
Knowledge-Based Systems 262 (2023) 110262

a

b

c
i
o
t
s
t
a
‘
r
r
a
a
r

i

2
(

h
0

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Essential tensor learning formultimodal information-driven stock
movement prediction
Jun Wang a, Yexun Hu a, Tai-Xiang Jiang a,∗, Jinghua Tan b,∗, Qing Li a
School of Computing and Artificial Intelligence, Southwestern University of Finance and Economics, Chengdu 611130, China
College of Economics, Sichuan Agricultural University, Sichuan Agricultural University, Chengdu 611130, China

a r t i c l e i n f o

Article history:
Received 28 June 2021
Received in revised form 25 December 2022
Accepted 2 January 2023
Available online 6 January 2023

Keywords:
Tensor robust principal component analysis
Stock movements
Multimodal and multitemporal

a b s t r a c t

In the literature, an increasing amount of information from various sources related to the stock market
is being considered for stock movement prediction. However, previous studies usually modeled market
information as a vector, failing to effectively utilize the inner structure in terms of multimodal and
multitemporal characteristics. Moreover, the release, dissemination, and absorption of information
causing spillover effects from stocks related to the target stock should not be neglected in today’s
information society. Thus, this study proposes a general tensor representation and fusion framework
to capture the intrinsic interactions of multimodal and multitemporal stock market information
based on the invariant correlations among stocks within a short period. Specifically, we construct a
general correlation matrix to represent the correlation between the stocks with respect to a given
mode of information for a single day. Then, for a short period, with multimodal information, the
matrices are concatenated into a tensor, which is highly inner correlated. A tensor robust principal
component analysis (TRPCA) model is then employed to fuse the multimodal and multitemporal
information, adaptively infer essential interactions, and faithfully enhance the inner correlation of
the constructed tensor. Experiments on real datasets show that the proposed tensor representation
and fusion framework can efficiently improve the performance of stock movement prediction. The
performance of the investment simulation further illustrates the superiority of the proposed method
in terms of the return rate (26.73%) for a full year.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

The stock market is a place for investors to realize finan-
ial asset allocation, and its healthy and stable development
s an important guarantee of economic growth. With the rise
f Internet media, the emergence of massive market informa-
ion has led to constant changes in investors’ expectations of
tock prices, and the resulting risk of abnormal stock price fluc-
uations has attracted considerable attention from academia
nd industry. In fact, both the ‘‘efficient market hypothesis’’ and
‘irrational investor theory’’ collaborated to verify the close cor-
elation between stock market volatility and media information
elease, dissemination, and absorption [1,2]. Therefore, how to
ccurately quantify the effects of media information has become
n important challenge in the field of stock market volatility
esearch.

In previous studies, scholars have identified many market
nformation factors that influence stock price volatility, including
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trading data, news, social media, public sentiment, and search
behavior [3]. Therefore, scholars have attempted to analyze stock
market volatility using fused market information. For example,
[4] synthesized stock information and Wall Street Journal content
and found that news sentiment combined with stock fundamen-
tals can effectively portray stock market volatility trends. [5] also
found that multidimensional data have better predictive perfor-
mance. These studies show that the stock market is influenced
by multidimensional market information, and the fusion analysis
of different types of market information on stock volatility has
received much attention.

However, fusing multimodal market information accurately
and efficiently remains challenging. In recent years, as a gen-
eralization of the matrix, the tensor has become an important
tool for better modeling the relationships of multisource or mul-
timodal data, and has been applied to a wide range of real-world
problems, such as image processing, earthquake prediction, per-
sonal web search, and higher-order web link analysis. For the
stock market, the tensor format has been shown to well capture
the interaction among different pieces of market information
[6,7]. Furthermore, considering that most previous studies have
been trained on single stocks, severing the correlation between
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tocks and the stock market environment, scholars are beginning
o take the stock comovement relationship into account in their
haracteristic representations by decomposing and reconstruct-
ng the tensor [6]. For example, [8] used coupled stock similarity
o construct the stock-correlation matrix and incorporate the
orrelation into the stock data tensor representation through a
ensor reconstruction algorithm to achieve better prediction re-
ults. [9] constructed a stock association network based on media
ews data and characterized a single stock in the tensor manner.
In fact, because the amount and speed of information dis-

emination in today’s stock markets have increased dramatically,
he effects of stock comovements are reflected at a faster rate,
ringing new challenges and opportunities for stock market fore-
asting. Unfortunately, most previous studies treat stocks in the
arket as isolated, which makes it difficult to capture the un-
erlying mechanisms of stock comovements. Therefore, instead
f treating stocks independently, we model the correlation of
tocks, with respect to different information sources in the mar-
et, under a unified tensor representation scheme. Then, a tensor
obust principal component analysis (TRPCA) model is further
stablished to adaptively fuse the multimodal and multitemporal
ata by employing the homogeneity of those correlations. The
usion result captures the intrinsic correlations and interactions
mong different stocks from the multimodal and multitemporal
arket data. Finally, an attention-based long short-term memory

LSTM) classifier is trained based on the fusion results and used
or stock market forecasting. The contributions of this study are
s follows.

• We propose a novel stock-correlation representation
scheme, in which the multimodal and multitemporal market
information is well structured in the tensor format. Then, to
fully exploit the essential inner correlations, we employ a
tensor robust principal component analysis (TRPCA) model
to further organically fuse multimodal and multitemporal
market information.

• Based on the results from our general tensor represen-
tation and fusion framework, a long short-term memory
(LSTM) with the attention mechanism is tailored to pre-
dict stock movements. Experiments are conducted on one
full year of data on the Chinese securities market and one
and a half years of data on S&P 500 firms. Our method,
which consists of the tensor representation, TRPCA fusion,
and the attention-based LSTM, achieves better performances
compared with state-of-the-art methods.

. Related work

In this section, we first review the relevant literature on stock
ovement prediction and tensor representation. Subsequently,
ome basic concepts are provided on which we established our
ensor framework.

.1. Media-aware stock movements

In the digital age, stock price fluctuations depend on the com-
ination of numerous pieces of market information. In previous
tudies, owing to the simple structure of the market information
nvironment, scholars focused on refining the main influential
actors of stock market operation [10–12], such as exploring
he effect of different market factors on stock volatility one by
ne from the perspectives of economic indicators, market envi-
onment, policy changes, investor sentiment, etc. That is, they
ismantled and analyzed the causal links between various market
actors and stock market volatility. However, with the increasing
omplexity of the stock market information environment, the
nalysis of market factors based on a single dimension is too
2

one-sided, and market-influencing factors are no longer a simple
numerical value to be characterized. As a result, scholars have
begun to note that the fusion analysis behind various types of
market information is the key to resolving stock price volatility.
In this context, the study of various types of market informa-
tion fusion related to stock volatility has become mainstream in
academia.

In the study of market information fusion, scholars have
broadly divided market information into two categories, i.e., fun-
damental information and media information, and based on the
combination of these two types of market information, they have
explored the effect of market information fusion. In the process
of modeling the fusion of fundamental and media information,
the market information fusion process aims to capture the com-
bined effect of multiple pieces of market information on stock
volatility. How to preserve as much as possible the interaction
between different types of market information while fusing them
is the key to the fusion process. The common strategy of fusion
methods, however, is to simply concatenate numerical economic
indicators and textual vector-based media into a super compound
vector, which inevitably ignores the interactions among different
information types, resulting in the loss of some key informa-
tion [13,14]. To capture the intrinsic associations among different
information sources, some researchers have applied tensor theory
to model the complicated market information space to gain a
better understanding of stock market movements [6,15]. Specifi-
cally, those studies represent one type of information as a tensor
mode, and the core tensor is applied to record the links among
different information sources. The core tensor is constructed
based on the input feature space of market information via tensor
decomposition and reconstruction, which can be considered a
static fusion method.

Notably, the stock market has two important characteristics:
time series and comovement. First, the stock trend itself is a time
series. Since stock prices are not completely controlled by random
factors, the nature of the time series can objectively describe the
pattern of historical data changes over time, which is useful for
predicting future stock price trends [6]. The static fusion analysis
approach disconnects the coherence of market information in
time and constructs the links of different sources based merely
on their physical structures rather than their natural interactions,
resulting in stock price forecasts that are much less effective.
Second, modern finance research has pointed out that the rela-
tionship among listed firms causes momentum spillover effects,
i.e., the stock returns of relevant listed companies help in the
prediction of the stock trend of the target firm. These momentum
spillover effects among related stocks are affected by a variety of
interfirm linkages or similarities. Restricting interfirm relatedness
to a particular type of firm relation makes it difficult to capture
the entirety and nature of the momentum spillover effects among
related firms, which inevitably causes errors in stock predictions.

To summarize, in contrast to most existing studies, which
consider only market information fusion in the representation
stage, our method fuses multimodal and multitemporal data by
employing the homogeneity of those correlations to capture the
intrinsic correlations and interactions among different stocks.
The proposed approach of market information fusion aims to
achieve better stock predictive power, which has rarely been
covered in previous studies.

2.2. Tensor

The tensor is a higher-order generalization of the vectors
and matrices. It is able to structurally characterize data from
different sources, such as hyperspectral images [16,17], magnetic
resonance imaging (MRI) data [18], video data [19], high-order
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eb links [20], personalized web search data [21], and seismic
ata [22]. By representing the data in a tensor-based manner,
he inner structure of the data, which are always inherently mul-
idimensional, would naturally be preserved. In general, those
ata in the tensor format are always inner correlated, result-
ng in low rankness. This contributes to mining the high-order
orrelations for subsequent applications, such as action classifi-
ation, multiview subspace spectral clustering, face recognition,
nd multivariate spatiotemporal analysis [23,24].
Since a tensor is able to fuse multidimensional data effectively

nd can also reduce the noise of fusion via multiple decompo-
itions, it has received extensive scholarly attention in media-
ware stock movements. For example, Li et al. [6] applied tensors
o stocks by exogenously fusing multidimensional information
n historical transaction data, media sentiment, and company
usiness conditions into a tensor to investigate the effect of mul-
idimensional features on stock price changes. Wang et al. [25]
roposed a novel multimodal tensor fusion network (MTFN) to
chieve significant matching performance between images and
ext at acceptable model complexity.

The reason that tensors can capture the inner interactions of
ultiple points of market data is that decomposition methods

or tensors can reduce the multidimensional data to achieve the
ffect of data fusion. Common tensor decomposition methods
nclude the CANDECOMP/PARAFAC (CP) decomposition
26,27], the Tucker decomposition [28,29], and tensor singular
alue decomposition (t-SVD) [30–32]. The main purpose of tensor
ecomposition is to reduce the rank of the tensor to obtain a
epresentation of the core data in the tensor. By decomposing
he constructed tensor, we can obtain the multisource fusion
nformation containing the best representation.

In particular, the ranks of the tensors are still not unique, and
here are four mainstream notions of the tensor rank, i.e., the
P-rank [33] based on CP decomposition, the Tucker-rank cor-
esponding to the Tucker decomposition [28], the tensor train
TT)-rank derived from the TT decomposition [34], and the newly
merged tubal-rank defined with t-SVD [31]. In this work, we
ainly focus on the t-SVD framework, since the tensor–tensor
roduct is first defined within it, avoiding the loss of information
nherent in matricization or flattening [31]. Although the tensor
ank minimization problems are always NP-hard, minimizing the
ensor nuclear norm (TNN), which is a surrogate of the tubal-rank
nd easy to optimize, has shown its effectiveness in enhancing
he low-rankness [35,36].

.3. Tensor basics and preliminaries

Throughout this study, we use lowercase letters, e.g., x, bold-
ace lowercase letters, e.g., x, boldface uppercase letters, e.g., X,
nd boldface calligraphic letters, e.g., X , to denote scalars, vec-
ors, matrices, and tensors, respectively. Here, X ijk denotes the
i, j, k)-th element of a given third-order tensor X ∈ Rn1×n2×n3 .
he tensor Frobenius norm of a third-order tensor X is defined

as ∥X∥F :=
√

⟨X ,X ⟩ =

√∑
ijk X

2
ijk.

Next, we list the basic definitions and a theorem of the t-
SVD framework and the tensor nuclear norm (TNN). Those con-
tents were derived in [32,37]; we restate them here for the
convenience of the reader.

Definition 1 (Tensor Conjugate Transpose). The conjugate trans-
ose of a tensor A ∈ Cn2×n1×n3 is the tensor AH

∈ Cn1×n2×n3

obtained by conjugate transposing each of the frontal slices and
then reversing the order of the transposed frontal slices 2 through
n3, that is,

(
AH

)(1)
=

(
A(1)

)H and
(
AH

)(i)
=

(
A(n3+2−i)

)H (i =

2, . . . , n ).
3

3

Definition 2 (t-prod). The tensor–tensor product (t-prod) C =

A ∗ B of A ∈ Rn1×n2×n3 and B ∈ Rn2×n4×n3 is a tensor of size
n1 × n4 × n3, where the (i, j)-th tube cij: is given by

cij: = C(i, j, :) =

n2∑
k=1

A(i, k, :) ∗ B(k, j, :) (1)

where ∗ denotes the circular convolution between two tubes of
the same size.

Definition 3 (Special Tensors). The identity tensor I ∈ Rn1×n1×n3

is a tensor whose first frontal slice is the n1 × n1 identity ma-
trix and whose other frontal slices are all zeros. A tensor Q ∈

Cn1×n1×n3 is orthogonal if it satisfies QH
∗ Q = Q ∗ QH

= I. A
tensor A is called f-diagonal if each frontal slice A(i) is a diagonal
matrix.

Theorem 1 (t-SVD). For A ∈ Rn1×n2×n3 , the t-SVD of A is given by

A = U ∗ S ∗ VH (2)

where U ∈ Rn1×n1×n3 and V ∈ Rn2×n2×n3 are orthogonal tensors
and S ∈ Rn1×n2×n3 is an f-diagonal tensor.

Definition 4 (Tensor Tubal-Rank). The tubal-rank of a tensor A ∈

Rn1×n2×n3 , denoted by rankt (A), is defined as the number of
nonzero singular tubes of S, where S comes from the t-SVD of
A, A = U ∗ S ∗ V⊤. That is, rankt (A) = #{i : S(i, :, :) ̸= 0}.

Definition 5 (Block Diagonal Operation). The block diagonal oper-
ation of A ∈ Rn1×n2×n3 is given by

bdiag(A) ≜

⎡⎢⎢⎢⎣
A(1)

A(2)

. . .

A(n3)

⎤⎥⎥⎥⎦ , (3)

where bdiag(A) ∈ Cn1n3×n2n3 .

Definition 6 (Tensor Nuclear Norm (TNN)). The TNN of a tensor
A ∈ Rn1×n2×n3 , denoted by ∥A∥TNN, is defined as

∥A∥TNN ≜ ∥bdiag(Z)∥∗, (4)

where Z ∈ Rn1×n2×n3 is the Fourier transformed (along the third
mode) tensor of A. The TNN can be computed by summing the
matrix nuclear norms of the frontal slices of Z . That is, ∥A∥TNN =∑n3

i=1 ∥Z(:, :, i)∥∗.

3. Proposed essential tensor learning framework

As aforementioned, the stock market is affected by many
factors from various sources. In the early literature, researchers
usually constructed a feature vector with the direct concatenation
of the multimodal and heterogeneous data. This will unavoidably
destroy the intrinsic structure of these data, causing the loss
of abundant important information [13]. In addition, stocks in
the market are not isolated. Based on the momentum spillover
effect, the price of one stock will also be affected by the correlated
companies. In this paper, we propose an essential tensor learning
framework for multimodal and multitemporal market informa-
tion, which consists of three modules, i.e., tensor representation,
fusion stage, and prediction. The tensor representation and fusion
stage could capture the inner correlation between different stocks
from multimodal factors. Subsequently, these fusion results are
utilized to track stock movements through the prediction module.

Fig. 1 shows an overview of the proposed approach.
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3.1. Tensor-based representation for multimodal and multitemporal
data

In this section, we propose unifying multimodal and multi-
temporal market information factors in the tensor format, while
maintaining their inner structure.

Suppose there are N stocks in the market, and for each of
hem, we have M types of market information, e.g., historical
ransactions, media sentiment, and company business conditions,
hat cause stock market volatility. At the tth (t = 1, 2, . . . , T ) day,
for the ith company (i = 1, 2, . . . ,N), its jth (j = 1, 2, . . . ,M)
ype of the market information can be written as a feature vector
s
j(t)
i ∈ Rd(j)×1,

here d(j) indicates the dimension of the features of the jth type
f the market information. For instance, the historical transaction
ata contain the highest price, lowest price, opening price, closing
rice, turnover, trading volume, and P/B and P/E ratios, composing
n eight-dimensional feature vector.
The jth type of market information for all stocks in the market

an be formulated as a matrix:

j(t)
=

[
xj(t)1 , xj(t)2 , . . . , xj(t)N

]⊤

∈ RN×d(j).

We can see that X j(t)s (j = 1, 2, . . . ,M and t = 1, 2, . . . , T )
constitute multimodal, multitemporal, and heterogeneous fac-
tors. It is not easy to directly fuse them without destroying
their inner structures. Fortunately, the inner correlation between
different stocks is expected to be homogeneous. Thus, for the jth
type of market information, we construct the correlation matrix
of different stocks as

Cj(t)
= γ j(t)Xj(t)Xj(t)⊤sj(t) ∈ RN×N , (5)

where Xj(t)
∈ RN×N is the similarity matrix of the jth type of

market information on the tth day and γ j(t) is a nonnegative
weighting parameter1 related to the scale of xj(t)i . Specifically,
with scale information, the use of nonnegative weighting param-

1 We remark here that multiplying by a nonnegative weighting parameter
ill not break the homogeneity of those correlation matrices and that retaining
he scale information will be helpful for subsequent prediction.
4

eter γ j(t) can further preserve the heterogeneous characteristics
of each stock while preserving the homogeneous correlation of
stocks. In this study, we set γ j(t)

= ⟨
∑N

i=1 x
j(t)
i ,

∑N
i=1 x

j(t)
i ⟩, and it

orks well. Here, Sj(t) ∈ RN×N is a diagonal matrix, defined as
ollows:

j(t)
=

⎡⎢⎢⎢⎣
∑N

i=k sk,1 0 · · · 0
0

∑N
i=k sk,2 · · · 0

...
...

...
...

0 0 · · ·
∑N

i=k sk,N

⎤⎥⎥⎥⎦ ,

where sk1,k2 = exp(
∥xj(t)k1

−xj(t)k2
∥
2
2

η2
) and k1, k2 = 1, 2, . . . ,N . The role

of Sj(t) in Eq. (5) is to further enhance the similarity among stocks,
which are originally close to each other, in the correlation matrix.

Finally, the correlation matrices are stacked together as a
tensor C ∈ RN×N×MT . We can see that each N-by-N slice of C
represents the correlation of N stocks in the market with respect
to a single day and a given factor. Moreover, as shown in Fig. 1,
a lateral slice reflects the correlation of a given stock with other
stocks in T days and with M types of market information. The
columns of this lateral slice are expected to be relevant, which
allows for further fusion in the subsequent section.

3.2. TRPCA for multimodal and multitemporal data fusion

The tensor C ∈ RN×N×MT represents M types of market
information, with respect to N stocks in T days. To adaptively
infer the homogeneity and reject the bias caused by outliers,
which are unavoidable in the market information, we employ the
TRPCA [36] model:

min
Z,E

∥Z∥TNN + λ∥E∥1

s.t. Z + E = C,
(6)

where Z, E ∈ RN×N×MT are the homogeneous part and the sparse
error part, respectively, and λ is a nonnegative parameter. Here,
∥Z∥TNN is the TNN of Z . Minimizing the TNN enhances the low-
rankness of Z , which enforces the essential structure of those
N-by-N slices of C fused organically in Z . ∥E∥1 denotes the ℓ1
orm of E , i.e., the sum of the absolute values of the entries in E ,
he minimization of which enhances the sparsity of E .
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We adopt the alternating direction method of multipliers
(ADMM) to minimize Eq. (6). First, the augment Lagrangian func-
tion of Eq. (6) is

Lβ (Z, E,M)

=∥L∥∗ + λ∥E∥1 + ⟨M,C − L − E⟩ +
β

2
∥C − L − E∥

2
F

=∥L∥∗ + λ∥E∥1 +
β

2
∥C − L − E +

M
β

∥
2
F + const.,

(7)

where β denotes the Lagrange parameter,M ∈ RN×N×MT denotes
the Lagrangian multiplier, and const. = −

β

2 ∥
M
β

∥
2
F is constant

ith respect to Z and E .
Then, we alternately update (Z, E,M) as

Zk+1
= U ∗ Shrink 1

β
(S) ∗ V⊤,

Ek+1
= Shrink λ

β

(
C − Zk+1

+
Mk

β

)
,

Mk+1
= Mk

+ β(C − Zk+1
− Ek+1),

(8)

where U ∗ S ∗ V⊤ denotes the t-SVD of C − Ek
−

Mk

β
and the

ensor soft-thresholding operator Shrinkv(·) indicates that

hrinkv(A) = A

ith

Ai1 i2···iN =

{
Ai1 i2···iN − v, Ai1 i2···iN > v,

0, otherwise.

From the histogram of the singular values2 of C and Z after the t-
VD in Fig. 1, we can see that the singular values in Z are sparser
han those in C. Thus, the correlations among stocks are believed
o be more well-organized in the fusion result Z . Next, the fusion
esult Z is adopted to train the classifier for prediction.

.3. Attention-based LSTM

The prediction of stock trends is a time-series problem since
he stock movements are also determined by historical mar-
et information in addition to the current condition. To capture
he time-series relationship between fused features and stock
ovements, the LSTM model is utilized to make predictions in
ur proposed framework. The LSTM model is a variant of the
ecurrent neural network (RNN). The RNN is a deep network
rchitecture in which the connections between hidden units form
directed cycle and the previous information on hidden states
an be kept with this feedback loop mechanism. Therefore, RNNs
re preferred for problems where the system needs to store
nd update the context information for long-term dependencies.
owever, because of the vanishing and exploding gradient prob-
ems, the gradient becomes too small or too large, which makes it
ifficult to optimize the long-term mechanism of RNNs. To handle
ong-term dependencies, the LSTM model is proposed to address
he optimization process with a gate structure [38].

Specifically, the LSTM unit comprises forget, input, and output
ates. Once fused market information zt and the cell memory ct−1
re obtained, forget gate ft is used to allow for useless information
n ct−1 to be discarded with respect to zt . Note that, zt is the
ectorized vector of Z in Eq. (6). The input gate it is utilized
o control how much current market information should be ab-
orbed into the candidate cell memory flow c̃t . In this design,
he previous cell memory ct−1 can be updated with the current

2 Here, singular values refer to the diagonal entries in each slice of the
-diagonal tensor in Eq. (2) after the t-SVD.
5

information and evolves into the current memory ct . Then, c̃t , ft ,
t , and ct are calculated as follows:

t̃ = tanh(Wczt + Ucht−1 + bc) (9)

t = σ (Wf zt + Uf ht−1 + bf ) (10)

t = σ (Wizt + Uiht−1 + bi) (11)

t = ft ∗ ct−1 + it ∗ c̃t , (12)

here zt represents the current market information, ht−1 denotes
he previous hidden states, and ct−1 denotes the previous cell
emories. Here, {Wc,Uc, bc}, {Wf ,Uf , bf }, and {Wi,Ui, bi} are

he network parameters of the candidate memory and the forget
nd input gates, respectively. Two classic activation functions,
igmoid and tanh, are also adopted. Finally, the cell memory ct
s able to capture the valuable market patterns hidden in both
he previous and current periods. The output gate ot is further
tilized to process the current cell memory ct and the market
nformation to obtain the output ht . Specifically,

t = σ (Wozt + Uoht−1 + bo) (13)

t = ot · tanh(ct ). (14)

By using the proposed architecture, we are able to capture
ime-series rules for the market information. In addition, by con-
idering the different levels of influence of the market infor-
ation in different periods, it is critical to identify important

nformation [39]. Inspired by the attention mechanism of the
uman brain [40,41], which can use limited attention resources
o select a small amount of critical information from a large
mount of data, we attempt to use the attention mechanism to
urther distinguish the effects of market information across time
n the LSTM model. In particular, assume that H is the cell state
ector [h1,h2, . . . ,ht ] produced by the LSTM layer. The output ct
alculated via the attention layer with H is described as

t =

t∑
i=1

at,ihi, (15)

here

t,i =
exp(ei)∑t
j=1 exp(ej)

, ej = wu
(
tanh(wahj + ba)

)⊤
, (16)

is the score function, and wu, wa, and ba are the variables in the
ttention layer. The training details of this classifier are presented
n the subsequent section.

. Experimental results

In this section, we conduct experiments to test the effective-
ess of the proposed tensor representation and fusion framework
or predicting information-driven stock movements. After giving
he implementation details of the experiments, we first exam-
ne the performance of the proposed classifier by comparing it
ith state-of-the-art methods. Next, discussions together with
he ablation study are reported. Finally, a simulation investment
s conducted to evaluate the proposed approach.

ataset. In this study, we extend the stock data provided by [13]
ith the news information crawled by our focus-topic crawler.
pecifically, our dataset focuses on the data of companies in CSI
00 and covers January 1 to December 31, 2015. Thirty-six com-
anies (N = 36) with completed fundamental data are selected.
he fundamental data consist of the volume, turnover rate, P/E
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Fig. 2. Example of the rolling training-test data splits.
ratio, P/B ratio, and opening, closing, highest, and lowest prices,
constituting 8-length feature vectors (d1 = 8). The news in our
ataset is crawled from East Money,3 which has almost 10 million
iews per day. By preprocessing via the sentiment qualification
echnique [9], we obtain the sentiment features, including the
ositive and negative scores, of length 3 (d2 = 3). Therefore,
e have two modes of market information (i.e., M = 2) in our

ramework. To ensure the robustness of the experiments, we fur-
her carry out a series of experiments on the actual market data
f S&P 500 firms. This dataset contains the transactional records
nd relevant news articles of the period from February 8, 2011,
o November 18, 2013. Daily transaction data are obtained from
harton Research Data Services (WRDS).4 The media corpus is

enerously provided by [42], which contains textual financial
ews from Reuters and Bloomberg. Every successive 10 months
f data are set as one period, in which the first 9 months are for
raining and the remaining 1 month is for testing (see Fig. 2).

valuation metrics. Stock movement prediction is a binary clas-
ification problem. Following the studies of [9,43], we use the
ccuracy (ACC) and Matthews correlation coefficient (MCC) to
valuate the effectiveness of all the approaches. Given the confu-
ion matrix, which contains the number of samples classified as
rue positive (TP), false positive (FP), true negative (TN), and false
egative (FN), the formulas for the ACC and MCC are as follows:

CC =
TP + TN

TP + TN + FP + FN
, (17)

nd

CC =
TP · TN − FP · FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

. (18)

igher ACC and MCC values indicate better prediction results.

xperimental settings. All experiments are implemented using
ython modules Scikit-learn and Keras. The optimal parameters,
ncluding η (in Eq. (5)), λ (in Eq. (6)), and T (in Eq. (6)) are set
y grid search. Specifically, we test our method under different
yperparameters, with η varying from 0.2 to 0.6 with a step of
.05, λ varying from 10−2 to 102 with a step of 0.5 in terms of its

index, and T varying between 1 and 20 with a step of 1. Figs. 3
and 4 present the predicted results in terms of the evaluation
metrics. From Fig. 3, we can see that the prediction accuracy is
best when T = 12. This result supports the previous findings
that the historical pattern is crucial for tracking stock movements
[6,7]. Moreover, the ACC value is best when η = 0.5 and λ =

3 https://www.eastmoney.com/
4 https://wrds-www.wharton.upenn.edu
6

101/2, as shown in Fig. 4. Specifically, we present the results of
parameters η and λ in terms of T = 1, T = 6, and T = 12 (the
best). Thus, we set η = 0.5, λ = 101/2, and T = 12 throughout all
the experiments. When training the classifier, we adopt the Adam
optimizer [44] and set the learning rate to 0.001. In the attention
neural network, the batch size is set as 8 with epoch 100, and
the number of neural nodes is selected from {16, 32, 64, 128}.
To prevent overfitting, dropout [45] with a rate of 0.5 is applied.
Here, we report results for the parameters on the CSI 100 dataset.
Similar parameter results can be found on the S&P 500 dataset.
Note that, to ensure the robustness of classifier evaluation, we
trained each classifier in our experiments 10 times with different
initializations as suggested by [46]. The average of selecting runs
in the testing set is reported to eliminate the fluctuations caused
by random initializations.

4.1. Comparisons with state-of-the-art methods

In this section, we compare the proposed method with five
state-of-the-art methods that consider multimodal market infor-
mation for predictions. These are as follows.

• TeSIA [6] is a tensor-based learning approach that fuses
firm-mode, event-mode, and sentiment-mode data to make
stock movement predictions.

• HAN-SPL [47] addresses the influence of news on stock pre-
diction by capturing sequential content dependency and di-
verse influence and applying the self-paced learning mech-
anism.

• CMT [7] fuses heterogeneous data into a tensor and captures
the intrinsic relations among the events and the investors’
sentiments with quantitative features and correlation matri-
ces.

• MFN [43] learns the representation of each review by us-
ing a convolutional neural network (CNN) and integrating
multiview textual features and extended knowledge.

• Multi-GCGRU [48] utilizes a graph convolutional network
and gated recurrent units to incorporate the cross effect
from related stocks to make predictions.

We compare our approach with the baselines on stock predic-
tion groups using the same dataset. Table 1 presents details of the
comparison of our experimental results. It shows that in terms of
ACC and MCC metrics, the proposed method outperforms other
machine learning models, with the best average ACC of 0.5628
and MCC of 0.1316, respectively, representing an improvement
in the ACC of at least 1.1%. For the S&P 500 dataset, the proposed
method achieves the best performance, with an average ACC
of 0.5212 and MCC of 0.0415, representing an improvement in

https://www.eastmoney.com/
https://wrds-www.wharton.upenn.edu
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Fig. 3. ACC (left) and MCC (right) values for different days.
Fig. 4. ACC values for different values of λ and η.
Table 1
Quantitative metrics of the prediction results of different methods.
Classifier CSI 100 S&P 500

ACC MCC ACC MCC

TeSIA [6] 0.5278 0.0551 0.5056 −0.0163
HAN-SPL [47] 0.5302 0.0617 0.5186 0.0102
CMT [7] 0.5437 0.0899 0.5199 0.0078
MFN [43] 0.5567 0.1094 0.5169 0.0401
Multi-GCGRU [48] 0.5349 0.0665 0.5172 0.0329
Ours 0.5628 0.1316 0.5212 0.0415

the ACC of at least 1.56%. Clearly, our framework is effective
and meets the top level of the current research. These findings
further prove the effectiveness of the tensor-based multimodality
fusion mechanism with low-rank learning. In addition, the p-
values for the t-tests are all less than the critical confidence value
(0.05), indicating that the superior performance of the proposed
approach is statistically significant.

4.2. Ablation study

Our framework consists of three dominant pipelines: the
representation part, the fusion stage, and the classifier. In this sec-
tion, we present the results of ablation experiments that are con-
ducted to analyze these three elements of the proposed frame-
work. Then, we further explore the scalability of the proposed
framework. Specifically,

4.2.1. Effectiveness of tensor representation
Within the representation part, the employment of multi-

modal and multitemporal information plays a key role. Therefore,
we remove the multimodal part or the multitemporal part, re-
spectively. That is, we use only the trade data (M = 1) to
7

construct the correlation matrix or consider only the multimodal
data for one day (T = 1). In the first block of Table 2, we present
the ACC and MCC values of the prediction results obtained by the
degraded versions of our method mentioned previously. It can
be seen that when our method lacks the multimodal structure,
the ACC decreases by 0.0247 and the MCC drops by 0.0541. This
result shows that the utilization of multimodalities is helpful for
stock movement prediction. The ACC and MCC values decrease
by 0.0386 and 0.1124, respectively, when the multitemporal in-
formation is not considered. This outcome shows that historical
information in the market is important.

4.2.2. Effectiveness of fusion stage
As mentioned in Section 3.2, a fusion stage is proposed to

further capture the essential structure of the multimodal and
multitemporal data. To evaluate its effectiveness, we test the
prediction performance by setting the representation result C as
the training data instead of the fusion result Z , namely, omitting
the fusion stage. In the second block of Table 2, we can observe
a sharp decline in both ACC and MCC (only 0.5177 and 0.0041,
respectively), when the fusion stage of performing the optimized
TRPCA model is omitted. This finding proves that the fusion stage
of the proposed TRPCA is able to effectively capture the intrinsic
structure of the multimodal and multitemporal data.

4.2.3. Effectiveness of the proposed classifier
In this section, we first present a series of experiments con-

ducted to analyze the attention mechanism in the proposed clas-
sifier. Specifically, we compare it with two classic attention mech-
anisms (attention_dot and attention_general), which differ from
ours in their score function [?]. In the third block of Table 2,
we can observe there is no significant gap between classifiers
with different attention mechanisms in terms of both ACC and
MCC, although the best performance is achieved by our proposed
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Table 2
Ablation comparison.
Element Classifier CSI S&P

ACC MCC ACC MCC

Tensor Ours w/o the multimodal structure 0.5381 0.0775 0.5160 0.0037
Representation Ours w/o the multitemporal structure 0.5242 0.0192 0.5051 −0.0637

Fusion Stage Ours w/o the fusion stage 0.5177 0.0041 0.4984 −0.0784

Attention attention (dot) 0.5619 0.1301 0.5203 0.0394
Mechanism attention (general) 0.5602 0.1284 0.5182 0.0381

Ours 0.5628 0.1316 0.5212 0.0415
Table 3
Stock movements prediction results of several different classifiers.
Classifier CSI 100 S&P 500

ACC MCC ACC MCC

BPNN 0.5077 0.0086 0.5096 −0.0123
CNN 0.5255 0.0469 0.5132 0.0272
LSTM 0.5288 0.0741 0.5077 0.0086
The proposed classifier 0.5628 0.1316 0.5212 0.0415
BPNN-v 0.5019 0.0049 0.5043 −0.0587
CNN-v 0.5184 0.0299 0.5060 −0.0355
LSTM-v 0.5248 0.0343 0.5097 −0.0394
The proposed classifier-v 0.5192 0.0133 0.5200 0.0175

method. This suggests that distinguishing market information
at different periods via an attention mechanism can improve
forecasting performance, but how this distinction (via different
attention mechanisms) is achieved does not have a significant
effect on our classifier. A good explanation is that the representa-
tions of market information are sufficient for the prediction task,
which consolidates the effectiveness of the proposed framework,
especially the TRPCA model for essential tensor learning.

In addition, from the perspective of the classifier models,
e further examine the effectiveness of the proposed attention-
ased LSTM classifier and three selected classification techniques:
he back-propagation neural network (BPNN), the CNN, and a
lain LSTM classifier. Table 3 presents the quantitative metrics
f the results for the different classifiers. We also train these
lassifiers with vectors, which are directly concatenated by the
eatures introduced in Section 4. In Table 3, classifiers with the
uffix ‘‘-v’’ denote that the training data are feature vectors.
From Table 3, we can see that the performance of the pro-

osed attention-based LSTM trained using our fusion result is
ignificantly superior to that of the others in terms of both the
CC and MCC metrics. We can also see that the performances of
he classifiers trained with vectors are limited. This result reveals
hat the proposed tensor representation and fusion framework
an efficiently fuse multimodal and multitemporal information,
ith the inner structure being well preserved. In addition, the
erformance of the proposed attention-based LSTM is signifi-
antly worse than that when trained using our fusion result. On
verage, ‘‘LSTM-v’’ is better than our attention-based LSTM. This
nteresting phenomenon shows that the attention mechanism is
ore suitable for tensor data generated by our tensor repre-
entation and fusion framework, being able to further identify
seful information based on the obtained fused features. For the
&P 500 dataset, the proposed method again achieves the best
erformance, with improvements of at least 1.56% and 52.57% in
erms of the ACC and MCC, respectively.

.2.4. Scalability of the proposed framework
In addition, to further investigate the scalability of the mul-

imodal design, we conduct a prediction task based on higher
imensional market information. Specifically, previous studies
ave demonstrated that technical factors and social media can
8

Table 4
Stock movements prediction results with different input dimensions.
Classifier CSI 100 S&P 500

ACC MCC ACC MCC

Ours+media (M = 3) 0.5631 0.1335 0.5218 0.0427
Ours+tech (M = 3) 0.5636 0.1349 0.5224 0.0449
Ours+media & tech (M = 4) 0.5648 0.1367 0.5241 0.0472
Ours (M = 2) 0.5628 0.1316 0.5212 0.0415

shape stock movements [6]. We evaluated the multimodal frame-
work of this study by incorporating technical factors and social
media into our dataset. From the perspective of textual infor-
mation, we incorporate the social media information to extend
the dimension of the input (ours+media). From the perspective
of numerical data, we incorporate the technical indicators to
extend the dimension (ours+tech). These two methods extend
the bimodal input to a trimodal input (i.e., M = 3). Moreover,
we further consider both social media and technical indicators
to evaluate the proposed framework (M = 4). Note that, simi-
lar to the news, textual media information is pre-processed by
quantifying sentiment.

Table 4 indicates that the proposed method is a scalable
framework for multimodal inputs and its predictive power can
be enhanced by incorporating more useful information. It also
can be observed that the performance improvement is somewhat
limited. A good explanation is that fundamental data and financial
news are the two main types of information that influence market
volatility in multimodal market data, which is consistent with the
previous findings of [9,46].

4.3. Investment simulation

To better evaluate our model, we conduct experiments to
simulate stock investments using data from mid-September to
December 2015. At the same time, we compare our method with
the five state-of-the-art methods mentioned in Section 4.1 on
real investments. In each investment, we set the initial capital
to RMB 100,000 (approximately USD 14,390) and compare the
cumulative daily returns on the basis of continuous investment,
during which time the CSI 100 index rises by approximately 10%.
In the simulation, we ignore transaction fees and sell and buy dur-
ing each trading day. Stocks for investment options are selected
based on our framework’s ranking of probability predictions of
the daily ups and downs of stocks. When the remaining funds are
sufficient, we maximize the purchase of stocks that are at the top
of the forecast for future ups and downs. Fig. 5 plots the income
over time. Our method (the red line) achieves the best return of
RMB 127,931 (p-values< 0.05). The return rate of our method
is 27.93% higher than those of MFN (18.34%), HAN-SPL (14.13%),
CMT (17.50%), Multi-GCGRU (17.87%), and TeSIA (9.01%). From
Fig. 5, we can also see that the performance of Multi-GCGRU,
whose final return rate is the second best, fluctuates, whereas our

method ranks first most of the time.
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. Conclusions

This study has investigated stock movement prediction from
ultiple sources of market-related data. First, to exploit the in-
er correlation among different stocks in the market, a general
ensor-based correlation representation strategy is proposed. In
his way, the market-related data, which are always multimodal
nd multitemporal, can be employed in a unified tensor structure.
onsidering the homogeneity of the correlation among different
ompanies with respect to different types of market-related data
n a short time, we optimize the TRPCA model to further enhance
he inner correlations within the tensor data. The essential struc-
ure of those multimodal and multitemporal data is believed to
e organically fused in the low-rank output of the TRPCA model,
hereas some outliers are rejected and stored in the sparse com-
onent. Then, we design an LSTM classifier with the self-attention
echanism and train it on the fusion result of the TRPCA model.
bundant numerical experiments have been conducted on the
undamental data and news data, revealing the superiority of the
roposed framework. Moreover, investment simulations show
hat our method could achieve the best return rate (26.73%) for a
ull year among all the state-of-the-art methods. In the future, we
ould extend our method by unrolling the optimization algorithm
nto a deep neural network and training it in an end-to-end
anner.
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