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Multiscale Feature Tensor Train Rank Minimization
for Multidimensional Image Recovery
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Abstract—The general tensor-based methods can recover
missing values of multidimensional images by exploiting the
low-rankness on the pixel level. However, especially when con-
siderable pixels of an image are missing, the low-rankness is
not reliable on the pixel level, resulting in some details losing
in their results, which hinders the performance of subsequent
image applications (e.g., image recognition and segmentation).
In this article, we suggest a novel multiscale feature (MSF) ten-
sorization by exploiting the MSFs of multidimensional images,
which not only helps to recover the missing values on a
higher level, that is, the feature level but also benefits sub-
sequent image applications. By exploiting the low-rankness of
the resulting MSF tensor constructed by the new tensorization,
we propose the convex and nonconvex MSF tensor train rank
minimization (MSF-TT) to conjointly recover the MSF tensor
and the corresponding original tensor in a unified framework.
We develop the alternating directional method of multipliers
(ADMMs) to solve the convex MSF-TT and the proximal alter-
nating minimization (PAM) to solve the nonconvex MSF-TT.
Moreover, we establish the theoretical guarantee of conver-
gence for the PAM algorithm. Numerical examples of real-world
multidimensional images show that the proposed MSF-TT out-
performs other compared approaches in image recovery and
the recovered MSF tensor can benefit the subsequent image
recognition.

Index Terms—Feature-level tensor completion, multiscale fea-
tures (MSFs), tensor train (TT) rank minimization, tensorization.

Manuscript received 21 October 2020; revised 21 March 2021; accepted
23 August 2021. Date of publication 20 September 2021; date of current
version 18 November 2022. This work was supported in part by the National
Natural Science Foundation of China under Grant 61876203, Grant 61772003,
and Grant 12001446; in part by the Applied Basic Research Project of Sichuan
Province under Grant 21YYJC3042; in part by the Key Project of Applied
Basic Research in Sichuan Province under Grant 2020YJ0216; in part by
the National Key Research and Development Program of China under Grant
2020YFA0714001; in part by the Fundamental Research Funds for the Central
Universities under Grant JBK2102001; and in part by HKRGC GRF under
Grant 12300218, Grant 12300519, Grant 17201020, and Grant 17300021.
This article was recommended by Associate Editor D. Wang. (Corresponding
author: Xi-Le Zhao.)

Hao Zhang, Xi-Le Zhao, and Ting-Zhu Huang are with the School of
Mathematical Sciences/Research Center for Image and Vision Computing,
University of Electronic Science and Technology of China, Chengdu
611731, China (e-mail: aaronzhangfy@163.com; x1zhao122003@163.com;
tingzhuhuang @ 126.com).

Tai-Xiang Jiang is with the FinTech Innovation Center, Financial
Intelligence and Financial Engineering Research Key Laboratory of Sichuan
Province, School of Economic Information Engineering, Southwestern
University of Finance and Economics, Chengdu 611130, China (e-mail:
taixiangjiang @ gmail.com).

Michael K. Ng is with the Department of Mathematics, University of Hong
Kong, Hong Kong (e-mail: mng@maths.hku.hk).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCYB.2021.3108847.

Digital Object Identifier 10.1109/TCYB.2021.3108847

I. INTRODUCTION

ULTIDIMENSIONAL images are generally higher-

order tensors. For instance, a color image is a 3-D
tensor with two indices for spatial variables and one index
for the color channel, and a color video is a 4-D ten-
sor added a temporal variable to the color image. However,
multidimensional images often suffer from missing values in
the acquisition and transmission [1]-[4], which hinders the
subsequent image application, such as image recognition [5];
classification [6], [7]; and segmentation [8], [9]. Thus, recov-
ering multidimensional images is to enhance the quality of
observed images and enable the recovered results to help sub-
sequent image applications [10], [11]. Tensor completion is
the fundamental problem of multidimensional image recovery,
becoming an important research topic [12]-[17].

Exploiting the low-rankness of tensors is effective to recon-
struct the incomplete tensor data, called low-rank tensor
completion (LRTC) [18]-[22]. The LRTC problem can be
mathematically formulated as

n}in rank(X)
s.t. Xo =0q ()

where X' € R X > g the low-rank tensor with j dimensions,
Q is the index of observed elements, Xq is the projection
operator to keep elements in Q of A and make others be
zero, and Ogq is the observed tensor with support Q. Different
from the matrix rank, the tensor rank has no unique definition.
Based on different tensor decomposition schemes, several defi-
nitions of the tensor rank have been developed and considered
in LRTC. The CANDECOMP/PARAFAC (CP) scheme [23]
decomposes the tensor as the sum of the rank-one tensors.
The CP rank [23] is defined as the minimal number of rank-
one tensors. However, determining the CP rank of a given
tensor is generally an NP-hard problem [24]. The Tucker
scheme [25], [26] decomposes the tensor into a core ten-
sor multiplied by matrices along each mode. Liu er al. [18]
designed a convex surrogate of Tucker rank and developed the
corresponding LRTC model as

J
min 3 o [Xao

k=1
s.t. Xo =0gq (2)

where X, € R™*Ilazmd g the mode-k matrization of X' €
R™>*7 by the unfolding operator, ||- ||, is the matrix nuclear
norm, that is, the sum of singular values, and o is the constant
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satisfying o > 0 and Y% _, o = 1. Then, Xu et al. [27]
suggested a nonconvex Tucker rank optimization by applying
the parallel low-rank matrix factorization on each X(,. Their
method, called TMac, is formulated as

min

J
) % [BZi — X

Bz X
st.  Xo = 0q 3)
where || .]HIF is the Frobenius norm, and E; € R™*'* and
Z; € R Uaz™ are Jow-rank matrices with the rank no more

than r;. The computational cost of TMac is lower than that
of (2). However, the matricization of Tucker decomposition
produces unbalanced (i.e., not square) matrices [21], [28].

The tensor singular value decomposition (t-SVD) [29]-[32]
introduces a tensor tubal rank, which well characterizes the
low-rankness of the 3-D tensor. The tubal rank is defined as the
number of nonzero tubes in the f-diagonal tensor [33], which
comes from the t-SVD operator. Specifically, the t-SVD oper-
ator implements the discrete Fourier transform (DFT) along
the third dimension and calculates matrix SVDs of frontal
slices [34]-[36]. Kilmer and Martin [29] noted that the t-SVD
framework can be implemented by an invertible transform,
such as discrete cosine transform (DCT). Lu et al. [37] and
Jiang et al. [38] introduced the DCT and framelet transform
into the t-SVD framework for LRTC, respectively. However,
the tubal rank is generally designed for 3-D data.

In recent years, a new tensor train (TT) decomposition
scheme [39] is developed, which can exploit the redundancy of
the higher-dimensional tensor. The TT-rank of X" € R™>"*"%
can be expressed as

rank,(X) = (rank(X[l]), ce rank(X[/_l])) 4)

where X € R Tim1 n)x[Tg1 M) s the mode-k canonical
matricization of X' € R™**% [21] by the reshaping opera-
tor. Compared with Tucker decomposition, the matricization
of TT decomposition is more balanced (i.e., square) on the
middle mode of the tensor which leads to better results [28].
Based on the mode-k canonical matricization by the reshap-
ing operator, TT-rank is easy to be optimized [21], [40]-[43].
Bengua et al. [21] proposed two surrogates for TT-rank-based
LRTC: one is the convex surrogate for low-TT-rank tensor
completion, which can be formulated as

j—1
min > o] Xpu ],
k=1
s.t. Xo = 0Oqg ()

where || - ||« is the matrix nuclear norm and oy is the con-
stant satisfying o > 0 and Z’k_:ll ar = 1. The second one
is the nonconvex TT-rank minimization via the parallel low-
rank matrix factorization (TMac-TT), which factorizes each
Xk into the product of two smaller matrices, that is

j—1
. (093 2
ey 2 7 1B~ Xialr

S.t. Xa = Oq (6)
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where E; € R Tiz1 %7 and Z, € R Tzt %0 gre 1ow-
rank matrices with the rank no more than r;. Many extensions
of TT-rank-based methods are also developed, such as the
cyclically connected TT decomposition called tensor ring (TR)
decomposition [44]-[46].

A. Tensorizations

For LRTC, tensorizations are usually considered to construct
a higher-order tensor for better results in image recovery [21],
[47], [48]. Ket augmentation (KA) and visual data tensoriza-
tion (VDT) both use structured blocks addressing procedures
to cast an image into a higher-order tensor, which unavoid-
ably lead to artifacts near the boundary of blocks [21], [47].
The multiway delay-embedding tensorization (MDT) uses the
duplicated transform to construct a higher-order tensor on
the pixel level, which enhances the correlation of pixels
and can capture the delay/shift-invariant structure of the ten-
sor [48]-[51]. In summary, these previous tensorizations are
on the pixel level.

B. Motivations and Contributions

These general LRTC-based methods mainly recover images
on the pixel level. However, especially when considerable
pixels of an image are missing, the low-rankness is not reli-
able on the pixel level [52]. Specifically, their results often
miss some details and subsequent image applications are hin-
dered. In the real world, multidimensional images are naturally
with sufficient multiscale features (MSFs) information on each
dimension, such as Gabor features [53]-[55] of face images,
which can be exploited to benefit the image recovery and
subsequent image applications (e.g., image recognition and
segmentation). Recently, the multiscale image analysis has
been successfully applied in image processing [56], [57]. The
power of multiscale image analysis comes from the ability
to take advantage of image features at multiple scales. The
framelet transform, which is a powerful tool for multiscale
image analysis, can capture the image features at multiple
scales (e.g., coarse- and fine-scale features) [56], [57]. These
motivate us to propose a new tensorization by exploiting the
MSFs of multidimensional images based on the framelet trans-
form, which benefits the image recovery and subsequent image
applications, and then suggest a new LRTC framework on the
feature level.

In this article, based on the framelet transform, we sug-
gest a novel MSF tensorization by exploiting the MSFs of
multidimensional images, which not only helps to recover
images on the feature level but also benefits subsequent image
applications. More concretely, by applying the filter hﬁ (the
level parameter [ controls the scale of the feature) along
different modes of X € R™>*" e can obtain the fea-
ture tensor at level /. We can construct the MSF tensor
Aw € Rmxxmxfi-fixL by stacking these feature tensors of
multiple scales (see Fig. 1). In Table I, we summarize the
difference between the KA [21], MDT [49], and the proposed
MSF tensorization. In summary, we can conclude that previous
tensorizations [21], [49] are on the pixel level and our MSF
tensorization is on the feature level.
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Fig. 1. MSF tensorization, where f; and f> are dimensions of the spatial features, f3 is the dimension of the temporal features, and L is the dimension of

the level. The curves show the singular values of matrices by mode-k canonical matricization of the multiscale feature tensor Xyy.

TABLE I

COMPARISON BETWEEN DIFFERENT TENSORIZATION

S OF TENSOR X € R"*""*"" por TT DECOMPOSITION

Low-rankness Number
L. Computational Storage
Tensorization | Pixel | Feature of c c Transform
ost ost
Level | Level Elements
_ Ol 2rg 1 1yr
KA [21] v 0 Iy =n’ O(i~! rn®) (Mamaraara)
+rol1 + rj Ij)
. Ol 2rg_114rq | duplicated
MDT [49] v W Ii=7%n—7+1° | O rer®(n— 7 + 1)%) (Magra—alara | dup
+roli +7;1;) transform
) O H 2ra_1Igr framelet
MSF v 0 I, = n? 3 Oyt rin® £31) (gmsrarfara
+roli +751;) transform

Since TT decomposition is especially suitable for high-
dimensional tensors [21], [28], we consider TT decomposition
for the resulting high-dimensional MSF tensor Xw. The curves
of Fig. 1 also illustrate that the resulting MSF tensor Xw
is numerically low-TT-rank, which is attributed to the redun-
dancy of the MSFs. Thus, by the resulting MSF tensor, we
further propose the new LRTC framework on the feature level
called the MSF TT-rank minimization (MSF-TT) to conjointly
recover the feature tensor and the corresponding original tensor
(image). MSF-TT is formulated as

min rank,(Xw)
X

s.t. Xq =0q @)

where the optimized Xy € R™M>X>xm>xfixxfixL iq the MSF
tensor with 2j + 1 dimensions, f; is the dimension of the fea-
tures extracted from n;, and L is the dimension of the level.
The proposed MSF-TT framework enjoys two advantages.
1) MSF-TT can exploit the MSFs to recover the image for
more information preservation.
2) The produced MSF tensor can be used to benefit subse-
quent image applications.
The contributions of our work are summarized as follows.
1) We suggest a novel MSF tensorization by exploiting
the MSFs of multidimensional images, which not only
helps to recover images on the feature level but also
benefits subsequent image applications. Based on the
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TABLE 11
BASIC DEFINITIONS

Notations Explanation

vy, Y,V scalar, vector, matrix, tensor

Yioovigeij the {41,...,4,...,%;}-th elements of Y
IVIF Frobenius norm: ||| r = \/Z“Zw : ZZJ yi21i2,4.ij
Y]] nuclear norm: the sum of singular values of Y
Yx) mode-k matricization of ) by unfolding operator
Yk mode-k canonical matricization of ) by reshaping operator

Xk mode-k product

MSF tensorization, we propose a new LRTC framework
on the feature level called MSF-TT.

2) We propose the specific convex and nonconvex MSF-
TT model to conjointly recover the feature tensor and
the corresponding original tensor. Then, we develop the
alternating directional method of multipliers (ADMM)
to solve the convex MSF-TT and the proximal alter-
nating minimization (PAM) to solve the nonconvex
MSF-TT. Moreover, we establish the theoretical guaran-
tee of convergence for the PAM algorithm, under mild
assumptions.

This article is arranged as follows. Section II gives notations
and preliminaries for developing the MSF tensorization and
the convex and nonconvex MSF-TT. Section III proposes the
MSF tensorization, the convex and nonconvex MSF-TT mod-
els, and the solving algorithms of models. Section IV reports
experimental examples and gives some discussions. Section V
concludes this article.

II. NOTATIONS AND PRELIMINARIES

In this section, we introduce some notations and prelimi-
naries for developing the MSF tensorization and the convex
and nonconvex MSF-TT.

A. Basic Definitions

In Table II, we give some basic definitions. We denote the
mode-k matricization of ) by the unfolding operator as Y ) =
unfoldi()) of the size ng x [ | d#k Nd and its inverse operator as
Y = fold¢ (Y (x)). The unfolding operator can be implemented
via the following MATLAB command:

Y () = reshape(shiftdim(Y, k — 1), size(})), []). (8)

We denote the mode-k canonical matricization of ) by
the reshaping operator as Y[ = reshape,()) of the size
(]_[l;l=l ng) x (I—[szk 4174) and its inverse operator as Y =
unreshape; (Y[x)). The reshape operator can be implemented
by the following MATLAB command:

J

IT »|- )

d=k+1

k
Y| = reshape| ), l_[ n4,
d=1

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 52, NO. 12, DECEMBER 2022

B. Framelet Transform

Here, we introduce the framelet transform for develop-
ing the MSF tensorization. In image processing, the wavelet
system can be discretely represented by the wavelet transform
matrix W of the size m x n [56]. If the following equivalent
holds, that is:

X = Z (x,y;,)y; VxeR" (10)

yieW

where y; is the ith row of W, then this is a wavelet tight
frame system [56]. The wavelet tight frame system can be
represented by the framelet transform matrix W € R""*" con-
structed from a given filter bank {hlr} with dilations and shifts,
where ris from Oto f—1, /is from 1 to L, and w = (f—1)L+1:
see more details on [56, pp. 2-5]. The W and its transpose W
are also called the decomposition operator and the reconstruc-
tion operator [56]. The framelet transform matrix W satisfies
WTW = I by the unitary extension principle [56].

III. MAIN RESULTS

In this section, we suggest the MSF tensorization, specific
convex and nonconvex MSF-TT, and their solving algorithms.

MSF Tensorization: Based on the framelet transform, we
propose the MSF tensorization by exploiting the MSFs of
multidimensional images. We denote the framelet transform
along mode-k of X € R™* % by W, € RW*>%  We
have that X x; Wy = foldg(W; X)), which extracts the
MSFs of X on the kth dimension. Defining W; € R™/"/*"
and W, € RIwxnmc with k = 1,...,j — 1, we can con-
struct X x1 Wy x; W; € RAMC X=X Then, we
incorporate the first L — 1 coarse scale features and stack
all features to construct the higher-dimensional MSF tensor
Ay e Rmx>mxfi-fixL The procedure can be denoted as
a operator SR. The MSF tensorization can be mathematically
formulated as

Xw = R(X x| Wi x; W) (11)
and the reconstruction of the original tensor is
X =R (Aw) < W] -+ ;W (12)

where M~! is the inverse operator of 9. Notably, the MSF
tensor has 2j 4+ 1 dimensions being higher than the original
tensor. The TT-rank of Xy € R > xmxfi-fixL jg

rank, (Xw) = (rank(Xw[l]), e rank(XW[zj])).

Convex MSF-TT: We study the nuclear norm surrogate for
developing the convex MSF-TT, that is

13)

2
min ;“k 1 Xwix [,
s.t. Xo = 0Oq (14)

where X is the recovered image, Xwyx) is generated by the
mode-k reshaping operator on the feature tensor Xw, Xw =
R(X x1 Wy - x; W)) by (11), || - ||« is the nuclear norm, oy
is the constant satisfying oy > 0 and Zijzl ar =1, Q is the
index of observed elements, Qg is the observed tensor with
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support €2, and X is the projection operator to keep elements
in Q of X and make others be zero.

Nonconvex MSF-TT: We study the parallel matrix factoriza-
tion for developing the nonconvex MSF-TT, that is

2
. o 2
g ; 5 | ExZic — Xwia [
s.t. Xo =0q (15)

where E; € R(Hszl"d)x’k, Z; € R’kx(nfi;kﬂnd), re is the
bound of the rank(E;) and rank(Zy), and || - || is the Frobenius
norm.

To solve the convex and nonconvex MSF-TT, we first
introduce indicator functions [58] of X, E;, and Zj;. For
closed subsets {X : Xo = Og}, {Ex : rank(E;) < r¢}, and
{Zy : rank(Zy) < ri}, we denote indicator functions as §p(X),
Sr(Ey), and Sg(Zy), that is

0. ifXeD={(X:Xq=0g}
Sp(&) = + oo, otherwise
Sr(Ey) = 0, if Ex € R = {Eg : rank(Ey) < ¢}
RIEK) =1 400, otherwise
_ 0, if Zy € R = {Zy : rank(Zy) < ry}
Or (Z) = 400, otherwise. (16)

Then, we reformulate (14) and (15) as the following
unconstrained minimizations, that is:

%
min 3 o[ Xwpe |, +6p(X) a7
k=1
and
03 - X
Ekl,nzlkl,lx 2 > kLk WK ||
+0p(X) + Sr(Bi) + 8k (Zp).  (18)

By minimizing (17) and (18), we have §p(X), Sr(Eg),
and 6r(Zr) to be zero. In (17), if §p(X) is zero, X
belongs to the constrained set D. Therefore, the unconstrained
minimization (17) is equal to the convex MSF-TT (14). In (18),
if 6p(X), 6r(Ey), and Sr(Zy) are zero, X belongs to the con-
strained set D, and E; and Z; belong to the constrained set
R. Thus, the unconstrained minimization (18) is equal to the
nonconvex MSF-TT (15).

A. ADMM for the Convex MSF-TT

Since the minimization (17) is convex, we develop the
ADMM to solve it. We introduce auxiliary variables M
into (17), that is

2j
m/’én Zak”Mk[k] ”* + 8p(X)
k=1
s.t. Xw = M. (19)

13399

Then, the related augmented Lagrangian function can be
formulated as

2
nnn Zak”Mk[k Z@H/\/lk XwllF
k=1
2%
+ D (M — X, Bi) + 8p(X) (20)
k=1

where By is the Lagrangian multiplier and S is the penalty
parameter for the violation of the linear constraints. Since
each variable M is independent, the solving procedure can
be divided into two blocks.

1) Solving {My): For X, |X|% = [ Xpll%. Thus, the
problem of {M;} can be rewritten as the following 2j sub-
problems, that is:

M = arg rf\l/lzl,? k| Mg [,

2
B!

_X[W[k + kK]
Be |,

We solve (21) by the singular value thresholding (SVT)

operator, that is
!
_Baa)) o
I B

2) Solving X: For X, ||X||F = ||X(k)||p By the unitary
extension principle (Wk Wi =1I), we have that

4 B @1)

M
7 (VKK

M = unreshape, (SVT;/; (Xizv[k

X! = arg min &
Emin ) 7

F

I
o
o3
2
=
|

t 2

(X x1 W, Bel s
. w1 B
=arg)r(n€1%2—9% M, ﬂk

XjW/T—X

Xjo)+

x1 W (23)

F

It is a least-square problem. Then, we have
2j —1(pqr+1 4 B T T
Sy AR (M 5) s W W
5
ijzl Bk

Xj Wj)

XT—H —

X = m(xf“ X1 Wy 24)

where Pp is the projection onto D = {X : X = Og}. The

multipliers {5} can be updated as
B =B, + ﬁk(ijl - XQ”). (25)

We summarize the ADMM for the convex MSF-TT in
Algorithm 1.
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Algorithm 1 ADMM for the Convex MSF-TT

Algorithm 2 PAM for the Nonconvex MSF-TT

Input The observed Y, 2, o, Bk, and €.
Output X, Xw.
Initialize X0 = Y, M) = B) = 0,1 =0, and timax.
While not converged and ¢ < t,,4 do
Update M1 via (22).
Update 2+ ang X via (24).
Update B]’jl via (25).
Lett=1r+41.
Check the convergence condition:
1 — XNZ/I X < € or £ > tax.
End while

Computational Complexity: The computing burden for the
convex MSF-TT mainly comes from updates of /\/lffl and
X1 For a j-dimensional tensor X € R™ " *"  the corre-
sponding 2j + 1-dimensional feature tensor Ay € R/
and Wy € R O(min(J*, IF+1=%)[%+1) is the computa-
tional complexity for updating each My, and the update of X
mainly needs the reconstruction of MSF tensorization, that is,
O(W;»n”l). Thus, the computational complexity of the convex
MSE-TT is O(Y7_, min(/¥, IFH1=6) 21 4y,

Convergence Analysis: The optimization (19) is convex and
well structured. All the variables of (19) can be divided into
two independent blocks, including block X and block {M}.
It is clear that (19) fits the ADMM framework [59]. Therefore,
the convergence of Algorithm 1 is theoretically guaranteed.

B. PAM for the Nonconvex MSF-TT

Since the minimization (18) is strongly nonconvex, we
develop the PAM to solve it and establish the theoretical guar-
antee of convergence. We denote (18) as f(E, Z, X'), where E
and Z are block-diagonal matrices formed by E; and Z;. The
sequence {E, Z, X'} can be updated as

g — argEr]flei%{Ml (EIE") =f(E,Z', X') + g”E - Et”i]
t+1 _ . N _ t+1 t
7+ = argzl?énR{Mz(zm) = (B, 2, x)
1Y 2
+ 22—z
XH—I = arg ;(,nég{M?!(X'Xt) =f<Et+1, ZH—I, X)
14 2
+ 2lx - 27} 26)

1) Solving E and Z: We can see that E and Z can be decom-
posed into 2j independent problems. Thus, E and Z can be
updated as

Ej"! = arg min 5 HEka . H |Ek —E|2
t T t t (T -1

= (akXW (7)) + pE}) (i () + 1)

Z*+! = arg min —HE’“Z G H Plz, -z
k ngéR k WIk] || k HF
T —1
= <ak(E,§+1) Ef 4+ pI>
T
X <ak(E2+1) X +,0Z;€>. 27

Input The observed Y, 2, ay, r; and €.
Output X, Xwy.
Initialize X0 = Y, EY, Z2, 1 =0, and tynax.
While not converged and ¢ < t,,4x do
Update E{t! and i via (27).
Update X"+1 and X5 via (29).
Lett=1r+41.
Check the convergence condition:
X! — X1/ I XE < € or ¢ > tmax.
End while

2) Solving X': By the unitary extension principle (Wsz =
I), we have that

X = arg mln Z HEt‘HZH'1 Xw k]H ‘X X

(P

_ . Qg H —1( ( +1 t+l))
= arg min E — |93~ " (unreshape, (E, " Z
& ¥eb ~ 2 e\ B S

x; W ijjT—XHi
+ Sl - (28)
It is a least-square problem. Then
prese (Zk 1"‘kXtteTnlp + PXI)
St p
X = R(AH ) W W)) (29)

where Xt:;:p = Eﬁ_l(unreshapek(E?lZ;{H)) X1 W{ X
WJ-T). We summarize the PAM for the nonconvex MSF-TT
in Algorithm 2.

Computational Complexity: The computing burden for the
nonconvex MSF-TT mainly comes from the updates of Eg, Zy,
and X. For a j-dimensional tensor X € R™ " the corre-
sponding 2j+ 1-dimensional feature tensor Xy € R/ and
W € R""" "the updates of each E; and Z; need O(), and the

computational complexity of (29) is 0(w’ w1, Thus, solving

the nonconvex MSF-TT needs O(>_; % rk121+1 + w/n]+1)

Convergence Analysis: Here, we estabhsh the theoreti-
cal guarantee of convergence for Algorithm 2, under mild
assumptions.

Theorem 1: Assuming that E/, Z', and X' are bounded, the
sequence {E', Z', X'},cn generated by Algorithm 2 converges
to a critical point of (15).

The detailed proof of Theorem 1 can be found in the
Appendix.

IV. EXPERIMENTS

In this section, we conduct comprehensive experiments to
verify the effectiveness of our methods. Color images, mul-
tispectral images (MSIs), color videos, and face data were
included in experiments, of which the gray values were nor-
malized to [0, 255]. The peak signal-to-noise ratio (PSNR) and
the structural similarity index (SSIM) [60] served as the quan-
titative evaluation. Generally, better recovery performances are

Authorized licensed use limited to: Tsinghua University. Downloaded on February 08,2023 at 05:08:48 UTC from IEEE Xplore. Restrictions apply.



ZHANG et al.: MULTISCALE FEATURE TENSOR TRAIN RANK MINIMIZATION FOR MULTIDIMENSIONAL IMAGE RECOVERY

reflected by higher PSNR and SSIM values. We calculate the
mean PSNR (MPSNR) and mean SSIM (MSSIM) by averag-
ing the PSNR values and the SSIM values of all bands for
high-dimensional data. For each band, the evaluation metrics
(PSNR and SSIM) are computed for all pixels by the following
exact equations, that is:

2

max

PSNR = 101ogq —
|z —z7[;

and
QRuzpzs)2ozzs + C2)
(17, + 1z + C1) (07 + 07. + C2)

where Z* is one band of the original image, Z is one band of
the recovered image, N denotes the total number of pixels in
the image, Zn,x is the maximum pixel value of the image, uz
and p; are the mean values of images Z and Z*, oz and o
are the standard variances of Z and Z*, o7+ is the covariance
of Z and Z*, and C; > 0 and C, > 0 are constants.

The current mainstream methods of DCT-TNN [37], MDT-
Tucker [48], KA-TT [21], and TRLRF [44] are employed
for performance comparison with the proposed methods.
DCT-TNN is a tubal rank-based method, which implements
the DCT along the third dimension to calculate t-SVD.
MDT-Tucker uses the duplicated transform to construct a
higher-order tensor and then exploits the low-rankness of the
higher-order tensor by Tucker decomposition. KA-TT casts
an image into a higher-order tensor and then exploits the low-
rankness of the higher-order tensor by TMac-TT. TRLRF is a
TR rank-based method, which uses the low-rank matrix factor-
ization to calculate the low-TR-rank tensor. In experiments, we
denote the convex MSF-TT by MSF-TT1 and the nonconvex
MSF-TT by MSF-TT2 for convenience.

Parameters Setting: Here, we give the parameters setting of
the proposed methods, which involves two parts.

Model Part: The first part is the parameters of the
multidimensional framelet transform, which influences the fea-
ture tensor Xy of the model. The proposed method is a unified
framework, which can flexibly consider different filter banks
to generate the feature tensor for image recovery and dif-
ferent image applications. In this work, we mainly consider
the framelet transform based on four different filter banks:
1) the Haar wavelet (Haar); 2) the piecewise linear B-spline
filter bank (Linear) [57]; 3) the piecewise cubic filter bank
(Cubic) [57]; and 4) the Gabor filter bank [53]. The framelet
transform settings on each dimension of X are the same, and
the level is limited in {1, 2, 3}.

Algorithm Part: The second part is the parameters of
ADMM and PAM. In ADMM, we control the (ax/Br) ranged
in {1073,5 x 1073, 1072}, which governs the solution of the
SVT operator (22). In PAM, we control the rank of initial E°
and Z0 by rank tolerance (rio]) [40], which is defined as

SSIM =

cr[k]
q
& > Ttol (30)
%1
where cr‘gk] is the gth singular value of Xw, g =1,..., 7,

and ry is selected from {0.005, 0.007, 0.009, 0.01}. The con-
vergence criterion of our proposed algorithms is defined by
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TABLE III
QUANTITATIVE EVALUATION OF COMPETING METHODS ON COLOR
IMAGES WITH THE RANDOM MISSING. THE BEST VALUES AND THE
SECOND-BEST VALUES ARE HIGHLIGHTED BY BOLD FONTS AND
UNDERLINES, RESPECTIVELY

Iases SR 0% 20% 30%
& Method PSNR SSIM | PSNR  SSIM | PSNR  SSIM
DCT-TNN 1920 0357 | 23.75 0.663 | 2545 0.760
MDT-Tucker | 25.65 0.789 | 28.22  0.862 | 30.40 0.898
Lena KA-TT 2346 0.637 | 2625 0.765 | 2821 0.830
TRLRF 2464 0.649 | 27.09 0775 | 29.80 0.853
MSFE-TTI 26.09 0.804 | 28.13 0.834 | 30.43 0.896
MSF-TT2 2643 0.812 | 28.92 0.866 | 30.97 0.917
DCT-TNN 1709 0265 | 21.13 04815 | 24.12 0.653
MDT-Tucker | 24.87 0.792 | 26.64 0.852 | 2895 0.891
P ) KA-TT 2157 0585 | 2412 0732 | 29.12 0.864
eppers TRLRF 22,51 0.604 | 25.17 0.753 | 29.10 0.891
MSFE-TTI 2363 0781 | 27.14 0.836 | 29.01 0.893
MSE-TT2 2525 0.804 | 27.79  0.868 | 29.51 0.901
DCT-TNN 1807 0279 | 2036 0443 | 2228 0.588
MDT-Tucker | 21.31 0491 | 2232 0.624 | 2355 0.704
Bab KA-TT 1992 0331 | 21.85 0.542 | 23.62 0.651
aboon TRLRF 2095 0315 | 21.88 0561 | 22.33  0.684
MSE-TTI 2137 0477 | 2274 0.603 | 24.16 0.712
MSF-TT2 2226 0.561 | 2321 0.625 | 2472 0.763
DCT-TNN 1992 0438 [ 23.18 0616 | 25.72 0.744
MDT-Tucker | 22.87 0.671 | 25.86 0.843 | 27.91 0.889
Airpl KA-TT 2137 0.586 | 2405 0.784 | 26.79 0.848
irptane TRLRF 2256 0.594 | 2447 0792 | 2628 0.861
MSFE-TTI 23.15 0.658 | 25.04 0.822 | 27.15 0.879
MSE-TT2 2413 0.693 | 2558 0.834 | 27.64 0.893
DCT-TNN 2087 0412 | 2455 0618 | 2743 0.742
MDT-Tucker | 25.03 0736 | 2641 0.787 | 29.13  0.823
House KA-TT 2466 0618 | 2786  0.741 | 29.54 0.827
TRLRF 2524  0.628 | 2749 0.761 | 29.88 0.803
MSFE-TTI 2608 0.712 | 2839 0.796 | 30.34 0.814
MSE-TT2 27.06 0.768 | 29.78 0.802 | 31.14 0.847
DCT-TNN T80T 0365 | 21.72 0582 | 2423 0.724
MDT-Tucker | 22.33 0.695 | 2424 0792 | 2595 0.838
Barb KA-TT 2254 0540 | 2421 0712 | 2687 0.821
arbara TRLRF 2302 0498 | 2617 0.723 | 28.19 0811
MSE-TTI 2401 0721 | 2624 0.797 | 2842 0.854
MSF-TT2 2508 0.781 | 27.13 0.821 | 29.88 0.875

computing the relative change (RelCha) of the recovered X
between two successive iterations, that is

2 —
1X7F

In whole experiments, we terminate the iteration when RelCha
is smaller than 1074,

In all experiments, the optimal parameters of the proposed
method and competing methods are chosen to attain the
highest PSNR value.

Based on the MATLAB (2017b) programming, all exper-
iments are performed on the Windows 10 system with the
CPU Intel Core i7-8700k 3.70 GHz and 16-GB RAM. All the
methods are run once for all experiments.

RelCha = 31)

A. Color Images

In this section, we test the proposed methods on color image
completion. Color images,1 including Lena, Peppers, Baboon,
Airplane, House, and Barbara, are employed in this experi-
ment. The size of the tested images is 256 x 256 x 3. The color
images completion includes two different cases: 1) random
missing and 2) structural missing.

Random Missing: In the random missing case, we dis-
play the challenging sampling rate (SR) cases are 10%, 20%,
and 30%, respectively, and the missing pixels are randomly
distributed in red, green, and blue channels.

In Table III, we report the quantitative comparisons of com-
peting methods on color images with different SRs. In most

1 Available at http://sipi.usc.edu/database/database.php.
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TRLRF MSF-TT1 MSF-TT2 Original

Fig. 2. Recovered images by different methods on color images with SR = 10%. From left to right: the observed images, the recovered images by DCT-TNN,
MDT-Tucker, KA-TT, TRLRF, MSF-TT1, and MSF-TT2, and the original images. From top to bottom: Lena, Baboon, and Airplane.
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33.12/.973
KA-TT

36.03/.979
MDT-Tucker

30.45/.954
DCT-TNN
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Fig. 3.

35.03/.964 36.22/.975 36.60/.976

B

35.70/.983
MSF-TT2

35.14/.982
MSE-TTI

33.72/.968

TRLRF Original

Recovered images by different methods on color images with different structure missing. From left to right: the observed images, the recovered

images by DCT-TNN, MDT-Tucker, KA-TT, TRLRF, MSF-TT1, and MSF-TT2, and the original images. From top to bottom: Barbara, House, and Peppers.

PSNR (left) and SSIM (right) are displayed below the image.

cases, our methods significantly outperform other competing
methods for the evaluation metrics, for example, on Barbara
with 10% SR, MSF-TT1 and MSF-TT2 gain around 1.0 and
2.0 dB beyond the third-best method TRLRF in terms of
PSNR. Moreover, we can observe that the performance of
MSEF-TT?2 is better than that of MSF-TT1, because the non-
convex MSF-TT is more optimal to characterize the MSFs
tensor.

Fig. 2 shows the recovered images by different methods
on Lena, Baboon, and Airplane with SR = 10%. We can
observe that our methods recover the main structures and pre-
serve abundant details well. From the zoomed-in area, we
can clearly see that the results of other competing methods

lose some details. Notably, there exist apparent block artifacts
in the results of KA-TT. The reason is that KA destroys the
spatial structure of images. As a comparison, MSF-TT1 and
MSE-TT2 both preserve the details. The visual performances
of MSF-TT1 and MSF-TT2 are close.

Structural Missing: We test three color images with dif-
ferent structural missing. Specifically, Barbara, House, and
Peppers are destroyed by intersecting slices, texts, and random
curves, respectively. Fig. 3 shows the visual and quantitative
performance by different methods in the structural missing
case. In quantitative performance, our methods rank first and
second place in terms of the PSNR and SSIM in most cases. In
visual quality, MDT-Tucker achieves good visual performance,
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Fig. 4. PSNR values of the recovered images by different methods on MSIs with SR = 10%.

since MDT-Tucker uses duplicated transform to capture some
delay/shift-invariant structure of images for missing slices. On
recovered Barbara, we can see the apparent shadow in the
missing area in compared methods. However, our methods
produce abundant details in the missing area.

B. MSIs

In this section, we test the proposed methods on MSIs,
which have abundant MSFs information in the spectrum. This
experiment employs the CAVE MSI data,> which contains
32 images. The spatial resolution is resized to 256 x 256.
The SR cases are shown as 10%, 20%, and 30%, respec-
tively. For efficiency, we consider the filter bank as Linear and
level = 2.

Fig. 4 shows the PSNR values of the recovered 32 images
by different methods on MSIs with SR = 10%. We can see
that MSF-TT2 (red column) achieves the highest values in
most cases. In Table IV, we report the quantitative compar-
isons of competing methods on three MSIs with different SRs.
We clearly see that the quantitative performance of our meth-
ods is significantly superior to that of the compared methods.
For instance, on beads with SR = 10%, the proposed meth-
ods achieve around 0.9 in SSIM, which enhances around 0.1
beyond MDT-Tucker, KA-TT, and TRLRF. Fig. 5 displays the
spectrum curves of the recovery results by different meth-
ods, which illustrates that the proposed methods outperform
compared methods in spectral fidelity.

To evaluate the visual quality, we select the 1st, 2nd, and
31st bands to construct the pseudocolor images in Fig. 6. We
can observe that DCT-TNN, MDT-Tucker, KA-TT, TRLREF,

2 Available at http://www.cs.columbia.edu/CAVE/databases/multispectral.

TABLE IV
QUANTITATIVE EVALUATION OF COMPETING METHODS ON MSIs WITH
DIFFERENT SRS. THE BEST VALUES AND THE SECOND-BEST VALUES
ARE HIGHLIGHTED BY BOLD FONTS AND UNDERLINES, RESPECTIVELY

Images SR 10% 20% 30%
Method MPSNR MSSIM | MPSNR MSSIM | MPSNR MSSIM
DCT-TNN 2341  0.659 | 2872 0.855 | 3293 0.933
MDT-Tucker 2746  0.839 | 3255 0921 3423 0948
Beads KA-TT 27.82  0.791 3271 0902 | 34.60 0936
TRLRF 2831 0.798 | 32.80 0.909 | 3427 0925
MSF-TT1 30.05 0916 | 34.57 0965 | 37.02  0.966
MSF-TT2 3130 0922 | 3591 0966 | 37.62 0.978
DCT-TNN 3225 0902 | 37.71 0965 | 41.65 0.984
MDT-Tucker 31.81 0923 | 37.55 0976 | 39.65 0.978
Feathers KA-TT 36.77 0946 | 3952 0966 | 41.08 0.975
TRLRF 30.19  0.792 | 3644 0972 | 41.64 0.991
MSF-TT1 36.09 0955 | 4041 0980 | 45.11  0.992
MSF-TT2 37.05 0967 | 4234 0982 | 45.52  0.992
DCT-TNN 31.82 0906 | 3744 0970 | 4224 0979
MDT-Tucker 3279 0944 | 3755 0975 | 40.72  0.987
Flowers KA-TT 3373 0912 | 3944 0976 | 41.24 0.983
TRLRF 31.68  0.871 3693 0975 | 4054 0979
MSF-TT1 3511 0958 | 39.82 0983 | 43.99 0.993
MSF-TT2 3527 0953 | 40.57 0.987 | 44.13 0.994

and the proposed methods obtain similar visual performance
and all recover the main structures of images. Zooming-in the
results, we see that DCT-TNN and TRLRF cause details losing
in some cases, and there exist block artifacts in some images
by KA-TT. It is clear that MSF-TT1 and MSF-TT2 both
bring significant recovery performance and precisely protect
the details, which demonstrates that the proposed methods
fully exploit the MSFs information.

C. Color Videos

We test the proposed methods on color videos to evalu-
ate the recovery performance on higher-dimensional tensors.
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Fig. 5. Spectrum curves of the recovery results by different methods at spatial location (200, 200). From left to right: the results from DCT-TNN, MDT-Tucker,
KA-TT, TRLRF, MSF-TT1, MSF-TT2, and the original images. From top to bottom: Beads, Feathers, and Flowers with SR = 10%.

Observed DCT-TNN MDT-Tucker

Fig. 6.

MSF-TT1 MSE-TT2

Original

Recovered images by different methods on MSIs with SR = 10%. From left to right: the observed images, the recovered images by DCT-TNN,

MDT-Tucker, KA-TT, TRLRF, MSF-TT1, and MSF-TT2, and the original images. From top to bottom: Beads, Feathers, and Flowers.

Three color videos,? including Football, Susie, and Bus, are
employed in this experiment. The color videos are higher-
dimensional tensors of the size 256 x 256 x 3 x 20, where the
fourth dimension is the temporal variable. We display chal-
lenging SR cases as 10%, 20%, and 30%, respectively. Since
t-SVD is designed for the 3-D tensor, the temporal mode needs
to be merged with the color channel to form a third-order
tensor in DCT-TNN. For efficiency, we set the filter bank as
Linear and level = 2.

In Table V, we report the quantitative comparisons of com-
peting methods on color videos with different SRs. It is clear
that the proposed methods achieve higher values in quantita-
tive metrics. On Susie with SR = 10%, the values of MSSIM
are beyond 0.9 by the proposed methods, which means that
the recovered video is close to the original one. Fig. 7 shows
the PSNR values of each frame of the tested videos. We can

3 Available at http://trace.eas.asu.edu/yuv/.

see that MSF-TT1 (green lines) and MSF-TT2 (red lines) are
undoubtedly superior to compared methods.

To evaluate the visual performance, we show one frame of
each video in Fig. 8. The results of our methods are supe-
rior to those of the other compared methods. For instance,
on Football, MSF-TT?2 preserves the abundant details from
the zoomed-in areas. On Susie, the recovered images by our
methods are closer to the original images, which agrees with
the quantitative performance in Table V. On Bus, MSF-TT1
and MST-TT2 are close in visual performance and both out-
perform other methods’ results. These demonstrate that the
proposed methods can be applicable for higher-dimensional
tensor data.

D. Discussion

In this section, we further discuss some important aspects
of the proposed methods.
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Fig. 8. Recovered images by different methods on color videos with SR = 10%. From left to right: the observed images, the recovered images by DCT-TNN,
MDT-Tucker KA-TT, TRLRF, MSF-TT1, and MSF-TT2, and the original images. From top to bottom: Football, Susie, and Bus.

The Subsequent Image Recognition: Here, we demonstrate
that the feature tensor not only helps to recover the missing
values but also benefits subsequent image applications. We
mainly test the performance of the proposed methods on image
recognition. In this experiment, we employ a plain classifier
for image recognition, that is, nearest neighbor [61], which can
be also replaced by any other classifiers, such as the support
vector machine (SVM) or the deep neural network (DNN). The
Yale B face data* is employed with the size 48 x 42 x 64 x 38,
where the 3rd dimension has 64 images of one person and the
4th dimension contains 38 different individuals.

Gabor filters use the complex-valued system via local
Fourier analysis [53], [55], which has better orientation selec-
tivity compared with the real-valued system (e.g., piecewise
linear framelet [62]). Since features of faces (e.g., eyebrows
and lips) have natural orientations, Gabor filters can more
exactly characterize features of faces. Thus, we set the filter

4Available at http://cve.yale.edu/projects/yalefacesB/yalefacesB.html.

bank as Gabor filters of our methods for face image recov-
ery and use the recovered multiscale Gabor feature tensor to
the face image recognition. For the other competing meth-
ods, we first extract the Gabor features from their recovered
face images and then test by the nearest neighbor. SRs are
set as 10%, 20%, and 30%, respectively. In image recogni-
tion, we evaluate the performance by the recognition accuracy
[0%, 100%]. We set the parameter rank (R) as 30 and 60 in the
recognition system, which is the dimension of the subspace of
the nearest neighbor algorithm.

In Table VI, we report the quantitative evaluation of compet-
ing methods on face data with different SRs. In most cases, our
methods outperform compared methods in numerical value. In
Table VII, we report the recognition accuracy of competing
methods on the recovered Yale B data with different SRs. It is
clear that our methods rank first and second place in terms of
accuracy. Notably, with SR = 10%, MSF-TT2 achieves around
3% gain in accuracy beyond the third best-performed method
KA-TT. Fig. 9 shows one recovered face by different meth-
ods with SR = 10%. Our methods significantly outperform
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Fig. 9. Recovered images by different methods on face data with SR = 10%. From left to right: the observed images, the recovered images by DCT-TNN,
MDT-Tucker, KA-TT, TRLRF, MSF-TT1, and MSF-TT2, and the original images.

TABLE V
QUANTITATIVE EVALUATION OF COMPETING METHODS ON COLOR
VIDEOS WITH DIFFERENT SRS. THE BEST VALUES AND THE
SECOND-BEST VALUES ARE HIGHLIGHTED BY BOLD FONTS
AND UNDERLINES, RESPECTIVELY

Videos SR 10% 20% 30%

Method MPSNR MSSIM|MPSNR MSSIM|MPSNR MSSIM
DCT-TNN 2239 0472 | 2439 0.624 | 2651 0.734
MDT-Tucker 2490 0.601 | 27.13 0.768 | 29.50 0.831

Football KA-TT 2296 0521 | 26.05 0.725 | 27.33  0.807
TRLRF 23.06 0.536 | 2520 0.713 | 27.10 0.794

MSF-TT1 2578 0.655 | 28.25 0.802 | 31.24 0.902

MSF-TT2 26.38 0.703 | 29.73 0.861 | 32.88 0.930

DCT-TNN 3230 0.871 | 33.02 0.881 | 3558 0.924
MDT-Tucker 3221  0.895 | 37.21 0943 | 3792 0.955

Susie KA-TT 31.50 0.832 | 33.64 0.924 | 36.80 0.956
TRLRF 29.16  0.786 | 32.88 0917 | 3599 0.952

MSEF-TT1 3474 0924 | 35.63 0.938 | 38.67 0.964

MSF-TT2 3549 0935 | 37.32 0953 | 39.87 0971

DCT-TNN 2240 0557 | 23.12 0.612 | 2546 0.716
MDT-Tucker 2277 0.643 | 2397 0.722 | 2599 0.792

Bus KA-TT 22.63 0497 | 26.12 0.709 | 27.18 0.814
TRLRF 21.09 0.564 | 2646 0.679 | 27.09 0.709

MSFE-TT1 23.01 0.668 | 26.34 0.787 | 27.97 0.865

MSF-TT2 2512 0.748 | 27.64 0.804 | 29.07 0.915

TABLE VI

QUANTITATIVE EVALUATION OF COMPETING METHODS ON FACE DATA
WITH DIFFERENT SRS. THE BEST VALUES AND THE SECOND-BEST
VALUES ARE HIGHLIGHTED BY BOLD FONTS AND UNDERLINES,

RESPECTIVELY
Face Data SR 10% 20% 30%

Method MPSNR MSSIM |MPSNR MSSIM |MPSNR MSSIM
DCT-TNN 19.57 0501 | 21.82 0.624 | 23.81 0.713

MDT-Tucker 19.25 0497 | 22.89 0.612 | 2327 0.698

Yale B KA-TT 2229 0.546 | 2532  0.658 | 27.86 0.681
TRLRF 21.83 0525 | 2236 0.630 | 2639 0.674
MSF-TT1(Gabor) | 22.89  0.671 | 25.64 0.784 | 27.50 0.831
MSF-TT2(Gabor) | 23.62 0.620 | 26.60 0.806 | 27.93 0.868

TABLE VII

RECOGNITION ACCURACY OF COMPETING METHODS ON THE
RECOVERED YALE B DATA WITH DIFFERENT SRS. THE BEST VALUES
AND THE SECOND-BEST VALUES ARE HIGHLIGHTED BY BOLD FONTS

AND UNDERLINES, RESPECTIVELY

Data SR 10% 20% 30%

Method R=30 R=60 R=30 R=60 R=30 R=60
DCT-TNN 55.732% 66.283%(60.512% 71.628% |62.788% 73.432%
MDT-Tucker [54.231% 66.236% |62.241% 71.021%|61.251% 72.151%
Yale B KA-TT 57.957% 66.036% |63.510% 74.095% |64.135% 75.480%
TRLRF 56.152% 65.296% |59.752% 69.613% | 60.896% 71.382%
MSF-TT1(Gabor) [60.379% 68.298% |63.741% 74.145%|64.186% 75.658%
MSF-TT2(Gabor) [61.083% 69.367 % (63.792% 74.298 % |64.267 % 75.754%

the other competing methods in the face features protection,
which agrees with the recognition performance in Table VII.
These show that our methods not only recover images but also
effectively help the subsequent image application.

Influence of Filter Bank and Level: We discuss the influence
of filter bank and level settings, which determine the feature
tensor. We set the filter bank as Haar, Linear, and Cubic, and
level as 1, 2 , and 3. Color image Baboon with SR = 10%
is selected for this discussion, and the size of the image is
ranged in {64 x 64 x 3, 128 x 128 x 3,256 x 256 x 3}.

Table VIII reports the PSNR, SSIM, and running time (in
seconds) on Baboon with different sizes. In most cases, the
performance of MSF-TT1 and MST-TT2 is about the same,
and the results by Linear and Cubic rank first and second place
in terms of the PSNR and SSIM. More levels do not mean
better quantitative performance. We can see that the filter bank
and level setting also affect the running time, for example,
more levels mean more running time in general.

As the size increases, MSF-TT2 has a significant advantage
on speed, because the computational complexity of MSF-TT2
is lower than that of MSF-TT1. For the tradeoff between effec-
tiveness and efficiency, we suggest the filter bank as Linear
and level as 1 or 2.

Influence of the Mode Order: Since the tensor mode order
has an effect on the TT-rank minimization, we discuss the
influence of mode order of the MSF tensor. In the above
numerical experiments, we mainly consider the mode order
(i, ...,n,fi,....fj, L) of Xw, which is a natural mode
order intuitively from Fig. 1. Now, we mainly consider
two classes of mode order: 1) the grouped similar mode
(1, ...,n,fi, ..., Ji, L) and 2) the separated similar mode
(1, fis .- ., nj, fk, L). Beads is employed with SR = 10%. We
set the filter bank as Linear and level = 2. The quantita-
tive evaluation of the MSF-TT2 is reported in Table IX for
the two classes of mode order. We can see that results of
the grouped similar mode generally outperform results of the
separated similar mode in most cases.

The Comparison Between Different Tensorizations: The ten-
sorization is usually considered for TT decomposition to
construct a higher-order tensor for better results in image
recovery [21], [49]. The previous tensorizations are on the
pixel level [21], [49], and the proposed tensorization is on the
feature level, which can exploit the MSFs of multidimensional
images to benefit the image recovery and subsequent image
applications. Since TT decomposition is especially suitable for
high-order tensors for the computational and storage cost, we
consider TT decomposition for the resulting high-order MSF
tensor Xw € R xmixfi-fixL Here, we compare different
tensorizations for TT decomposition (TMac-TT). The com-
parisons (e.g., the computational cost and storage cost) of
different tensorizations are summarized in Table I. We can
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TABLE VIII
QUANTITATIVE EVALUATION OF COMPETING METHODS ON Baboon WITH DIFFERENT SIZES. THE BEST VALUES AND
THE SECOND-BEST VALUES ARE HIGHLIGHTED BY BOLD FONTS AND UNDERLINES, RESPECTIVELY

Framelet Level Size 64 X 64 X 3 128 x 128 x 3 256 X 256 X 3
Method PSNR SSIM Time PSNR SSIM Time PSNR SSIM Time
1 MSE-TT1 18.55 0.516 47.44 19.78 0.488 137.29 19.69 0.384 727.69
MSF-TT2 19.37 0.491 27.15 21.26 0.502 76.56 20.93 0.427 379.19
Haar 2 MSF-TT1 18.07 0.504 193.63 19.79 0.454 208.09 19.94 0.415 1443.17
MSF-TT2 18.65 0.524 58.78 20.11 0.471 110.79 21.07 0.441 584.12
3 MSF-TT1 16.86 0.402 133.91 18.95 0.406 447.54 19.41 0.384 1754.34
MSFE-TT2 17.68 17.68 74.72 19.44 0.434 230.97 20.33 0.391 662.57
1 MSFE-TT1 18.71 0.542 139.12 22.29 0.537 237.17 21.37 0.477 1527.58
MSF-TT2 19.68 0.547 71.17 22.62 0.569 113.57 21.84 0.518 863.18
Linear 2 MSF-TT1 19.07 0.538 286.11 18.95 0.471 597.32 21.08 0.512 2139.51
MSF-TT2 19.62 0.548 103.91 21.22 0.517 345.12 22.26 0.561 1176.48
3 MSF-TT]1 17.50 0.403 450.31 19.84 0.327 442.35 20.58 0.478 1936.21
MSF-TT2 17.65 0.412 211.47 20.13 0.409 237.26 21.96 0.516 1343.15
1 MSFE-TT1 19.42 0.532 688.79 21.23 0.501 1538.12 20.95 0.513 3872.65
MSFE-TT2 20.97 0.587 406.97 22.50 0.572 873.22 22.04 0.557 2187.42
Cubic 2 MSFE-TT1 18.38 0.515 1340.24 19.95 0.473 1921.71 20.62 0.521 3351.57
MSE-TT2 19.43 0.484 593.99 21.13 0.521 1012.32 22.05 0.570 2607.17
3 MSF-TT]1 17.52 0.395 1294.05 19.65 0.436 1974.32 19.79 0.486 4532.87
MSF-TT2 19.08 0.563 449.06 20.16 0.483 1245.14 21.86 0.532 2843.27
TABLE IX Baboon with SR = 10% Beads with SR = 10%
QUANTITATIVE EVALUATION OF MSF-TT2 ON Beads WITH DIFFERENT i ]
ORDERS. THE BEST VALUES ARE HIGHLIGHTED BY BOLD FONTS
0.8 0.8
G d Beads Separated Beads 206 £06
Toupe MPSNR MSSIM cparate MPSNR MSSIM EM EN
Grnz.ms fif2.05,D| 2521 0835 |1, 1,na,f2.m3,75.0)| 2353 0.686 : :
(n1,m2,n3,f1,f3,f2,0)| 24.68 0.834 |(n1,f1,n2,f3,n3,f2,0)| 22.04 0.700 02 02
(n1,m2,n3,f2,f1,f3,L)| 2442 0827 |(n1,f2,n2,f1,n3,f3,0)| 24.53 0813
(n1,m2,n3,f2,f3,f1,L)| 2496 0830 |(n1,f2,n2,f3,n3,f1,0)| 23.50 0.774 % 50 100 150 200 250 % 20 40 60 80 100
(n1,m2,n3,f3,f1,f2,L)| 2484 0.829 |(n1,f3,n2,f1,n3,f2,0)| 2438  0.792 Tteration Tteration
(n1,m2,m3,f3,f2,f1,L)| 2426 0807 |(n1,f3,n2,f2,n3,f1,0)] 2379  0.780
(@) (b)
TABLE X _ , o
QUANTITATIVE EVALUATION OF KA-TT AND MSF-TT Fig. 10. RelCha values curves with respect to iterations for Baboon and

ON Lena, Beads, AND Football

Method Lena Beads Football

PSNR Time Iteration |PSNR Time Iteration |PSNR Time Iteration
KA-TT | 2346 17.69 1001 |27.82 88.65 819 22,63 14729 503
MSF-TT | 26.43 345.12 310 31.30 473.61 101 25.12 970.61 101

see that MSF increases computational cost and storage cost
for TT decomposition compared with KA. Here, we compare
the results of KA-TT and MSF-TT. Lena, Beads, and Football
with SR = 10% are selected for this discussion. However, we
can see that although MSF-TT needs high calculation time, the
recovered results by MSF-TT have significant improvements
compared with those of KA from Table X.

Convergence Analysis: Here, we further analyze the conver-
gence of the solving algorithm. Fig. 10 displays RelCha (31)
values curves of MSF-TT2 for Baboon and Beads with SR =
10%. We can see that the RelCha values quickly converge to
zero, which numerically validates Theorem 1.

V. CONCLUSION

In this article, to improve the image recovery and help
the subsequent image application, we suggested a novel MSF
tensorization by extracting the MSFs of multidimensional
images. The resulting MSF tensor is high dimensions and
has the low-rank structure, which can be better exploited
by the TT decomposition. Thus, by the resulting MSF ten-
sor, we proposed convex MSF-TT and nonconvex MSF-TT,

Beads with SR = 10%.

which can conjointly recover images on the feature level and
obtain the feature tensor for subsequent image applications.
Then, we developed the ADMM and PAM to solve corre-
sponding models. Moreover, we established the theoretical
guarantee of convergence for the PAM algorithm. To ver-
ify the effectiveness of the proposed methods, we conducted
comprehensive real-data experiments on image recovery and
recognition. Examples of real-world imaging data shown that
the proposed methods outperformed many compared methods
on recovery performance and the recovered feature tensor can
help image recognition. In summary, the proposed methods
not only improved the recovery quality but also benefited the
subsequent image application.

APPENDIX

For the proof of Theorem 1, the following conditions are
required [63].

1) f(E,Z, X) is a proper lower semicontinuous function.

2) f(E,Z, X) has the K-L. property at each {E’, Z/, X'};cN.

3) The bounded E', Z!, and X' satisfy the sufficient

decrease condition and relative error condition.

Proof: The three conditions are dividedly proven as follows.

First, we show that f(E, Z, X) is a proper lower semicontin-
uous function. It is easy to verify that the sum of the Frobenius
norm is a C! function with locally Lipschitz continuous
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gradient. dg and &p are proper and lower semicontinuous.
Thus, f(E, Z, X) is a proper lower semicontinuous function.

Second, we show that f(E, Z, X’) has the K-L property at
each {E/, Z', X'};cn by proving that f(E,Z, X) is a semial-
gebraic function. Since the low-rank matrices set is semial-
gebraic, the subsets R is semialgebraic. Indicator functions
of semialgebraic sets are semialgebraic functions [64]. §p
and the Frobenius norm are semialgebraic functions. Thus,
f(E,Z, X) is a semialgebraic function. Since the semialge-
braic real-valued function is the K-£ function [64], f(E, Z, X)
has the K-E property at each {E', Z', X'},cN.

Third, we show that the bounded E’, Z, and X" satisfy the
sufficient decrease condition and relative error condition.

Lemma 1 (Sufficient Decrease): Assume that f(E, Z, X)) is
a C! function with locally Lipschitz continuous gradient and
o > 0. Let {E', Z', X'}, is generated by Algorithm 2. Then

2
fErtz )+ 2 - | < rE 2 a0

f(EH_l, ZH_I, Xt) + g‘ Zl+l _ Zt j: ff(EH_l,Zt, Xt)
f(Et+l, Z[+1, Xt-‘rl) + gHXI-‘rl _ Xl 12:

(32)

|

Proof of Lemma 1: When E'T!, Z'+!and X"*! are optimal

solutions of M, M», and M3, Sg(E) = 0, 6gr(Z) = 0, and

8p(X) = 0. By the definition of M, M, and M3, we clearly
have that

Sf(Et‘l*l’Z{‘l*l, Xt).

t+1 gt ot BH +1 _ t2
f(E ,Z,X)+2E E|

= My (B IE') < My (E'E) = £(E', Z, X')
f(El+1’ Zl‘+1’ Xt) + £Hzl+l _ ZtHZ
2 F
= Mo(212') < Ma(212') = £ (B, 2, ')

f(El+l,Zt+1’Xt+]> + gHXt+] _ 2

F
=M3(XI+I|XZ> §M3(Xt|Xt)

:f(Et+1 Zt+] Xt)

The proof of the sufficient decrease condition is completed.

Lemma 2 (Relative Error): Let {E', Z!, X"};cn is bounded
and generated by Algorithm 2, VQ is Lipschitz continuous,
and p > 0. Then, there exist Vf“, Vé“, and V§+1, which
satisfy

(33)

2

H Vi"rl + VEQ(EH_I, Zl, Xt) EH—] _ Et

2
=7
F

F

”Véﬂ +VZQ(E’+1,Z’+1,X’) Hi < p2HZz+1 _z i
ol ) <
(34)

where Vi1 € 95r(E), Vit! € 35r(Z), and Vi € 36p(X).
Proof of Lemma 2: Q is Lipschitz continuous on any
bounded set, and E!, Z'*! and X"*! are optimal solutions

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 52, NO. 12, DECEMBER 2022

of My, M, and M3. Thus, there exists p > 0 such that for
each subproblem of E; and Z;

0 € 8p(Ex) — ar(ExZj, — Xy )Z{T + p(Ex — EY)
0 € 8p(Zs) — w BT (BLH Zi — Xiyy ) + 0 (Zi — Z4).
(35)

The multidimensional framelet transform and the Frobenius
norm are linear. Thus

0 € 38p(X) + VOux + p(X — X). (36)
Then, we define that
vir' = en(E; 2 - Xiyy )2
— p(E;jl - E;) c 38R(Ey)
Vé—]i—l _ akEt+1T(E;c+1Z;{+l _ XM}(})
- p(zjjl - Z;) € 38r(Zy)
Vi = —VQ i — ,o(X"H - X’) € 35p(X).  (37)

It can be seen that

2 2
H V{-‘rl + VEH"Q”F < pz HE1+1 _ Et

F
2 2
R

2 2
R R PP

The proof of the relative error condition is completed. Thus,
the bounded E/, Z', and X’ satisfy the sufficient decrease
condition and relative error condition.

In summary, the bounded sequence (E',Z', X"} converges
to a critical point of f(E, Z, X).
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