ∗ D ∗ VH , (6)

where D is an f-diagonal tensor obtained satisfying
D̂(i, i, k) = max{Ŝ(i, i, k)− λ

n3β3
, 0}.

Y-subproblem: At the k-th iteration, the subproblem with
respect to Y is

min
Y

β2

2
‖A(Y)−A(X k)− Λk2

β2
‖2F

+
β3

2
‖Y − Zk+1 +

Λk3
β3
‖2F .

(7)

Denoting the adjoint operator of A as A∗, we can obtain the
solution of (7) as
Yk+1 = (β2A∗A+β3I)−1

·
(
β2A∗

(
A
(
X k
)
+

Λk2
β2

)
+β3Zk+1−Λk3

)
,

where I denotes the identity mapping.
X -subproblem: At the k-th iteration, the subproblem with

respect to X is

min
X

Φ′(X ) +
1

2
‖A(X )− B‖2F , (8)

where B =
(β1O−Λk

1+β2A(Yk+1)−Λk
2)

β1+β2
and Φ′(X ) = Φ(X )

β1+β2
.

We further decouple (8) into n3 subproblems as

min
X (:,:,i)

Φ′(X (:, :, i))+
1

2
‖A (X (:, :, i))−B(:, :, i)‖2F ,

for i = 1, 2, · · · , n3. Thus, it becomes n3 image restoration
problems and can be solved via off-the-shelf algorithms under
the PnP framework. For the tensor completion, the degrada-
tion operator is indeed the projection operator PΩ(·), which
keeps the entries in Ω and set remaining entries as 0. We can
solve it using inpainting algorithms as

X k+1(:, :, i) = Inpainting(B(:, :, i)), (9)
for i = 1, 2, · · · , n3.

Finally, the update of multipliers follows the standard
ADMM and can be seen in Supplementary Material2.

Remark: Our method is not limited to the tensor comple-
tion. Other multidimensional image restoration tasks, such as
video superresolution or deblurring, can also be addressed via
replacing the degradation operator A(·) and adopting corre-
sponding image restoration algorithms in (9). We would like
to utilize CNNs in (9). As analyzed in [Ryu et al., 2019],
the convergence of our algorithm would be guaranteed if the
CNN is properly trained. Meanwhile, we want to also empha-
size the generalization ability of our method as our method
can be applied for different types of multidimensional im-
ages and only needs the inpainting CNN trained on grayscale
or color images.

2Can be found at https://github.com/TaiXiangJiang/.

Mask Type Type-1 Type-2 Type-3 Time
Method PSNR SSIM PSNR SSIM PSNR SSIM (s)

Observed 18.31 0.948 12.22 0.612 17.38 0.874 —
HaLRTC 30.48 0.967 12.22 0.612 30.85 0.956 21.2
TNN 22.88 0.960 18.26 0.732 25.60 0.928 8.6
DCTNN 30.81 0.969 26.29 0.894 29.40 0.949 3.9
FTNN 19.71 0.953 26.84 0.920 27.87 0.944 34.6
DP3LRTC 31.18 0.971 26.46 0.911 35.12 0.980 9.6
OPN 29.54 0.966 26.20 0.911 34.84 0.981 0.8
Deepfillv2 29.93 0.969 24.77 0.897 34.53 0.981 34.5
DAP-LRTC 31.59 0.972 27.12 0.929 36.57 0.987 131.7

Table 1: Quantitative results by different methods on color images
with different types of structural missing. The best and the second

best values are respectively highlighted by red and blue colors.

4 Experiments
In this section, we evaluate the effectiveness of our degra-
dation accordant PnP LRTC (DAP-LRTC) method and com-
pare it with other state-of-the-art methods on color images,
videos, MSIs, and MRI data. Compared methods consist of:
the Tucker-rank based method HaLRTC3 [Liu et al., 2013],
a t-SVD based method (TNN)4 [Zhang and Aeron, 2017],
a DCT induced TNN minimization method (DCTNN)5 [Lu
et al., 2019], a framelet represented TNN minimization
method (FTNN)6 [Jiang et al., 2020], a deep denoiser regu-
larized TNN minimization method (DP3LRTC)7 [Zhao et al.,
2020], and a deep video inpainter called Onion-peel networks
(OPN)8 [Oh et al., 2019].

For all experiments, two numerical metrics are employed,
including the Peak signal-to-noise ratio (PSNR), the struc-
tural similarity index (SSIM) [Wang et al., 2004]. Higher
PSNR and SSIM values mean better performance. Addition-
ally, we introduce the mean spectral angle mapper (SAM) for
MSIs, and lower SAM indicates better results. All experi-
ments were conducted on the platform of Window 10 with
an AMD Ryzen9 3950X CPU and RTX 2080Ti GPU and
32RAM. 2 CNN inpainters are considered in our method:
i) Deepfillv29 [Yu et al., 2019] for structural missing, ii)
CRUNet (we borrow the network structure of DRUNet10 in
[Zhang et al., 2021] and train it for grey-scale image comple-
tion) for random missing. The training details of CRUNet are
given in Supplementary Materials. The results by applying
Deepfillv2 and CRUNet on each band of the incomplete data
would also be reported for reference.

4.1 Color Image
In this subsection, 6 color images11 of the size 512 × 512
× 3 are selected. We consider the structural missing in all

3https://www.cs.rochester.edu/∼jliu/code/TensorCompletion.zip
4https://github.com/jamiezeminzhang/Tensor Completion and

Tensor RPCA
5Implemented by ourselves based on the code of TNN
6https://github.com/TaiXiangJiang/Framelet-TNN
7https://taixiangjiang.github.io/
8https://github.com/seoungwugoh/opn-demo
9https://github.com/JiahuiYu/generative inpainting

10https://github.com/cszn/DPIR
11Available at http://sipi.usc.edu/database/database.php.
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Observed HaLRTC TNN DCTNN FTNN

DP3LRTC OPN Deepfillv2 DAP-LRTC GT

Observed HaLRTC TNN DCTNN FTNN

DP3LRTC OPN Deepfillv2 DAP-LRTC GT

Observed HaLRTC TNN DCTNN FTNN

DP3LRTC OPN Deepfillv2 DAP-LRTC GT

Figure 1: From top to bottom: The inpainting results on the different color images with different structural missing types.

RGB channels. We adopt deepfillv2 to solve (9). Tab.1 re-
ports quantitative metrics and the running time in seconds.
We can see that our method outperforms compared methods.
Fig.1 shows the inpainting results by different methods on
color images (Baboon, Painting, Lena) with three different
masks, respectively. From the enlarged areas, the superior
of our method is obvious. More results on color images are

shown in Supplementary Material.

4.2 Video
In this subsection, we choose four videos12 to test the capacity
of the proposed method. The size of all videos is 144 × 176
× 50. For videos, we consider both the random missing and

12Videos available at http://trace.eas.asu.edu/yuv/.
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Observed HaLRTC TNN DCTNN FTNN

DP3LRTC OPN Deepfillv2 DAP-LRTC GT

Figure 2: The 27-th frame of recovered results of different methods on video Bridge-close with a block of the size 30 by 30 missing.

Mask Type Bridge-far Bridge-close Time
Method PSNR SSIM PSNR SSIM (s)

Observed 19.95 0.938 20.76 0.945 —
HaLRTC 47.87 0.993 35.20 0.975 4.3
TNN 31.45 0.975 28.06 0.968 19.0
DCTNN 47.65 0.994 34.92 0.979 17.6
FTNN 24.11 0.954 22.68 0.955 57.9
DP3LRTC 48.34 0.994 36.70 0.982 47.2
OPN 45.11 0.990 34.24 0.971 8.7
Deepfillv2 47.29 0.987 37.54 0.981 3.4
DAP-LRTC 51.89 0.995 37.93 0.983 83.6

Table 2: Quantitative results by different methods on videos with a
random block loss of the size 30 by 30. The best and the second
best values are respectively highlighted by red and blue colors.

structural missing. Deepfillv2 and CRUNet are respectively
employed for these two cases. Tab.2 exhibits the quantitative
metrics and the running time on the videos Bridge-close and
Bridge-far for structural missing. It can be observed that our
method gets the highest metrics. The remainder of the exper-
iments on video data is also given in the supplementary ma-
terial. The visual results on the video Bridge-close are shown
in Fig.2. We can see that our method and Deepfillv2 preserve
the structure of the bridge while other methods failed. We
further plot one temporal vector of the missing area in Fig.3.
From Fig.3, it can be seen that the temporal vector of our
result is the closest to the original data. This shows the ef-
fectiveness brought by the TNN regularizer and validates that
the TNN and the CNN inpainter are complementary to each
other. Please see Supplementary Material for more results on
videos.

4.3 MSI
In this part, we select 4 MSIs13 of the size 512 × 512 ×
31. The observation is obtained via random sampling with
the sampling rates (SRs) 0.03 and 0.05, respectively. We
use CRUNet in our method for this random missing case.
In Tab.3, we list quantitative metrics of results by different
methods on MSI Thread spool with different SRs. We can see
that the performance of FTNN, DP3LRTC, and CRUNet are

13http://www.cs.columbia.edu/CAVE/databases/multispectral/.

1 25 50
# Frames

0.44

TNN FTNN DP3LRTC OPN
Deepfillv2 DAP-LRTC GT

0.3

Figure 3: The temporal vectors in the missing area of recovered
results on the video Bridge-close by different methods.

good as they occasionally achieve the second best. Although
the inpainter is not trained for MSIs, our method obtains the
best values for different metrics and sampling rates, showing
remarkable generalization ability. The pseudo-color images
(composed of three bands of the MSI) of the reconstructed
results by different methods are displayed in Fig.4. We can
see that OPN, which is trained for videos could not handle
the MSI. Our method, DP3LRTC, and CRUnet obtain good
results while we can see over-smoothness in the result by
DP3LRTC and the color distortion in the result by CRUnet.
More experimental results are in Supplementary Material.

4.4 Parameter Analysis and Convergence
There are four parameters, i.e., λ, β1, β2, and β3, in our
method. To test the effects from different values of them,
we conduct experiments on the MRI14 data with the random
sampling rate of 10%. When testing one parameter, the other
three are fixed as default values. We illustrate the PSNR and
SSIM values with respect to different values of those param-
eters in Fig. 5. From Fig. 5, we can see that the performance
of our method is more sensitive to λ and β3.

14Available at https://brainweb.bic.mni.mcgill.ca/brainweb.
Please refer to Supplementary Material for more results on MRI
data.
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Observed HaLRTC TNN DCTNN FTNN

DP3LRTC OPN CRUnet DAP-LRTC GT

Figure 4: Pseudo color images (composed of the 25-th, 15-th, and the 1st bands) of recovered results by different methods on the MSI
Thread spools with SR= 0.03.

SR 3% 5% Time
Method PSNR SSIM SAM PSNR SSIM SAM (s)

Observed 16.55 0.273 — 16.64 0.291 — —
HaLRTC 25.30 0.835 11.543 27.98 0.895 8.798 135.1
TNN 21.79 0.680 34.656 25.60 0.798 25.316 64.4
DCTNN 26.67 0.770 19.996 31.28 0.895 12.966 41.5
FTNN 31.20 0.951 6.264 34.38 0.977 4.707 582.7
DP3LRTC 32.64 0.912 8.408 35.88 0.968 5.479 697.8
OPN 11.64 0.205 45.503 12.32 0.223 44.527 3.7
CRUnet 28.91 0.925 8.060 35.43 0.975 4.497 4.0
DAP-LRTC 33.52 0.963 5.506 36.17 0.978 4.410 208.8

Table 3: Quantitative results by different methods on the MSI
Thread spools with different sample rates. The best and the second

best values are respectively highlighted by red and blue colors.

10-3 100 103
27.9

28

28.1

28.2

28.3

0.874

0.88

0.886

10-3 100 103

10-3 100 103 10-3 100 103

28.19

28.21

28.23

28.25

0.8828

0.8836

0.8844

26.5

27.5

28.5

0.79

0.81

0.85

0.89

25

26.75

28.5

0.78

0.82

0.86

0.9

Figure 5: The PSNR and SSIM values of results by our method
with different β1, β2, β3, and λ on the MRI data (SR = 10%).

Also on the MRI data with random sampling rate 10%, we
report the relative change of each variable with respect to it-
eration numbers in Fig. 6. Meanwhile, the result on the color

1 6 11

10-3

10-2

10-4

10-2

2 10 18

Figure 6: The relative changes of the variables. Left: MRI data with
SR=10%. Right: color image “baboon” with structural missing.

image “baboon” with structural missing (first row of Fig. 1)
is also plotted. We plug in the CRUnet for the MRI data
with random missing and Deepfillv2 for the color image with
structural missing. We can see the empirical convergence of
our method for different settings.

5 Conclusion
We propose a novel degradation accordant PnP LRTC ap-
proach for multidimensional images. In our model, the TNN
is utilized to depict the global low-rank structure of underly-
ing multidimensional images. An implicit regularizer is for-
mulated and its corresponding subproblem is equivalent to a
series of single image restoration problems. The CNN pre-
trained for image inpainting is plugged in as the solution. It
is consistent with the original degradation process and faith-
fully expresses the image prior learned from a large num-
ber of training images. An ADMM algorithm is tailored for
our model. Numerical experiments are conducted on vari-
ous types of multidimensional images to compare our method
with state-of-the-art methods, illustrating the excellent per-
formance of our method. Although our method obtains the
best performance and shows remarkable generalization abil-
ity for different types of data, it is still time-consuming. This
would be considered in future work.
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