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Abstract— This article proposes a new denoising method for
hyperspectral images (HSIs) corrupted by mixtures (in a statis-
tical sense) of stripe noise, Gaussian noise, and impulsive noise.
The proposed method has three distinctive features: 1) it exploits
the intrinsic characteristics of HSIs, namely, low-rank and self-
similarity; 2) the observation noise is assumed to be additive
and modeled by a mixture of Gaussian (MoG) densities; 3) the
inference is performed with an expectation maximization (EM)
algorithm, which, in addition to the clean HSI, also estimates
the mixture parameters (posterior probability of each mode and
variances). Comparisons of the proposed method with state-of-
the-art algorithms provide experimental evidence of the effective-
ness of the proposed denoising algorithm. A MATLAB demo of
this work will be available at https://github.com/TaiXiangJiang
for the sake of reproducibility.

Index Terms— Denoising, expectation maximization (EM),
low-rank, mixed noise hyperspectral images (HSIs), mixture of
Gaussians, self-similarity.

I. INTRODUCTION

HYPERSPECTRAL remote sensing images, captured
from sensors over hundreds or thousands of spectral

bands and containing abundant spatial and spectral knowledge,
have been widely used in countless applications (e.g., ter-
rain detection, mineral exploration, pharmaceutical counter-
feiting, vegetation, and environmental monitoring), due to
its preservation of full-band information under a real scene
[1], [2]. However, the hyperspectral images (HSIs) are often
unavoidably corrupted by several types of noises, such as
Gaussian noise, Poissonian noise, quantization noise, impulse
noise, deadlines, and stripes, and these degradations linked
with various mechanisms often compromise the potential of
HSIs in the subsequent processing, e.g., classification, target
detection, and unmixing. Therefore, HSI denoising is an
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essential preprocessing step for improving the performance of
subsequent applications.

Large research efforts have been devoted to HSI denois-
ing/restoration [3]–[32]. Among them, two critical points have
been taken into consideration. One is that of simultaneously
preserving the structure of the clean HSIs and utilizing the
inner correlation while denoising. HSIs are strongly correlated
in the spectral-spatial domain, implying that they are low-
rank, piecewise smooth, and self-similar. Another one is an
appropriate modeling strategy for the noise since that the noise
often exhibits very complex statistical distributions in many
real HSI applications.

The low dimensionality, i.e., the low-rankness, of the clean
HSIs is a global property, which stems from the high correla-
tion (redundance) existing among the hyperspectral vectors.
This property has been exploited by: 1) representing the
spectral vectors in low-dimensional subspaces, FastHyDe [3],
RHyDe [4], global local factorization (GLF) [5], HySure [6],
HyDRoS [7], and NGmeet [8] for example; 2) minimizing the
convex/nonconvex surrogate of the matrix/tensor rank function
like low-rank matrix recovery (LRMR) [9], SpaLr [10], noise-
adjusted iterative low-rank matrix approximation (NAILRMA)
[11], structure tensor total variation-regularized weighted
nuclear norm minimization (STWNNM) [12], low-rank tensor
recovery (LRTR) [14], weighted Schatten p-norm (WSN)-
low-rank matrix approximation (LRMA) [15], framelet based
tensor-singular value decomposition (F-TSVD) [16], and
NonLRMA [17]; 3) matrix/tensor factorization such as mul-
titask sparse nonnegative matrix factorization (MTSNMF)
[18], R-Co nonnegative matrix factorization (NMF) [33], total
variation-regularized low-rank matrix factorization (LRTV)
[19], fast low-rank tensor completion (F-LRTC) [20], NMoG
[21], total variation regularized low-rank tensor decomposition
(LRTDTV) [22], nonlocal tensor-ring decomposition (NLTR)
[23], and double low-rank matrix decomposition (DLRD)
[24]. In the meantime, the widespread piecewise smoothness,
a local property throughout the spatial and spectral domain,
has also been widely exploited, for example, via total-variation
regularizations (see, e.g., [6], [12], [19], [22], [24]–[27], [31]).

Over the past decade, the image self-similarity, a nonlocal
property, underlies the state of the art denoising in single-band
natural images. This form of prior, or regularizer, has been
fully exploited in nonlocal means [34], BM3D [35], non-
locally centralized sparse representation (NCSR) [36], low-
rank regularized collaborative filtering (LRCF) [37], expected
patch Log Likelihood method (EPLL) [38], Gaussian mixture
model (GMM) [39], and weighted nuclear norm minimization
(WNNM) [40]. These ideas have been extended to color
images [41]–[43], ultrasound images [44], volumetric images
[45], videos [46], and to multispectral/HSIs [29]–[32], [47],
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[48]. Meanwhile, the presence of the deep-learning-based
method, with improved modeling capacity, brings in another
category of the current most effective image denoising
methods, from the gray-scale (or color) image denoising
[49]–[54] to the HSI denoising [55]–[57]. As concluded in
[58], the nonlocal methods result in superior noise removal
where the image exhibits strong self-similarity, such on
edges or on regular texture, but yield inferior performance
on pseudorandom textures or singular features, while con-
volutional neural network (CNN)-based methods maintain
the ability to learn and extract complex image features but
yield inferior performance on regular textures with high self-
similarity. Ongoing efforts are made to simultaneously utilize
their advantages [58]–[60].

Zhuang et al. proposed a cascade of methods (FastHyDe [3],
RHyDe [4] and GLF [5]), which tactfully and compactly
exploit HSIs’ low-rankness and self-similarity with very low
computational complexity. These methods, in this research
line, start by identifying the subspace where the spectral
vectors live from the observed HSIs [61], and then formulate
the denoising problem with respect to (w.r.t.) the representation
coefficients in the subspace. Instead of investing efforts in
tailoring regularizers to address the representation coefficients
denoising problem, Zhuang et al. directly use the BM3D
[35] denoiser within the plug-and-play (PnP) prior framework
[62]–[64]. The formulation of the denoising problem w.r.t. the
representation coefficients opens a door for the HSI denoising
to expediently use off-the-shelf denoising algorithms designed
for natural gray level images with good preservation of the
inner structure. At the same time, the alternative Poissonian
noise, becoming the main concern in real HSIs [65]–[67] on
account of the fact that, in the new generation hyperspectral
sensors, each spectral channel receives fewer photons due to
the increase in the number of spectral bands and the decrease
in the spectral bandwidth, is handled by Zhuang et al. via
being converted into approximately additive Gaussian noise
with nearly constant variance using variance-stabilizing trans-
formations [68].

Although FastHyDe [3] and GLF [5] achieved unexception-
able results for the task of either Gaussian or Poissonian noise
removal, they are not robust to the mixed noise (e.g., Gaussian
& stripe noise or Poissonian & impulsive noise). HyDRoS [7]
is robust to the dead pixels after decomposing the noise into
a Gaussian term plus a sparse term and imposing the �1 regu-
larization on the latter term. Many methods (see, e.g., LRMR
[9], NonLRMA [17], LRTV [19], and LRTR [14] assume the
noise is Gaussian & sparse and adopt: 1) the sparsity inducing
�1 or �2,1 norm regularization terms to regularize the sparse
component; 2) the Frobenius norm fidelity term, accounting
for the independent and identically distributed (i.i.d.) Gaussian
noise, to rectify the deviation between the reconstruction
and the observed HSI. As mentioned before, in many real
applications, the noise often exhibits very complex statistical
distributions. This motivates us to consider a more flexible
modeling strategy to tackle such complex noise cases.

A. Contribution

We propose an adaptive hyperspectral image denoising
method (termed AdHyDe) by modeling the complex noise

as an additive term with a MoG densities, which is a
universal approximation to any continuous distribution and
hence capable of modeling a wider range of noise distribu-
tions [69]. To automatically estimate the parameters involved
in different noise distributions, we design an expectation
maximization (EM) algorithm. Following the research line in
[3]–[5], our method takes full advantage of the spectral low
dimension and spatial self-similarity1 of the HSIs.

This work is an extension of the material published in [70].
The new material is the following: 1) AdHyDe is herein
introduced and characterized in more detail; 2) a neural net-
work denoiser, the a fast and flexible denoising convolutional
neural network (FFDNet) [53], is seamlessly embedded within
our algorithm; and 3) exhaustive array of experiments and
comparisons are carried out.

The outline of this article is given as follows. Section II
introduces the main results, consisting of the problem for-
mulation in Section II-A and the proposed EM algorithm in
Section II-B Experimental results including comparisons with
the state of the art are reported in Section III. Finally, we draw
some conclusions in Section IV.

II. MAIN RESULTS

Let Y ∈ R
b×n denote an observed HSI with n spectral pixels

of size b (spectral bands). The noise is assumed to be additive.
Therefore, we may write

Y = X + N (1)

where X and N ∈ R
b×n are, respectively, the clean HSI and

the noise.
Since, with a very good approximation, we are assuming

that the spectral vectors (columns of X) live in a s-dimensional
subspace [1], [3], we may write

Y = EZ + N (2)

where columns of E ∈ R
b×s (with s � b) span the subspace

and Z ∈ R
s×n represents the coefficients for X w.r.t. E.

Matrix E, assumed to be semiunitary (i.e., E�E = Is with
Is indicating the identity matrix of demoension s), spans
an orthogonal subspace. The subspace is estimated with,
for example, the HySime algorithm [61] or singular value
decomposition (SVD) of Y in the case when the noise is
i.i.d. Matrix Z contains the representation coefficients of X
w.r.t. E and the images associated with its rows are termed
as eigenimages [3]. As widely discussed in [3], [7], and [20],
the eigenimages are linear combinations of the bands of X,
which represent the reflectance of the same surface at different
wavelengths, and thereof maintain the spatial structures, such
as piecewise smoothness and the nonlocal similarity. Hence the
denoising methods which utilize the piecewise smoothness and
the nonlocal similarity can be directly applied to the eigenim-
ages. Moreover, formulating the denoising problem w.r.t. the
representation coefficients has been validated effective [3]–[5],
[7] and well preserves the spectral correlation of the HSI with
less computation.

1When plugging and playing the CNN denoisers, it is believed to exploit
the data-driven prior.
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A. Problem Formulation

Using the Bayes rule, the posteriori probability distribution
of Z conditioned to Y is given by

p(Z|Y) = p(Y|Z)p(Z)
p(Y)

(3)

where p(Y|Z) is the probability of Y given Z (the likelihood
function) and p(Z) is a priori probability density function
of Z. The maximum a posteriori (MAP) estimate of Z is�Z ∈ arg max

Z
log p(Z|Y) = arg max

Z
log p(Y|Z)+ log p(Z).

(4)

In this article, we consider that the noise is an MoG mixture
with only two modes: the first mode models the band-wise
i.i.d. zero-mean white Gaussian noise with variance σ 2

i,1 for the
i th band. The second term models stripe and impulsive noise in
the i th band and it is assumed to follow a Gaussian distribution
with zero-mean and a very large variance σ 2

i,2 (σ 2
i,2 � σ 2

i,1).
Hence

p
�

yi j |xi j
� =

2�
k=1

αi,kN
�

yi j − xi j , σ
2
i,k

�
(5)

where yi j := [Y]i j , xi j := [EZ]i j , αi,k ≥ 0 is the probability
of mode k ∈ {1, 2} in the i th band, and N (y − μ, σ 2) denotes
a Gaussian density with mean μ and variance σ 2 computed
at y.

Assuming that Z and N are independent, it follows:

p(Y|Z) =
b�

i=1

n�
j=1

p
�

yi j |xi j
�
. (6)

Then, the MAP problem (4) turns out to be

��∈arg max
�

⎧⎨⎩
b�

i=1

n�
j=1

�
2�

k=1

αi,kN
	
yi j −xi j, σ

2
i,k


�
p(Z)

⎫⎬⎭ (7)

where � := {Z, αk, σ
2
i,k} (i = 1, . . . , b and k = 1, 2).

B. Proposed EM Algorithm

Problem (7) is nonconvex and we use the EM algorithm
[71] to compute a local optima. To apply the EM algorithm,
as usual in mixtures, we introduce the latent variables ui jk

(playing the role of missing data), for i jk ∈ {1, . . . , b} ×
{1, . . . , n} × {1, 2}, which select the active mode at band i
and pixel j .

Let �(t) := {Z(t), α(t)i,k , (σ
2
i,k)

(t)} (i = 1, . . . , b and k = 1, 2)
denote the set of parameters at the tth iteration of the EM
algorithm. Then, the E-step and the M-step amount to compute
(see [71] for details)

1) E-Step: The posterior responsibility of mixture k (=
1, 2) for generating the noise of yi j (i = 1, 2, . . . , b,
j = 1, 2, . . . , n) is calculated by

ωt
i j,k = E

�
ui j,k |Y,�(t)

�
=

αt
i,kN

�
yi j − x (t)i j ,

�
σ 2

i,k

�(t)�
	2

p=1 α
t
i,pN

�
yi j − x (t)i j ,

�
σ 2

i,p

�(t)� . (8)

2) M-Step: Construct the so-called Q function:

Q
	
�,�(t)



=

b�
i=1

n�
j=1

2�
k=1

ωt
i j,k

×



−1

2
log
�
2πσ 2

i,k

�−
�

yi j − xi j
�2

2σ 2
i,k

+logαi,k

�
+log p(Z).

(9)

Then, optimize Q(�,�(t)) w.r.t. �. The optimization w.r.t.
αi,k , σi,k , for k = 1, 2 and i = 1, . . . , b, yields

αi,k =
	

j ω
t
i j,k	

j,p ω
t
i j,p

, σ 2
i,k =

	
j ω

t
i j,k

�
yi j − xi j

�2	
j ω

t
i j,k

. (10)

We remark that αi,2 = 1 − αi,1. The optimization w.r.t. Z is
(recall that xi j = [EZ]i j )

min
Z

b�
i=1

n�
j=1

2�
k=1

ωt
i j,k


�
yi j − xi j

�2

2σ 2
i,k

�
− log p(Z). (11)

Optimization (11) may be compactly written as

min
Z

2�
k=1

1

2
�Mk � (Y − EZ)�2

F + log p(Z) (12)

where [Mk]i, j := (ωt
i j,k/σ

2
i,k)

1/2, �X�2
F := (trace(XX�))1/2,

and � stands for element-wise multiplication. Considering that
σi,2 � σi,1, optimization (12) is well approximated by

min
Z

1

2
�M1 � (Y − EZ)�2

F + λφ(Z) (13)

where λφ(Z) := − log p(Z) and λ > 0 acts as a regularization
parameter. We note that (13) is a convex problem, provided
that φ is convex. We use split augmented Lagrangian shrinkage
algorithm (SALSA) [72] to solve (13). To set the stage for
SALSA, we start by reformulating (13) as the equivalent
constrained optimization

min
Z

1

2
�M1 � (Y − V1)�2

F + λφ(V2)

s.t. V1 = EZ, V2 = Z. (14)

The augmented Lagrangian function for (14) is

L(Z,V1,V2,D1,D2)

= 1

2
�M1 � (Y − V1)�2

F + λφ(V2)

+ μ

2
�EZ − V1 − D1�2

F + μ

2
�Z − V2 − D2�2

F (15)

where D1,D2 are scaled Lagrangian multipliers and μ > 0.
Then SALSA iteratively optimize (15) w.r.t Z,V1,V2 and
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update D1,D2, leading to the following updates:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z(p+1) = 1

2

�
E�
�

V(p)
1 + D(p)

1

�
+ D(p)

2 + V2
(p)
�

V1
(p+1) =

�
EZ(p+1) − D(p)

1 + M1 � M1 � Y
�

	(M1 � M1 ⊕ μ)

V2
(p+1) = arg min

V2

μ

2

���Z(p+1) − V2 − D(p)
2

���2

F

+λφ(V2)

D1
(p+1) = D(p)

1 −
�

EZ(p+1) − V(p+1)
1

�
D2

(p+1) = D(p)
2 −

�
Z(p+1) − V(p+1)

2

�
(16)

where the superscript ·(p) represents the time evolution step of
the SALSA iterations.

To solve the V2 subproblem, we resort to the plug-and-play
(PnP) prior framework [62], [73]. Considering the rows of Z
tend to be decorrelated [3], we assume that the function φ is
decoupled w.r.t. the rows of V2, that is,

φ(V2) =
s�

i=1

φ
�
Vi

2

�
(17)

where Vi
2 ∈ R

1×n is the i th row of V2. Under this hypothesis,
the solution of the V2 subproblem is decoupled w.r.t. Vi

2 and
may be written as

V2
(p+1) = ψ λ

μ
φ

�
Z(p+1) − D(p)

2

�

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ λ
μφ1

�
Z1(p+1) − D1(p)

2

�
ψ λ

μ
φ2

�
Z2(p+1) − D2(p)

2

�
...

ψ λ
μ
φs

�
Zs(p+1) − Ds(p)

2

�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(18)

where

ψ λ
μ
φi
(y) = arg min

w

μ

2
�y − w�2

F + λφi (w) (19)

is the so-called denoising operator or Moreau proximity oper-
ator of φi [74].

In this article, we not only use BM3D, a very fast state-of-
the-art denoiser conceived to enforce self-similarity, as in [3]
but also herein adopt the CNN-based denoiser FFDNet [53],
which has been pretrained in MATLAB (R2015b) environment
with MatConvNet package [75] and an Nvidia Titan X Pascal
GPU by the authors of [53] and provides a flexible way to
handle various types of noise with a single network. As BM3D
and FFDNe are single-band image denoisers, thus each vector
(Zl(p+1)−Dl(p)

2 ) (l = 1, 2, . . . , s) needs to be folded back to an
image form for processing. Since that both BM3D and FFDNet
need an input estimation of the noise level, which plays
the role of controlling the tradeoff between noise reduction
and detail preservation, we need to determine the noise level
of each Zl(p+1) − Dl(p)

2 (l = 1, 2, . . . , s). It is notable that
only the Gaussian noise needs to be taken into consideration
when solving optimization problem (12) because our strategy

is to ignore the item (1/2)�M2 � (Y − EZ)�2
F considering

σi,2 � σi,1 and [M2]i, j = (ωt
i j,2/σ

2
i,2)

1/2 � [M1]i, j =
(ωt

i j,1/σ
2
i,1)

1/2. As the first and second components in the MoG
mixture are, respectively, corresponding to Gaussian noise and
non-Gaussian noise, the data term (1/2)�M1 � (Y − EZ)�2

F
in our objective function (13) only measures the discrepancy
between observations corrupted by Gaussian noise and the
underlying clean image. In other words, the data term in (13)
accounts for Gaussian noise, thus the setting of regularization
parameter λ is related to Gaussian noise level, which need
to be estimated. Another noteworthy fact is that the scaled
Lagrange multiplier D2 tends to be 0 as the SALSA iteration
goes on. Hence, we turn to estimate the noise level of Zl(p+1)s
(l = 1, 2, . . . , s).

Supposing that in (1) the noise term can be decomposed
into two part, the Gaussian part NG and the non-Gaussian
part Nnon-G, i.e., N = NG + Nnon-G. The Gaussian component
NG is zeromean, additive, Gaussian, pixelwise independent
with spectral covariance C = E[nGn�

G], where nG is a
generic column of NG. Considering that the noise variance
of the Gaussian noise in each band are estimated in (10),
therefore the spectral covariance matrix C is diagonal with
σ 2

i,1s, i.e., C = diag(σ 2
1,1, σ

2
2,1, . . . , σ

2
b,1). Thus, after being

projected onto the subspace, the covariance matrix of the
Gaussian noise w.r.t. the eigenimages can be computed by

CZ = E
�
E�nGn�

GE
� = E�

E
�
nGn�

G

�
E = E�CE

= diag
�
e�

1 Ce1, e�
2 Ce2, . . . , e�

s Ces

�
(20)

where E indicates computing the expectation and el

(l = 1, 2, . . . , s) denotes the lth column of E.
A pertinent question when utilizing the PnP framework is

that, given a denoiser, whether there exists a convex regularizer
of which the denoiser is the proximity operator. The answer
for BM3D, LRCF, and GMM is negative [76], as it is for most
state-of-the-art denoisers. However, this fact should not pre-
vent us to use such denoisers, as they have been successfully
plugged and played to solve a number of inverse problems [3],
[4], [76]. In this work, we selected BM3D, as it is the state-
of-the-art and a very fast implementation thereof is publicly
available.

3) Preprocessing: The EM algorithm is initialized with
�(0) = {Z(0), α(0)k , (σ 2

i,k)
(0)}, where Z(0) = ET �Y and �Y is

obtained by bandwise prefiltering the noisy HSI with a 3 × 3
median filter, α(0)k and (σ 2

k )
(0) given by (10)

ω
(0)
i j,1 =

�
1, if |�xi j − yi j | < 3�σi,1

0, otherwise,
ω
(0)
i j,2 = 1 − ω

(0)
i j,1 (21)

with �X = EZ(0), �xi j := [�X]i j , and �σi,1 given by the sample
variance of the vector (�Y(i, :)− �X(i, :)).

Algorithm 1 shows the pseudocode for the proposed HSI
denoising method. Given an HSI of the size b × n with
subspace dimension k (k � d), the computation complexity of
updating ω(t)i j,k in the E-step is O(nb). For the M-step, updating
α
(t)
i,k and (σ 2

i,k)
(t) costs O(nb) and each single SALSA iteration

costs O(2nkb + bn + kd) = O(nkb + kd), where d represents
the computational complexity of denoising an eigenimage.
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TABLE I

QUANTITATIVE ASSESSMENTS OF ALL COMPETING METHODS ON THE DATA PAVIA CITY CENTER AND WASHITON.
THE BEST TWO REUSULTS ARE HIGHLIGHTED IN RED AND BLUE COLORS, RESPECTIVELY

Algorithm 1 EM Algorithm for HSI Denoising

Input: Y ∈ R
b×n

Preprocessing: �Y = med(Y); E = HySime(�Y); set ω(0)i j,k, α(0)k ,
(σ 2

i,k)
(0) using (21) and (10).

1: repeat
2: (E-step):
3: Update ω(t)i j,k via (8)
4: (M-step):
5: Update α(t)i,k and (σ 2

i,k)
(t) via (10)

6: Update Z(t) by running a number of SALSA
7: iterations (16)
8: X(t) = EZ(t)

9: until converge;
Output: The denoised HSI X

III. EXPERIMENTS

In this section, to evaluate the performance of the proposed
adaptive HIS denoising method (denoted as AdHyDe), experi-
ments on both simulated and real data were conducted. Seven

state-of-the-art (hyperspectral) denoising methods, including
the method to enhance the self-similarity of nonlocal cubes
(BM4D) [46], a nonlocal tensor dictionary learning approach
(TDL) [48], spatio-spectral total variation (SSTV) [26], which
utilizes the spectral-spatia local continuity, double-factor reg-
ularized low-rank tensor factorization (LRTF-DFR) [13], a
newly proposed method based on low-rank tensor factoriza-
tion, LRMR [9], a LRMR algorithm, NMoG [21], which
models the noise as MoG, and the spatial-spectral total vari-
ation regularized local LRMR method (LLRGTV) [25], are
selected for the comparison. All experiments were imple-
mented in MATLAB R2017b on a PC with a 3.3-GHz CPU
(Intel i5-4590), 16-GB RAM and an Nvidia GTX1080 GPU.

A. Evaluation With Simulated Data

In this section, two HSIs, i.e., a subimage of Washington dc
Mall dataset2 (of size 256 rows × 256 columns × 191 bands)

2This dataset is available from the Purdue University Research Repository
(https://engineering.purdue.edu/b̃iehl/MultiSpec/hyperspectral.html).
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Fig. 1. PSNR, SSIM, UIQI, and GMSD values of each band in the experiments on the Pavia city center dataset in different noise cases, respectively. In each
subfigure, the vertical axis’s scales of the upper and lower portions are set differently for better visualization and the margin line is highlighted by its value
in the blue color.

and a subimage of Pavia city center dataset3 (of size
200 rows × 200 columns × 80 bands) were adopted as the
test data. Meanwhile, the same as [3], the spectral vectors in
the two datasets were projected on an 8-D signal subspace
learned via SVD, in which the bulk of the signal energy is
preserved and the noise is largely reduced. These subimages
of high quality are considered as the clean HSIs. Two noisy
datasets were generated as follows.

Case 1: Gaussian noise and impulsive noise.
Case 2: Gaussian noise and stripes.
Case 3: Gaussian noise, impulsive noise, and stripes.
Case 4: Poissonian noise, impulsive noise, and stripes.
In each case:

1) the Gaussian noise ni ∼ N (0,D2), where D2

is a diagonal matrix with diagonal elements σ 2
i,GTs

3Pavia scenes were provided by Prof. Paolo Gamba from the
Telecommunications and Remote Sensing Laboratory, Pavia Univer-
sity (Italy) and can be downloaded from http://www.ehu.eus/ccwintco/index.
php?title=Hyperspectral_Remote_Sensing_Scenes

(i = 1, 2, . . . , b), sampled from a Uniform distribution
U(0.05, 1).

2) the Poissonian noise Y ∼ P(αX), where P(A) stands
for a matrix of size(A) of independent Poisson random
variables whose parameters are given by the correspond-
ing element of A := [ai j ]. The parameter α is such that
SNR := α(

	
i, j a2

i j)/(
	

i, j ai j was set 10 dB in DCmall
data (15 dB in Pavia city center data).

3) the impulsive noise (salt and pepper) is added to all
bands of the HSI and affects 10% pixels in DCmall data
(5% pixels in Pavia city center data).

4) the stripes with different shapes (i.e., vertical lines,
oblique lines, curves) affect 60 bands in DCmall data
(20 bands in Pavia city center data).

The parameters of competing methods were set as follows:
We used the default parameters for BM4D and TDL. For
SSTV, we set λ = 0.1, μ = 3, and ν = 0.2. The low-rank
regularize parameter τ in LRTF-DFR was hand-tuned to obtain
optimal results. We used the default block size (20 × 20 × b)
and the step size (4) in LRMR and manually tuned r = 5.
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Fig. 2. PSNR, SSIM, UIQI, and GMSD values of each band in the experiment with the Washington dc Mall dataset in different noise cases, respectively.
In each subfigure, the vertical axis’s scales of the upper and lower portions are set differently for better visualization and the margin line is highlighted by its
value in the blue color.

Fig. 3. First row from left to right, respectively, lies the clean image, the noisy
image, the ground truth weights, and the estimated weights by our approach
with BM3D and FFDNet, in the 51-st band of the Washington dc data with
synthetic noise in case 3. The second row presents the values of the σ 2

GTs
and the estimated σ 2

i,1s by the proposed method with BM3D and FFDNet,
respectively.

For NMoG, we only tuned the parameter r = 3 for the
Pavia city center datasets and used the default values oth-
erwise. The parameters of LLRGTV were manually tuned

as λ = 0.05, τ = 0.001, and r = 3 when dealing with
the Pavia center dataset and λ = 0.15, τ = 0.005, and
r = 5 for the Washington dc datasets. As for our method,
the μ and λ were both set as 180 throughout the experi-
ments on the synthetic data, and the dimension of the sub-
space is set as 3 for the Pavia City Center and 5 for the
Washington dc.

The peak signal-to-noise (PSNR) index, the structural sim-
ilarity index (SSIM) [77], the universal image quality index
(UIQI) [78], the spectral angle distance (SAD), and the gradi-
ent magnitude similarity deviation (GMSD) index [79] were
calculated to give a comprehensive quantitative assessment of
the results achieved by the different methods. For the PSNR,
SSIM, and UIQI, the larger values indicate the better denoising
results while smaller values imply better denoised images
for SAD and GMSD. The corresponding mean values of the
results obtained by different denoising methods with the sim-
ulated noise in different cases for the Pavia city center image
and the Washington dc Mall image are reported in Table I,
where the best results for each quality index are highlighted
in red color, and the second best results are in blue color.
In Table I, the proposed AdHyDe with different embedded
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Fig. 4. Denoising result of different bands for Pavia City Center data with different kinds of noise.

Fig. 5. Denoising result of different bands for Washington dc data with different kinds of noise.

denoisers (BM3D and FFDNet) outperformed the other
state-of-the-art methods, obtaining the first and the second
best results when dealing with different types of mixed noise.

Meanwhile, benefiting from the implementation on the GPU
device, the running time of our algorithm with FFDNet is the
shortest.
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Fig. 6. 35th band of the noisy Tiangong dataset and the denoising results by different methods, respectively.

Fig. 7. 36th (bottom ones) band of the noisy Tiangong dataset and the denosing results by different methods, respectively.

To further illustrate these numerical indices, we plot them
w.r.t. the band numbers in Figs. 1 and 2. From the figures,
the superiority of our method with different denoisers is
obvious and the results obtained by our AdHyDe with the
FFDNet denoiser (the red lines) and with the BM3D denoiser
(the green line) alternatively lead the first place, which verifies
the robustness of the proposed algorithm over entire HSI bands
with different denoisers.

Figs. 4 and 5 exhibit the restoration results of the Pavia city
center and the Washington dc HSIs, respectively. It can be
observed that the mixed noise are severe and the competing
methods BM4D and TDL can hardly remove this complex
mixture noise. We can also see that the performance of LRMR,
which is based on the robust principal component analysis,
is limited when the components of the noise maintain strong
structural features. SSTV, LRTF-DFR, NMoG, and LLRGTV
obtain promising results considering the impulsive noise and
the stripe noise removal. From the zoomed in red boxes,
we can conclude that our method provides the optimum
visual quality since it not only removes the impulsive and

stripe noise well but also completely eliminates the Gaussian
noise.

In our method, besides the denoising stage, two procedures,
i.e., estimating ωt

i j,k s in the E-Step and calculating the σ 2
i,1 s

in the M-Step, are of great importance. Thereinto, ωt
i j,k is the

weight associated with the mixability of the Gaussian noise
or the stripe&impulsive noise in the i th band of the j th pixel,
and σ 2

i,1 indicates the estimated variance of the Gaussian noise
in the i th band. In the first row of Fig. 3, we display the
estimated ωt

i j,2 s, in which larger values are relevant to greater
possibilities of being affected by the stripe&impulsive noise,
and the ground truth of mixture degree, in which 1 denotes
being affected by stripe&impulsive noise and 0 otherwise,
in the 51-st band with synthetic noise in case 3. We can find
that our method with different denoisers accurately estimated
the mixability except for few pixels. We also plot the estimated
σ 2

i,1 s and the ground truth σ 2
GT s in the second row. The

desirable fitting of σ 2
i,1 s and σ 2

GT s shows that the proposed
method well estimated the bandwisely different variances of
the Gaussian noise.
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Fig. 8. 240th noisy band of the HYDICE Urban dataset and the denoised results by different methods, respectively.

Fig. 9. Vertical mean profiles of band 240 in the HYDICE Urban dataset experiment. From left to right are corresponding to the original data and the
denoised results by different methods, respectively. In each subimage, the vertical axis represents the mean value of each column.

It is worth noting that, in this section, our method with
different denoisers, i.e., the BM3D and the FFDNet, obtained
the comparative results. Actually, we can plug other state-of-
the-art denoisers which are made for the natural gray-level
images. We have reason to believe that they would also obtain
comparative results within our algorithm. For example, in [5],
Zhuang et al. validated the case of LRCF denoiser [37].

B. Evaluation With Real Data

In this section, if not specified, we only use the FFDNet
denoiser due to its efficiency. We evaluate the performance of
the proposed method on two real HSI datasets:

1) Tiangong dataset: The Tiangong dataset was acquired
by the Tiangong-1 hyperspectral imager, which is a

128-band push broom scanner with nominal bandwidths
of 10 nm visible near-infrared (VNIR) and 23 nm short
wave infrared (SWIR), covering a spectral range of
400–2500 nm. In this part, a subset (of size 240 ×
288 × 66) was selected.

2) HYDICE Urban Dataset: The HYDICE Urban dataset
was adopted in the third real data experiment. The
original image is 307 × 307 × 210 in size, and we
selected a subimage of 300 × 300 × 210 for our
experiment.

Figs. 6 and 7, respectively, display the images of bands
35 and 36 before and after denoising. In Fig. 6, it can
be found that the 35th band is affected by the stripes and
sparse noise. LRTF-DFR, NMoG, LLRGTV, and the proposed
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AdHyDe removed the stripes and the sparse noise well.
The proposed AdHyDe removed the tripes more thoroughly
while there remained some distortion in the results by other
methods, especially the areas circled the red dashed line. Fig. 7
illustrates that the 36th band is seriously corrupted by various
degradations. Our AdHyDe obtained the visually best result
considering the restoration of the areas in the red dashline
circles.

Figs. 8 and 9 exhibit the denoising results obtained with the
HYDICE Urban dataset of band 240 and the corresponding
vertical mean profiles, respectively. The band 240 is heavily
contaminated by mixed noise, including stripes, impulse and
Gaussian noise. As presented in Fig. 8, LRTF-DFR, LRMR,
NMoG, and AdHyDe achieved good restoration results while
obvious stripes remained within the results by other methods.
These remaining stripes resulted in rapid fluctuations in the
curves in Fig. 9, which were supposed to be smooth.

IV. CONCLUSION

This article introduces a new HSI denoising tailored to
mixtures of Gaussian noise, impulsive noise, and stripe noise.
On the one hand, the proposed method simultaneously exploits
two intrinsic characteristics of HSIs, i.e., the high correlation
along the spectral mode and the nonlocal similarity along
the spatial modes. On the other hand, an MoG is used
to model the mixed noise and the distribution of different
types of noise is estimated including their locations. In this
sense, the proposed framework automatically adapts to the
noise statistics. A comprehensive comparison of the proposed
method with the state-of-the-art algorithms was conducted.
The results on the simulated and real data show the superiority
of the proposed method for complex noise.
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