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Self-Supervised Nonlinear Transform-Based Tensor
Nuclear Norm for Multi-Dimensional
Image Recovery

Yi-Si Luo"™, Xi-Le Zhao

Michael K. Ng

Abstract— Recently, transform-based tensor nuclear norm
(TNN) minimization methods have received increasing attention
for recovering third-order tensors in multi-dimensional imaging
problems. The main idea of these methods is to perform the
linear transform along the third mode of third-order tensors
and then minimize the nuclear norm of frontal slices of the
transformed tensor. The main aim of this paper is to propose
a nonlinear multilayer neural network to learn a nonlinear
transform by solely using the observed tensor in a self-supervised
manner. The proposed network makes use of the low-rank
representation of the transformed tensor and data-fitting between
the observed tensor and the reconstructed tensor to learn the
nonlinear transform. Extensive experimental results on different
data and different tasks including tensor completion, background
subtraction, robust tensor completion, and snapshot compressive
imaging demonstrate the superior performance of the proposed
method over state-of-the-art methods.

Index Terms— Self-supervised learning, nonlinear transform,
tensor nuclear norm, multi-dimensional image.

I. INTRODUCTION

ANY real-world images are multi-dimensional, such
as hyperspectral images (HSIs), multispectral images
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(MSIs), and videos. However, in many applications, multi-
dimensional images are incomplete or essentially degraded
[6]-[9] due to irresistible factors such as low light or failure
of sensors. Thus, it is of the tremendous need to recover
the high-quality underlying images from the observed images,
which is one of the important imaging problems [10].

Mathematically, a multi-dimensional image can be repre-
sented by a third-order tensor [11]-[22], which preserves the
multi-direction structure. Since most real-world images have
low-rank structures [23]-[37], the restoration of the observed
image is usually formulated as the following low-rank tensor
recovery problem:

min 4 rank(X) + L(X, 0), (1)

where O denotes the observed tensor, X' denotes the underly-
ing low-rank tensor, L(X, O) is the fidelity loss function, and
A is the trade-off parameter.

Different from matrices, the definition of tensor rank is
not unique [11], [38]. Several definitions of tensor ranks are
proposed. The CP rank (see for example [11]) is defined
as the smallest number of rank one tensor decomposition.
However, computing the CP rank is an NP-hard problem and
its convex surrogate is not clear. The Tucker rank was studied
for tensors by considering the ranks of unfolding matrices
from tensors, see for example [11]. However, the sum of the
nuclear norm of unfolding matrices is not the convex envelope
of the sum of the rank of unfolding matrices [39]. In this
paper, we focus on the tensor tubal-rank [40]. The tensor
tubal-rank is based on the tensor singular value decomposition
(t-SVD) [41], which has been applied to various applications
such as clustering [30], feature extraction [42], and super-
resolution [38], [43]. The minimization of the tubal-rank is an
NP-hard problem. Zhang et al. [1] built a convex surrogate of
the tensor tubal-rank, named the tensor nuclear norm (TNN).
Thus, model (1) is re-formulated as follows:

min AN X NN 4 L(X, O). 2

Note that the TNN of a tensor is computed by summing
the nuclear norm of each transformed frontal slice where a
transform is applied along the third mode of the tensor [1].
Thus, model (2) can be re-formulated as follows:

min / Zk: HI(X)(") H* FLX,0), 3)
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Fig. 1. The recovered results and PSNR values by different methods. Three
rows respectively list the recovered results for tensor completion on MSI
Beads with SR = 0.05, the recovered results for robust tensor completion on
HSI Pavia with SR = 0.05, and the recovered results for snapshot compressive
imaging on MSI Toys with SR = 0.25. The proposed S2ZNTNN-TV obtains
the best PSNR values and qualitative results compared with state-of-the-art
methods.

where /(X)) is the transformed tensor under the transform / and
the superscript refers to the k-th frontal slice of the transformed
tensor. More precisely, the discrete Fourier transform (DFT)
is used, see [1], [41], [44]. Since TNN is convex, model (2)
can be addressed by many optimization algorithms such as the
alternating direction method of multipliers (ADMM).

In the literature, other transforms were considered and
studied, for instance, the use of discrete cosine transform
(DCT) [45], [46] for real arithmetic computation and other
unitary transforms [3]. The motivation is that when a suitable
transform is applied to the third-mode of a tensor, a better low-
rank representation of the transformed tensor can be obtained,
and therefore the underlying low-rank tensor can be more
easily recovered, see [3], [47].

To explore a better low-rank representation of the trans-
formed tensor, Jiang et al. [2] suggested to use the
non-invertible framelet transform (a redundant basis) to repre-
sent low-rank transformed tensors. Along this research direc-
tion, data-adaptive transforms were proposed and studied.
Kong et al. [48] proposed the data-dependent transform to
capture the low Q-rank tensor structure. Jiang et al. [49]
proposed to learn low-rank coding coefficients using dictionary
approach. Ng er al. [50] used the left singular vectors of
the unfolding matrix to establish the patched-tube unitary
transform.

Nevertheless, all of the aforementioned transforms are linear
which may limit their capability to model the nonlinear nature
of real-world data. In this paper, we embed a nonlinear
transform into the TNN. The proposed nonlinear transform
consists of multiple linear transforms and nonlinear activation
functions. Thus, this nonlinear transform can be interpreted
as a nonlinear multilayer neural network. By optimizing
the nuclear norm of the transformed frontal slices and the

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

——S2NT
—— S2NT (Linear, 1)

08 / —— SONT (Linear, 1)
[ DCT

08 ——S2NT (Linear, 1) ||

DCT
——DFT 1 or f
- = = AccEgy=0.95 [

DCT
——DFT 07
- = = AccEgy=0.95

——DFT
- - = AccEgy=0.95

0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
Percentage of singular values Percentage of singular values Percentage of singular values

Fig. 2. The accumulation energy ratio (AccEgy) [31] with respect to the
percentage of singular values of the transformed frontal slices of HSI Pavia,
HSI WDC mall, and MSI Beads. The AccEgy is defined as >5_; o7/ > ; ajz,
where g; is the i-th singular value. We can observe that S2NT obtains a better
low-rank representation whose energy is concentrated in the larger singular
values. Thus, the corresponding S2NTNN could achieve more promising
results.

data-fitting between the observed tensor and the reconstructed
tensor, the nonlinear transform can be learned by solely
using the observed data in a self-supervised manner. We call
such transform to be the Self-Supervised Nonlinear Transform
(S2NT). Based on the universal approximation theorem of
neural networks [51], the proposed S2NT could approximate
to any functions and thus it can obtain a better and lower-rank
transformed tensor (see Fig. 2), which is crucial to obtain a
better recovery performance [2].

Based on the S2NT, we propose the S2NT-based TNN
(S2NTNN) model for low-rank tensor recovery. The proposed
S2NTNN model only includes the observed data without
additional training data. Thus, the parameters of the S2NT
are learned in a self-supervised manner, and the underlying
low-rank tensor can be readily obtained.

Generally, only considering the low-rankness of tensor data
is not sufficient to recover the multi-dimensional images
with complex image details. Thus, we combine the proposed
S2NTNN with the simple and efficient total variation (TV)
regularization, and form the S2ZNTNN-TV model for low-rank
tensor recovery. The TV regularization can explore the spatial
local smoothness of the tensor, which improves the recovery
quality. In Fig. 3, we describe a tensor completion process by
using the proposed S2NTNN-TV.

We summarize the contributions of this paper as follows:

o To exploit the nonlinear nature of multi-dimensional
images, we propose the S2NT-based TNN for
multi-dimensional image recovery. As compared
with linear transforms, the nonlinear modeling capability
of S2NT is believed to obtain a better low-rank
representation under the TNN framework, which is
beneficial for a better recovery performance. By solely
using the observed data, the parameters of the nonlinear
transforms are self-supervisedly learned and the
recovered result can be readily obtained.

o The proposed method is comprehensively evaluated on
different data (HSIs, MSIs, and videos) and different tasks
(tensor completion, background subtraction, robust tensor
completion (RTC), and snapshot compressive imaging
(SCI)), which validates its generalization ability and
wide applicability. The superiority of our method is
demonstrated as compared with state-of-the-art methods
including linear transform-based TNN methods.
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The outline of this paper is given as follows. In Sec. II,
we introduce some related work. In Sec. III, we give prelimi-
naries of tensors. In Sec. IV, we present the proposed method.
In Sec. V, we report experimental results on different tasks.
Finally, some concluding remarks are given in Sec. VI.

II. RELATED WORK

In the literature, there were other matrix/tensor recov-
ery methods that utilized deep or nonlinear transforms.
Li et al. [27] introduced multiple linear transforms in the
low-rank matrix completion model. Arora et al. [52] studied
the deep linear matrix factorization and its implicit regulariza-
tion for matrix completion. Fan and Chow [53] used a non-
linear function to transform the data into a feature space and
then considered the nuclear norm minimization on the feature
space for matrix completion. Fan and Cheng [54] suggested the
deep nonlinear matrix factorization via a deep neural network
for matrix completion. Based on the work proposed in [52],
Li et al. [55] introduced the TV regularization in the deep
matrix factorization for matrix completion.

Recently, nonlinear tensor recovery methods were proposed.
Ma et al. [56] proposed the deep tensor ADMM-Net for SCI,
which cleverly unfolded a TNN optimization algorithm into
a nonlinear neural network. This deep tensor ADMM-Net
learned a linear transform under the TNN framework. Chen
and Li [57] proposed the nonlinear CP factorization and
nonlinear Tucker factorization for the recommender system.
Zhang et al. [58] learned the tensor low-rank prior to pro-
mote the reconstruction quality of SCI. All the mentioned
tensor recovery methods need supervised learning and pairs
of training data. In our work, we consider the classical TNN
framework, which was firstly suggested by Kilmer er al. [41].
The transform is a key module in the TNN to exploit the inter-
actions of frontal slices. We employ the nonlinear transform to
help obtain a better low-rank representation, which can boost
the recovery performance. Meanwhile, our nonlinear transform
is self-supervisedly learned by solely using the observed data,
which benefits its wide applicability for different tasks.

III. PRELIMINARIES

The primary notations used in this paper are introduced in
Table I. In addition, we introduce the following definitions and
theorems.

Definition 1 (t-product [41]): The tensor-tensor product
C = AxB is defined by C(i, j, ) = D> ;2 A(, k, )« Bk, j, ),
where * denotes the circular convolution between two vectors.

Definition 2 (Conjugate Transpose [41]): The  conjugate
transpose of A e R™*"2X"3  denoted as A, is defined
by (AH)(I) — (A(l))H and (AH)(i) — (A(n3+2—i))H(l- —
2, ,n3).

Definition 3 (Identity Tensor [41]): T € RM>*M>XM g
called an identity tensor if ZU) is an identity matrix and
I®(k =2,---,n3) are zero matrices.

Definition 4 (Orthogonal Tensor [41]): The tensor Q is
orthogonal if Q % QF = Qf «x Q = 7. A e R" X3 g
f-diagonal if AD(G =1,---,n3) are diagonal matrices.

3795

TABLE I
NOTATIONS USED IN THIS PAPER

Notations Interpretations
X, X matrix, tensor
Xijk the ¢, j, k-th element of X
X(:,: k) or X(F) the k-th frontal slice of X
X(,7,:) the 4, j-th tube of X
v the difference operator along the
d d-th dimension (d = 1,2)
I1X1], the nuclear norm of X
e the tensor Frobenius norm
11l X0l = /&) = |50 X
the tensor ¢1-norm
X
I, 1€l = X 1 i
unfolds() | e moded unfolding operer,
foldy() | gop e MOd3 folding operator
% the mode-3 tensor-matrix product
3 X X3 A = fold3(Aunfolds(X))

Theorem 1 (t-SVD [41]): Any A € RM*™*" can be
decomposed as A = U * S * VH, where U € RM*mxm
and V € R"*™2*™M are orthogonal and & € R™ > g
f-diagonal.

Definition 5 (Tensor Tubal-Rank [41]): Given the t-SVD:
A =UxS % VI where A € R"*"2>1 the tubal-rank
rank,(A) is defined as the number of nonzero singular tubes
of S.

Definition 6 (TNN [41]): The tensor nuclear norm of A €
Rrxn2xns s defined as | Ay = Dy [ (A x3 F)®
where F € R"3*"3 denotes the DFT matrix.

*°

IV. THE PROPOSED METHOD

In this section, we introduce the structure of the proposed
S2NT. Using the S2NT, we build the S2ZNTNN model and
the corresponding algorithm for low-rank tensor recovery.
We employ the TV regularization and form the S2NTNN-
TV model. To tackle the S2NTNN-TV model, we apply the
ADMM algorithm.

A. The Structure of S2NT

Classical linear transforms in the t-SVD framework are
generally represented by matrices, e.g., the DFT matrix [1],
the DCT matrix [45], or the data-dependent matrix [48].

Under the motivation of building a nonlinear transform in
the TNN, we propose to use a multilayer nonlinear transform.
Specifically, we suggest the nonlinear mode-3 fully connected
(NoFC3) layer as the unit of S2NT. A single NoFCs3 layer is
formulated as

w; (X) = o (X x3 W;), 4)

where o (-) denotes the nonlinear activation function and W;
is a learnable matrix. In this paper, we use the LeakyReLLU
[59] as the nonlinear activation function o (-). Consistent with
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Fig. 3.

The pipeline of the proposed SZNTNN-TV for multi-dimensional image recovery. Compared with traditional linear transform-based TNN family

methods, our method employs nonlinear transforms f and g with high representation abilities to help obtain a better low-rank representation, leading to a

promising improvement of the recovery performance.

the classical TNN, we employ the transform along mode-3 to
explore the interaction of frontal slices.

We stack p NoFCs layers to build the proposed S2NT f :
Rrxn2xn3 _y RuIXm2Xa3 which is formulated as

fC)Ewpowp_io---owi(), ®)

where o denotes the composition of functions and p denotes
the number of NoFC3 layers in f. Here, a larger n3 can
bring redundancy of the transform to obtain a better low-rank
representation [2]. Similarly, we stack g NoFC3 layers and
develop the inverse transform g : R"1>/2%73 s RMXm2xn3,
which is formulated as

8() = wpigowpig1 0 0wpr1(). (6)

Here, the learnable parameters of f and g are the matrices
{W,-}f:lq. For simplicity, we use ® £ {W,-}f:lq to denote the
learnable parameters of f and g.

B. S2NTNN for Low-Rank Tensor Recovery

1) Optimization Model: Next, we use the proposed S2NT
f and the inverse transform g to form the S2ZNTNN model
for low-rank tensor recovery. Given the observed data O €
R™1>m2x73 - the proposed model is formulated as

o ’lkﬁé (ran® H + L(g(f (X)), 0), %)

where f : RM>*mxns s R X2 X713 gand g: RAIXNn2XA3
R™1>m2X713 gre the nonlinear transforms defined by Eq. (5)
and Eq. (6). @ £ {W,-}f:lq are the learnable parameters of f
and g. X € R">*™*"3 jg the estimated tensor, which is also
self-supervisedly optimized with the transform parameters.
The recovered result is finally obtained by g(f (X)), which
is consistent to the observed O.

In model (7), X2, || (£ (X)® ], is the S2NTNN regular-
ization and L(g(f (X)), O) is the fidelity term. The fidelity

term has different formulations for different recovery prob-
lems. Our model only utilizes the observed data @ without
additional training data. Thus, the parameters of the non-
linear transforms f and g are inferred in a self-supervised
manner. We remark here that, given pairs of training data,
we can consider the end-to-end loss form as in supervised
learning framework [56]. However, since pairs of datasets are
not always available for multi-dimensional images including
videos and MSIs, we believe that the self-supervised method
without pairs of training data is more applicable in this
scenario.

2) Algorithm: Let £y = A3, [(f(X)®], and Lo =
L(g(f(X)), O), the loss function corresponding to (7) is

L=L+ L. )

It is expected to minimize £ via updating the f and g
parameters © £ {Wi}f:lq and the estimated tensor X'. Due to
the non-convexity of (7), we directly use the gradient descent
algorithm to update ® and X. The gradient of £ on the u, v-
th element of W; is

oL, o (W]
= /1 L ..
a(Vvi)m) Zk: a(Vvi)ul)
2 [(FND, a((f (X)),
;;amm%“amm ©
The subgradient of the nuclear norm [60] is
(k)
o7 e Y |7 @@, (10)

a(f(xn® ”
where (f(X))® = UﬁSkV,{ is the matrix singular value
decomposition and Uy, Vi are Uy, Vi truncated to the first s
columns and rows. Here, s; denotes the number of non-zero
elements in Sy. Integrating (9) and (10), we have

— . A(f)W), oL
120 2OV ((g((w-))) e a(w-l) '
k s.t LJuo LJuo

(1)
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Similarly, the gradient of £ on the u, v, w-th element of X
is

— —r A((f(X)W) oLy
2 2 OV B 50w P
The gradients of £, on W; and X" are
oL _ 0L (g (f (X)))rst
a(Vvi)uu st a(g(f(X)))rst a(wi)uu
L 5 0 AU (13
(X uvw o(f(XWrst 0 Xuvw

r,s,t

With these gradients, the S2NTNN model (7) can be addressed
by most gradient descent-based algorithms. In this paper,
we adopt the adaptive moment estimation (Adam) [61]. We set
a maximum iteration number #,,, as the stopping criterion of
the Adam optimization.

Since model (7) is non-convex, the initialization of ® and
X is important. We use the default normal distribution in
PyTorch! to initialize the transform parameters ®. We employ
an initialization function Init(-) to initialize X = Init(O). The
function Init(-) is chosen based on different recovery problems,
specified in the experiments.

C. S2NTNN-TV for Tensor Recovery

In model (7), we only consider low-rankness of tensor data,
which would be sometimes not sufficient to explore the spatial
local similarity of data. Thus, we propose the TV regularized
S2NTNN model for tensor recovery. The TV can explore
the spatial local smoothness to improve the multi-dimensional
image recovery performance.

1) Optimization Model: By introducing TV regularization
in model (7), the proposed S2NTNN-TV model for tensor
recovery is

minz > [ Va(g(f(X))],, HZH(f(X))("’H
S k=1 )

+ L(g(f(X)),0), (14)
where Zd:m HVd (g(f(X))) H[l is the spatial TV regulariza-
tion and 7 is the weight parameter of the TV regularization.
The recovered result is obtained through g(f(X)).

2) Algorithm: To address the model (14), we apply the
efficient ADMM algorithm [62]. By introducing auxiliary
variables V; (d = 1, 2), we re-formulate model (14) as

o, T 2 il 3 |r@n®| +Ler @, 0)

st Vo= Va(g(f(X)), d=1,2. (15)

1 https://pytorch.org/docs/stable/nn.init.html
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Algorithm 1 S2NTNN-TV for Tensor Recovery

Input: The observed tensor O; trade-off parameters 7 and \;
Lagrange parameter ; maximum iteration t,,q..
Initialization: X = Init(O0), V; =V4X, Ay =0,t=0.
1: while ¢t < ¢,,,4, do
Update {©, X'} via (17) using Adam;
Update V; via Eq. (19);
Update Ay via Eq. (20);
5: t=t+1;
6: end while
Output: The recovered tensor g(f(X)).

Bl

The augmented Lagrangian function of (15) is
3
Lp(©, X, Ve, A) = > Wallg, + 2 | (r@an®|
d k=1
+LE( (X)), 0)+ D ((Ad, Valg(F (1) = Va)
d

+ 2 Vatetr@n) -l ). 16

where S is the penalty parameter and A, is the Lagrangian

multiplier. Under the framework of ADMM, the joint min-

imization problem can be decomposed into easier sub-

problems, followed by the update of Lagrangian multipliers.
a) {®, X} sub-problem: The {®, X'} sub-problem is

min z; [r@n®| + L@@, 0

B
+5§

Similar to the optimization of (7), we update ® and X by the
Adam algorithm. Since the estimated intermediate variables
V4 and Ay may not be accurate enough, it is not necessary
to use an exact solution of (17). Thus, we employ one step of
the Adam algorithm to update ©, X’ at each iteration of the
ADMM algorithm [62]-[64] for computational efficiency.

b) V4 sub-problem: The V; sub-problem (d = 1,2) is

2
A7)

A
Va(g(f(X)) = Va+ 7"

F

. N E
min © Vil +5 Vi = (Vaer@on +Z2)| L a
which can be exactly solved by
A
Va=softy (Va(s(F@0) + ). (19)

where Soft,(-) denotes the soft-thresholding operator with
threshold value o.

¢) Ag updating: The multipliers Ay (d =
updated by

Aa = A+ B(Vale(F (X)) = V).

Moreover, we set a maximum iteration number #,,,, as the
stopping criterion of the ADMM algorithm. The ADMM algo-
rithm for solving model (14) is summarized in Algorithm 1.

1,2) are

(20)
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TABLE II

THE QUANTITATIVE RESULTS BY DIFFERENT METHODS ON DIFFERENT DATA FOR TENSOR COMPLETION. THE BEST VALUE ARE HIGHLIGHTED BY
BOLDFACE, AND THE SECOND-BEST VALUE ARE HIGHLIGHTED BY UNDERLINED

Data SR 0.05 0.1 0.15 0.2 0.25
Metric PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM
Observed 14.567 0.076 1.351 14.801 0.118 1.253 15.050 0.158 1.176 15312 0.199 1.109 15.594 0.239 1.049
TRLRF [65] 27.044 0.854 0.209 29.463 0912 0.164 29.959 0.920 0.160 29.671 0918 0.168 30.589 0.931 0.156
HSI WDC mall ~ TNN [1] 29.513 0916 0.197 33.249 0962 0.144 36.109 0979 0.113 38.311 0.986 0.093 40.075 0.990 0.079
(256x256x191) FTNN [2] 32776 0955 0.131 37.752 0.983 0.095 41311 0.991 0.074 43.874 0.994 0.062 45.954 0.996 0.053
S2NTNN 40.118 0.992 0.055 44764 0.997 0.040 46.591 0.998 0.034 47.657 0.998 0.031 48.556 0.999 0.029
S2NTNN-TV 41.155 0.994 0.050 45.387 0.997 0.037 47.291 0.998 0.032 48.990 0.999 0.028 49.917 0.999 0.026
Observed 12.191 0.042 1.355 12.426 0.071 1.254 12.674 0.098 1.177 12.939 0.125 1.110 13.220 0.150 1.049
TRLRF [65] 28.232 0.888 0.113 29.484 0915 0.102 30918 0.936 0.087 31.572 0.944 0.084 32.028 0.950 0.082
HSI Pavia TNN [1] 26.002 0.822 0.174 31.382 0938 0.111 35.429 0971 0.080 37.867 0.981 0.066 40.171 0.987 0.055
(200x200x80)  FTNN [2] 32.345 0.954 0.079 37.821 0.985 0.052 42.066 0.992 0.039 45266 0.996 0.030 48.447 0.997 0.024
S2NTNN 38.755 0.990 0.027 46.164 0.998 0.016 50.803 0.999 0.011 52.021 1.000 0.010 53.075 1.000 0.009
S2NTNN-TV 38.837 0.993 0.026 47.825 0.999 0.013 50.994 0.999 0.011 52.741 1.000 0.009 54.381 1.000 0.008
Observed 13.529 0.205 1.389 13.762 0.248 1.278 14.010 0.286 1.194 14272 0.320 1.123 14.554 0.350 1.059
TRLREF [65] 30.062 0.883 0.244 34.450 0.952 0.167 38.868 0.982 0.112 39.907 0.985 0.103 40.288 0.986 0.101
MSI Balloons ~ TNN [1] 26.321 0.850 0.267 34.521 0961 0.161 38.822 0.982 0.111 41.355 0.990 0.087 43.253 0.993 0.071
(256x256x31) FINN [2] 35.067 0974 0.111 39.640 0.990 0.069 43.187 0.995 0.049 45.419 0.997 0.040 47.609 0.998 0.033
S2NTNN 38.021 0.987 0.078 43.337 0.996 0.052 46.646 0.998 0.039 48.504 0.998 0.034 49.426 0.999 0.028
S2NTNN-TV 40.662 0.994 0.047 44.622 0.997 0.036 47.164 0.998 0.030 49.183 0.999 0.025 50.066 0.999 0.024
Observed 14.414 0.187 1.406 14.646 0.227 1.295 14.899 0.267 1.211 15.165 0.309 1.139 15.438 0.349 1.073
TRLRF [65] 18.010 0.449 0.688 23.255 0.738 0.476 26.211 0.845 0.356 31.150 0.948 0.218 32259 0.958 0.197
MSI Beads TNN [1] 19.976 0.584 0.580 23284 0.773 0.434 26.004 0.866 0.344 28.283 0916 0.278 30.230 0.944 0.230
(256x256x31) FTINN [2] 20.958 0.694 0.404 25.168 0.860 0.274 28.468 0.927 0.209 31.023 0.957 0.167 33.223 0973 0.136
S2NTNN 24.217 0.846 0.261 30.815 0.963 0.127 34.798 0.983 0.093 38.080 0.991 0.072 40.276 0.994 0.061
S2NTNN-TV 24.735 0.834 0.202 31.419 0.968 0.121 35.380 0.986 0.087 38.280 0.991 0.074 40.508 0.994 0.060
Observed 13.544 0.445 1.420 13.780 0.475 1.314 14.025 0.503 1.231 14295 0.531 1.158 14.570 0.557 1.088
TRLRF [65] 25.560 0.749 0.464 29.801 0.870 0.336 32.044 0914 0.290 32.748 0.922 0.278 39.806 0.985 0.133
MSI Flowers TNN [1] 25.743 0.787 0.566 30.736 0915 0.323 33.757 0.953 0.240 36.230 0971 0.192 38.381 0.981 0.158
(256x256x31) FTINN [2] 29.411 0918 0.218 34.014 0965 0.147 36.899 0.980 0.116 39.317 0.988 0.094 41.501 0.992 0.079
S2NTNN 31.564 0.938 0.266 36.997 0.978 0.138 41.424 0.991 0.075 44.175 0.995 0.055 46.596 0.997 0.050
S2NTNN-TV 32.430 0.961 0.147 38.339 0.988 0.064 41.914 0.994 0.050 44.309 0.996 0.042 46.849 0.998 0.035
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Fig. 4. The spectral curves of the tensor completion results by different methods on MSIs Balloons and MSI Beads with SR = 0.05.

For the observed data O € R™*""2*"3 " the total computational
complexity of the ADMM algorithm at each iteration is
OQRnnan3(n3 + n3)), where n3 is the third dimension of
the transformed tensor. More concretely, the computational
complexity of the {®, X} sub-problem is O(2nnanz(n3 +
n3)). The computational complexity of the V; sub-problem
is O(n1nzn3). The computational complexity of updating Ay
is O(n1n>n3). Meanwhile, the number of parameters in the
S2NT f and the inverse transform g is Z(ﬁg + n3nz).

V. EXPERIMENTS

In this section, we introduce four multi-dimensional image
recovery problems, i.e., tensor completion, background sub-
traction, RTC, and SCI. Each of these problems can be
addressed using S2NTNN and S2NTNN-TV, where the only

difference is the fidelity term L(g(f (X)), O). We remark here
that our method characterizes the low-rank structure of multi-
dimensional images with compact representation abilities.
Thus, it is not limited to the above applications. For other
applications, e.g., multi-dimensional image denoising [46],
super-resolution [38], and subspace clustering [30], with suit-
able formulations of the fidelity term, our method is believed
to perform well.

A. Experimental Settings

In our method, the hyperparameters include the third dimen-
sion of the transformed tensor n3, the Lagrange parameter
[, the regularization parameters 7 and A, and the maximum
iteration number f,,,. Specifically, we set n3 = 2n3 and
f = 1 for all tasks. We select 7 and A from the candidate
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The recovered results by different methods for tensor completion on HSI WDC mall (composed of the 50-th, 100-th, and the 150-th bands) with

SR = 0.05, HSI Pavia (composed of the 1-st,10-th, and the 20-th bands) with SR = 0.05, MSI Beads (composed of the 10-th, 20-th, and the 30-th bands)
with SR = 0.05, and MSI Flowers (composed of the 10-th, 20-th, and the 30-th bands) with SR = 0.05.

sets {107j}§:1 and {10’j}§:2, respectively, to obtain the best
PSNR value for all tasks. We set t,,,c = 7000, 1000, 7000,
and 4000 for tensor completion, background subtraction, RTC,
and SCI, respectively. The number of network layers is set to
p = q = 2 for all tasks and the learning rate of the Adam
optimizer is set to 0.005 for all tasks. The nonlinear activation
function o (+) is chosen as the LeakyReLU function with the
negative slope 0.2 for all tasks. The size of the input data
X is the same as the size of the observed data O for all
tasks. We would like to emphasize that the proposed S2NT
f and the inverse transform g are self-supervisedly learned
by solely using the observed data. Thus, no training data and
training/testing data splitting are required.

All experiments are conducted on the platform of Windows
10 with an Intel(R) Core i5-9400f CPU and RTX 2080 GPU

with 24 GB RAM. Our method is implemented on PyTorch
1.9.0 with CPU and GPU calculation. All the compared
methods are implemented on MATLAB R2019b with CPU
calculation.

We use three numerical evaluation indices: peak signal to
noise ratio (PSNR), structural similarity (SSIM), and spectral
angle mapper (SAM) [66]. Higher PSNR and SSIM values
correspond to better quality, while lower SAM value represents
a smaller spectral angle between the ground truth and the
recovered result.

B. Tensor Completion

The tensor completion [24], [67], [68] aims at recovering
the original tensor from the incompleted tensor with random
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FastRPCA [69] TNN [25]

Original

DCTNN [47] S2NTNN S2NTNN-TV

Fig. 6. The separated background by different methods for background subtraction on videos Port (144 x 176 x 250), Highway (240 x 320 x 200), Office

(240 x 360 x 200), PET (288 x 360 x 300), and Shop (256 x 320 x 100).

sampling. The proposed SZNTNN model for tensor completion
is formulated as

min zk; [ren®| +1Par@n - o, ey

where O is the incompleted tensor, 223:1 || (f(xX)® ||* is the
S2NTNN regularization, |Pq(g(f (X)) — O) ||%p is the fidelity
term, and Pq(-) is the projection function that keeps the
elements in the observed set Q and making others be zero.
The final recovered result is g(f(X)).

1) Datasets and Compared Methods: To illustrate the effec-
tiveness of our method for tensor completion, we collected
multi-dimensional image data including MSIs (Balloons,
Beads, and Flowers® [71]) and HSIs (Pavia and WDC mall®).

2https://www.cs.columbia.edu/CAVE/databases/multispectral/
3 https://engineering.purdue.edu/biehl/MultiSpec/hyperspectral.html

Five cases with sampling rates (SRs) 0.05,0.1,0.15,0.2,
and 0.25 are established. The competing methods for ten-
sor completion are: The tensor ring decomposition-based
method TRLRF [65], the linear transform-based meth-
ods TNN (induced by DFT) [1] and FTNN (induced by
framelet transform) [2]. The initialization function Init(-)
for tensor completion is the linear interpolation that used
in [49], which provides an ideal initialization with less

time.
2) Experimental Results: The numerical results for ten-

sor completion are illustrated in Table II. We can see that
S2NTNN could achieve better PSNR and SSIM values than
competing methods. Also, S2ZNTNN achieves better SAM
values, which shows that S2NTNN preferably exploits the cor-
relation along the third mode. We can observe that S2NTNN-
TV generally has better performances than S2NTNN, which
validates the effectiveness of the TV regularization to enhance
the recovery performance.
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Fig. 7. The recovered results by different methods for RTC on HSI WDC mall (composed of the 50-th, 100-th, and the 150-th bands) with SR = 0.05,
HSI Pavia (composed of the 1-st,10-th, and the 20-th bands) with SR = 0.05, and MSI Balloons (composed of the 10-th, 20-th, and the 30-th bands) with
SR = 0.05.

TABLE III

THE QUANTITATIVE RESULTS BY DIFFERENT METHODS ON DIFFERENT DATA FOR RTC. THE BEST VALUE ARE HIGHLIGHTED BY BOLDFACE,
AND THE SECOND-BEST VALUE ARE HIGHLIGHTED BY UNDERLINED

Data SR 0.05 0.1 0.15 0.2 0.25
Metric PSNR SSIM  SAM PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM
Observed 13.953 0.066 1.405 13.626 0.088 1.351 13.351 0.105 1.309 13.109 0.117 1.271 12903 0.126 1.236
RTRC [70] 21.299 0.577 0.268 23.467 0.714 0.232 25.177 0.796 0.208 26.463 0.843 0.194 27.660 0.878 0.181
HSI WDC mall ~ TNN [25] 25.184 0.804 0.245 29.418 0919 0.171 32.307 0.955 0.137 34.453 0971 0.116 36.272 0979 0.102
(256x256x191) UTNN [3] 25317 0.818 0.218 30.816 0.949 0.126 34.890 0.979 0.086 37.898 0.989 0.065 40.572 0.994 0.052
S2NTNN 28.108 0.921 0.158 33.356 0972 0.106 34.641 0.983 0.081 37.172 0.988 0.075 38.689 0.991 0.062
S2NTNN-TV 31.011 0.952 0.107 35.493 0.983 0.076 36.364 0.986 0.080 40.565 0.977 0.088 45.062 0.990 0.063
Observed 11.941 0.035 1.383 11918 0.055 1.310 11.894 0.069 1.259 11.874 0.080 1.215 11.859 0.090 1.176
RTRC [70] 21.035 0.519 0.142 22.006 0.599 0.162 23.142 0.676 0.164 24.151 0.737 0.160 25.024 0.781 0.157
HSI Pavia TNN [25] 23.684 0.732 0.148 28.133 0.902 0.118 31.243 0.947 0.097 33.806 0.966 0.083 35719 0974 0.075
(200x200x80)  UTNN [3] 25.946 0.844 0.124 30.758 0.945 0.089 33.633 0.968 0.073 35.662 0.977 0.065 36.820 0.982 0.060
S2NTNN 27.901 0916 0.105 32.629 0.965 0.049 37.491 0.989 0.033 40.318 0.994 0.029 41.750 0.996 0.025
S2NTNN-TV 28.112 0.920 0.078 33.588 0.967 0.042 39.086 0.992 0.029 42.018 0.996 0.023 42.406 0.996 0.019
Observed 13.148 0.169 1.411 12.998 0.171 1.324 12.860 0.168 1.268 12.716 0.158 1.228 12,578 0.149 1.196
RTRC [70] 18.976 0.701 0.369 24512 0.879 0.222 27.762 0.930 0.159 29.835 0.950 0.133 31.450 0.963 0.110
MSI Balloons ~ TNN [25] 23.053 0.882 0.266 29.143 0.950 0.172 31.898 0.969 0.127 33.856 0.978 0.103 35.477 0.984 0.086
(256x256x31)  UTNN [3] 27.734 0.890 0.281 31.010 0.907 0.232 32700 0.971 0.126 35.950 0.979 0.098 37.667 0.986 0.062
S2NTNN 28.010 0.921 0.256 32.837 0972 0.163 35732 0.984 0.109 37.543 0.990 0.083 39.272 0.994 0.054

S2NTNN-TV 33.088 0.975 0.136 36.495 0.988 0.069 39.465 0.994 0.051 40.041 0.995 0.050 41.228 0.996 0.047

Some visual results for tensor completion are shown in the results on MSI Beads. This is due to the consideration of
Fig. 5. We can see that S2NTNN and S2NTNN-TV recover the the spatial local smoothness of the TV regularization.
images better than competing methods. S2NTNN-TV achieves In addition, we plot the spectral curves of the recovered
better recovery in the spatial domain, especially according to  results in Fig. 4. S2NTNN and S2NTNN-TV more faithfully
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The separated background by different methods for RTC on videos highway (240 x 320 x 200) and PET (288 x 360 x 300) with SR = 0.25.

TABLE IV

THE QUANTITATIVE RESULTS BY DIFFERENT METHODS ON DIFFERENT DATA FOR SCI. THE BEST VALUE ARE HIGHLIGHTED BY BOLDFACE, AND
THE SECOND-BEST VALUE ARE HIGHLIGHTED BY UNDERLINED

Data SR 0.05 0.1 0.15 0.2 0.25
Metric PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM
GAP-TV [4] 21.488 0.642 0.774 22318 0.691 0.744 22.692 0.732 0.699 22.817 0.755 0.667 22766 0.772 0.648
MSI Toys SeSCI [72] 20.815 0.612 0.590 21.574 0.689 0.602 21.668 0.722 0.602 21.471 0.738 0.602 21.218 0.749 0.603
(256x256%31) DeSCI [5] 19.702 0.624 0.410 21.211 0.735 0.426 22.148 0.785 0.437 22.871 0.812 0413 23.220 0.828 0.409
S2NTNN 23.876 0.792 0.504 24.927 0.830 0.458 25.311 0.840 0.508 25.940 0.862 0.494 26.464 0.872 0.508
S2NTNN-TV 24.209 0.803 0.434 25.424 0.847 0.436 26.308 0.863 0.470 26.791 0.880 0.450 27.122 0.885 0.486
GAP-TV [4] 22.944 0.655 0.732 24.024 0.702 0.683 24.585 0.741 0.633 24.864 0.766 0.597 25.121 0.782 0.577
MSI Flowers SeSCI [72] 22.405 0.658 0.551 23.947 0.725 0.546 24.417 0.758 0.537 24578 0.777 0.531 24.657 0.786 0.535
(256x256x31) DeSCI [5] 21.150 0.633 0.465 22.872 0.737 0.411 23.927 0.783 0.402 24.604 0.810 0.390 24.693 0.826 0.382
S2NTNN 26.253 0.812 0.479 26.860 0.852 0.613 28.505 0.878 0.589 28.573 0.884 0.583 29.314 0.894 0.564
S2NTNN-TV 26.464 0.839 0.291 27.558 0.857 0.605 28.602 0.877 0.587 28.955 0.885 0.603 29.462 0.895 0.590
GAP-TV [4] 23.324 0.732 0.111 24.077 0.712 0.109 24.495 0.714 0.106 24750 0.718 0.104 25.248 0.737 0.098
Video Drop SeSCI [72] 24.171 0.850 0.070 26.135 0.869 0.066 27.029 0.878 0.065 27.430 0.883 0.064 27.921 0.888 0.062
(256x256 10) DeSCI [5] 21.551 0.806 0.061 22.880 0.813 0.064 24.348 0.843 0.067 25.169 0.860 0.066 26.283 0.877 0.065
S2NTNN 25.028 0.881 0.042 26.024 0.859 0.042 26.378 0.869 0.042 27.422 0.883 0.042 27.664 0.889 0.041
S2NTNN-TV 26.674 0.894 0.042 27.519 0.898 0.043 27.396 0.892 0.042 27.637 0.908 0.042 27.951 0913 0.042
GAP-TV [4] 20.557 0.636 0.265 21.171 0.626 0.267 21.546 0.630 0.261 21.806 0.642 0.258 22.083 0.661 0.252
Video Crash SeSCI [72] 20.016 0.698 0.203 21.301 0.699 0.207 21.880 0.716 0.204 22.126 0.722 0.206 22.345 0.734 0.205
(256 %256 10) DeSCI [5] 19.821 0.718 0.152 20.378 0.708 0.177 21.068 0.727 0.180 21.178 0.732 0.189 21.305 0.746 0.193
S2NTNN 21.469 0.787 0.126 22.117 0.706 0.137 22.781 0.780 0.125 22993 0.806 0.137 23.527 0.829 0.126
S2NTNN-TV 21.906 0.790 0.125 22.901 0.796 0.126 23.201 0.821 0.125 23.403 0.830 0.126 23.598 0.842 0.125

capture the nonlinear nature of spectral curves due to the
nonlinear modeling capability of S2NT.

C. Background Subtraction

The background subtraction [2], [35], [69] aims at sub-
tracting low-rank background from the original video. The
proposed S2NTNN model for background subtraction is for-
mulated as

min 2> [(F@)©| +lsr@n -0l @2
’ k=1

where O is the original video, ZZ; H (f(x)® H* is the
S2NTNN regularization, and [|g(f (X)) — Oll,, is the fidelity
term. The low-rank background is obtained through g(f(X)).

1) Datasets and Compared Methods: Five video frames*

that contain low-rank background and sparse foreground are
selected. The competing methods for the background sub-
traction are: The matrix robust principal component analysis
method FastRPCA [69], the linear transform-based meth-
ods TNN (induced by DFT) [25] and DCTNN (induced
by DCT) [47]. We directly use the original video as the
initialization of X for background subtraction.

2) Experimental Results: The results by different methods
for background subtraction are shown in Fig. 6. We can
see that S2NTNN and S2NTNN-TV more precisely subtract
the low-rank background. In addition, we can see from
the zoom-in figures that S2NTNN and S2NTNN-TV more
faithfully preserve the image details in the background than
competing methods (e.g., the door handle in Office and the

4http://trace.eas.asu.edu/yuv/ and http://jacarini.dinf.usherbrooke.ca/static/
dataset/
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Fig. 9. The recovered results by different methods for SCI on MSI Toys (composed of the 10-th, 20-th, and the 30-th bands) with SR = 0.25, MSI Flowers

(composed of the 10-th, 20-th, and the 30-th bands) with SR = 0.25, video Drop with SR = 0.25, and video Crash with SR = 0.25.

ground pattern in Shop). This can attribute to the nonlinear
modeling ability of S2NT, which more compactly represents
the low-rank tensor.

D. Robust Tensor Completion

The RTC [3], [70] aims at recovering the low-rank tensor
from the incompleted tensor and simultaneously separate the
sparse component. The proposed S2NTNN model for RTC is
formulated as

n3

mmzH(f(X»(k)H +IPag(f(X) = Ol . (23)

where O is the incompleted tensor, Zk_l || (f(xn® H* is
the S2NTNN regularization, and [|Pq(g(f (X)) — O)ll, is the
fidelity term. The recovered result is g(f(&X)).

1) Datasets and Compared Methods: To illustrate the supe-
riority of our method on RTC, we adopted the HSIs Pavia and
WDC mall, the MSI Balloons, and the videos Highway and
PET as the experimental data. For HSIs and MSI, we firstly
sample the data using different SRs to obtain incompleted
tensors, and then perform sparse noise degradation with noise
sampling rate 0.1 on the incomplete data. For videos Highway
and PET, we only sample the data using different SRs and do
not perform the sparse noise. This is because the videos High-
way and PET contain moving objects which act as the sparse
foreground component. The RTC problem for videos Highway
and PET aims to simultaneously infer the missing entries
and separate the background and foreground. The competing
methods for RTC are: The tensor ring decomposition-based
method RTRC [70], the linear transform-based methods TNN
(induced by DFT) [25] and UTNN (induced by unitary
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Fig. 10. The spectral curves of recovered results by different methods for SCI on MSIs Toys and Flowers with SR = 0.25.

TABLE V

THE QUANTITATIVE RESULTS FOR TENSOR COMPLETION ON MSI Flowers
WITH SR = 0.1. S2NTNN (LINEAR) DENOTES THE S2NT f HAS NO
NONLINEAR FUNCTION. S2NTNN (p) INDICATES THAT THE S2NT
f HAS p NOFC3 LAYERS. S2NTNN WO REG. DENOTES THE
S2NTNN MODEL WITHOUT THE LOW-RANK REGULARIZA-

TION

Method PSNR SSIM SAM

S2NTNN (Linear) 35786 0973  0.164

S2NTNN (ReLU) 36.850  0.980  0.122

Nonlinearity =~ S2NTNN (LeakyReLU)  36.997  0.978  0.138
S2NTNN (PReLU) 36.734 0.977 0.134

S2NTNN (PLU) 36.620  0.979  0.106

S2NTNN (1) 36.434 0975  0.139

S2NTNN (2) 36.997 0978  0.138

Hierarch S2NTNN (3) 37407 0981 0.133
Y S2NTNN (4) 36.612 0976  0.156
S2NTNN (5) 35.863  0.969  0.203

S2NTNN (10) 31512 0921 0389

S2NTNN wo reg. 33.397  0.943 0306

Regularizers S2NTNN (Low-rank) 36.997 0.978 0.138
S2NTNN (Sparse) 34179 0961  0.284

transform) [3]. We use the linear interpolation [49] as the
initialization function Init(-) for S2NTNN and S2NTNN-TV.

2) Experimental Results: The numerical results for RTC are
reported in Table III. We can see that S2NTNN-TV outper-
forms competing methods in terms of PSNR. However, UTNN
achieves better SSIM and SAM values than S2NTNN-TV
on HSI WDC mall with higher SRs. This is due to the
consideration of spatial smoothness by S2ZNTNN-TV, where
the over smoothness may influence the details preserving.

Some visual results for RTC are illustrated in Fig. 7
and Fig. 8. From Fig. 7, we can see that S2NTNN and
S2NTNN-TV recover the tensor better than competing meth-
ods. SZNTNN-TV has smoother results than SZNTNN due to
the TV regularization, which results in higher PSNR values.
The separated background of videos highway and PET are
shown in Fig. 8, where the original videos containing back-
ground and foreground are displayed as references. We can
discover that the proposed methods have better performance
for separating the low-rank background from the videos.

E. Snapshot Compressive Imaging

The SCI [5], [56], [73] is developed to capture
multi-dimensional data from low-dimensional data with low

Observed 9.8d FTNN [2] 33.9dB  S2NTNN 38.1dB  S2NTNN-TV 39.9dB

Fig. 11.  The recovered results and corresponding PSNR values by different
methods for tensor completion on MSI Balloons with structure missing.

computational cost by summing up the spectral/temporal sig-
nals to obtain the measurement. The key module in the SCI
system is the reconstruction of the original high-dimensional
signals. Given the observed measurement O € R™ xmaxl - he
proposed S2ZNTNN model for SCI is formulated as

n3 n3 2
min 2" |(F@)P] +[> Y o (@) P-0
’ k=1 k=1
4

where  (g(f(X))® and C® respectively denote the
k-th frontal slice of the underlying low-rank tensor and
the given mask. © denotes the element-wise product.
Here, 32, [(f(X)®)], is the S2NTNN regularization and

|32, e® o (g(f(X))® — O is the fidelity term. The
recovered result is g(f(X)).

1) Datasets and Compared Methods: We adopted MSI
Toys, MSI Flowers, video Drop, and video Crash® as the
experimental data for SCI. We firstly sample the data using
different SRs and then sum up the frontal slices to generate
the sensing measurement. Gaussian noise with the standard
deviation 0.1 is performed on the sensing measurement. The
competing methods for SCI are: The TV-based method GAP-
TV [4], the low-rankness-based method DeSCI [5], and the
sparsity-based method SeSCI [72]. We use the recovered
results of GAP-TV as the initialization of DeSCI, S2NTNN,
and S2NTNN-TV.

5 https://drive.google.com/drive/folders/1d2uh9nuOL5Z7WnEQJSHZSDM
WK2VAT9sH
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Observed DCTNN [47]

Fig. 12.

-
S2NTNN S2NTNN-TV

Original

The recovered results by different methods for tensor completion on HSI WDC mall, HSI Pavia, and MSI Beads with SR = 0.1. We display the

residual images (difference between the ground truth and the recovered result) in zoom-in figures. Residual images with less color information indicate better

performance.

2) Experimental Results: The numerical results for SCI are
shown in Table IV. We can see that S2NTNN-TV outperforms
competing methods with a considerable margin. The visual
results for SCI are illustrated in Fig. 9. We can see that the
proposed S2NTNN and S2NTNN-TV can recover the images
more precisely. Moreover, we plot the spectral curves of the
recovered results for SCI in Fig. 10. We can see that S2NTNN
and S2NTNN-TV preserve the nonlinear spectral curves better
than other methods due to the nonlinear modeling capability
of S2NT.

F. Discussions

1) Compact Representation by S2NT: To demonstrate that
the proposed S2NT can obtain a better low-rank representa-
tion than linear transforms, we plot the AccEgy [31] with
respect to the percentage of singular values of the transformed
frontal slices in Fig. 2. The transformed frontal slices are
obtained by S2NT, S2NT (Linear, 1), DCT, and DFT. Here,
S2NT (Linear, 1) denotes that the S2NT f only have one
linear layer without nonlinear activation function. We can
observe that S2NT obtains a more compact representation
with more energy concentrated in larger singular values. This
can improve the recovery performance, where the data can be
approximated via lower-rank representation. In contrast, S2NT
(Linear, 1) obtains a less compact representation. This verifies
the effectiveness of nonlinearity and the hierarchical structure
of S2NT for obtaining a better low-rank representation.

Moreover, we display the recovered results and their resid-
ual images (difference between the ground truth and the recov-
ered result) of TNN (induced by DFT) [1], DCTNN (induced
by DCT) [47], and the proposed S2NT-based methods in
Fig. 12. We can observe that the proposed methods achieve
better details preservation and color preservation compared
with linear transform-based methods due to the better low-
rank representation.

2) Effectiveness of Nonlinearity: This section tests the influ-
ence of nonlinearity in the proposed method. Specifically,
we compare the performance of S2NTNN without nonlinear
layers (denoted as S2NTNN (Linear)) and S2NTNN with
different nonlinear activation layers, i.e., ReLU, LeakyReL.U,
PReLU [59], and piecewise linear unit (PLU) [74]. The results
are shown in the first block of Table V. We can see that the
performance is considerably increased with nonlinear layers.
This is because the nonlinear modeling ability could help to
obtain a better low-rank representation.

3) Effectiveness of Hierarchy: In this section, we test the
influence of the hierarchy, i.e., the number of layers of
the proposed S2NT. Specifically, we change the number of
NoFC3 layers in the S2NT (i.e., the parameter p) to clarify
the influence. The results are shown in the second block of
Table V. When p is small, increasing p can enhance the
performance. However, when p is larger, the results are not
as desirable as we expected. The is because a deeper network
is more likely to suffer from the vanishing gradient.
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4) Low-Rankness vs Sparsity: The sparse modeling of the
data has achieved great success [75]-[78]. Dose the sparsity
works in our method? To clarify this, we replace the low-rank

term with the sparse term, i.e., £; = 4 ZZLI || (f(O)® ||€1,
where ¢1-norm is the relaxation of {p-norm. Meanwhile,
we use the S2NTNN without regularization (i.e., £; = 0)
as the baseline. The results are shown in the third block
of Table V. We can observe that S2NTNN (Low-rank) out-
performs S2NTNN (Sparse), which reveals that low-rankness
is more effective to represent the third-order tensor in our
method.

5) Effectiveness of TV Regularization: The S2NTNN only
considers low-rankness of tensor data, which is limited to
capture the spatial local similarity. This motivates us to per-
form the TV regularization on the spatial domain to faithfully
explore the spatial local smoothness for better performance.
To clarify this, we conduct the experiment for tensor com-
pletion where the incompleted entries are structurally sam-
pled. The results are shown in Fig. 11. We can observe
that S2NTNN-TV recovers the spatial information better than
S2NTNN, which verifies the effectiveness of the TV regular-
ization.

6) Convergence Analysis: To test the convergence behavior
of the ADMM Algorithm 1, we plot the relative error of
variables with respect to the iteration number in Fig. 13.
The downward trend of the curves verifies the convergence
behavior of our method.

VI. CONCLUSION

This paper suggests the S2NT-based TNN for
multi-dimensional image recovery. The proposed S2NT
obtains a better low-rank representation than that of linear
transforms, which improves the recovery quality. We further
introduce the TV regularization in the S2NTNN model and
apply the ADMM algorithm to tackle the S2NTNN-TV model.
Extensive experiments on different data for tensor completion,
background subtraction, RTC, and SCI demonstrate the wide
applicability of the proposed method and its superiority over
state-of-the-art methods. In future work, we can consider
extending our method to more applications such as denoising
[46], super-resolution [38], and subspace clustering [30].

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

It is also interesting to extend our method to a weighted
version [8] to further enhance the capability of our method.
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