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Abstract

The main aim of this paper is to develop a new algorithm for computing a nonnegative
low rank tensor approximation for nonnegative tensors that arise in many multidi-
mensional imaging applications. Nonnegativity is one of the important properties, as
each pixel value refers to a nonzero light intensity in image data acquisitions. Our
approach is different from classical nonnegative tensor factorization (NTF), which
requires each factorized matrix, and/or tensor, to be nonnegative. In this paper, we
determine a nonnegative low Tucker rank tensor to approximate a given nonnegative
tensor. We propose an alternating projections algorithm for computing such a nonneg-
ative low rank tensor approximation, which is referred to as NLRT. The convergence
of the proposed manifold projection method is established. The experimental results
for synthetic data and multidimensional images are presented to demonstrate that the
performance of NLRT is better than the state-of-the-art NTF methods.
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1 Introduction

Nonnegative data are very common in many data analysis applications. For instance,
in image analyses, image pixel values are nonnegative, and the associated images can
be seen as nonnegative matrices for clustering and recognition tasks. When the data
are already high dimensional by nature, for example, video data, hyperspectral data,
fMRI data and so on, it then seems more natural to represent the information in a high
dimensional space, rather than flatten the data into a matrix. The data represented in
high dimensions are referred to as tensors.

An m-dimensional tensor A is a multidimensional array, 4 € R™*>"n_To
extract pertinent information from given large tensor data, low rank tensor decom-
positions are usually considered. In recent decades, various tensor decompositions
have been developed according to different applications. The most famous and widely
used decompositions are the canonical polyadic decomposition (CPD) and Tucker
decomposition. For more details of tensor applications and tensor decompositions, we
refer to the review papers [13, 24]. In this paper, we only target tensors in Tucker form.
Hence, in the following, we briefly review the Tucker decomposition.

Given a tensor A € R"1>*72X X" the Tucker decomposition [8, 13, 26] is defined
as follows:

A=Gx;UY x, UP x5 x, UM, (D)

that is, 1) (m)
m
Ai1,"',im = Z gjl,-~~,iji1,j1 o .Uimvjm’ 2)
J s Jm

where G = (G}, jp. ) € RITX2X>Im UK is an ny-by-ry matrix (whose columns
are usually mutually orthogonal), and xj denotes the k-mode matrix product of a
tensor defined by

Tk
oy, - y®
(G Xk U ik vig st im = g]l“']k—l]k]k+1"'JmUik,jk'
Jk=1

The minimal value of (r1, 7, ..., ) is defined as the Tucker (or multilinear) rank of
A, denoted as rank7 (A) = (r1, 72, -+ , 'm)-

Since high-dimensional nonnegative data are everywhere in the real world, and the
nonnegativity of the factor matrices derived from tensor decompositions can lead to
interpretations for real applications, many nonnegative tensor decompositions have
been proposed and developed, and most of them are based on a tensor decomposition
with nonnegative constraints. A Tucker decomposition with nonnegative constraints,
which is referred to as a nonnegative Tucker decomposition (NTD) in [12], aims to
solve

min || A — &|7
st. X=8x1 Py xp Py x3--- %, Py, 3)

SeRMm P e R, k=1,...m,
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where || - || denotes the Frobenius norm of a tensor (see the definition in Sect. 2),
and Rfﬁx'"”’" is the set of nonnegative s; X --- X s, tensors (or matrices) whose
entries are nonnegative. In [12], Kim and Choi first studied this model and proposed
multiplicative updating (MU) algorithms extended from nonnegative matrix factor-
ization (NMF) to solve it. In [32], Zhou et al. transformed this problem into a series of
NMF problems and used the MU and hierarchical alternating least squares (HALS)
algorithms on the unfolding matrices for Tucker decomposition calculations. Other
constraints, such as the orthogonality of the factor matrices, are also considered and
studied by some researchers [19, 21]. For instance, in [21], Pan et al. proposed an
orthogonal nonnegative Tucker decomposition and applied the alternating direction
method of multipliers (ADMM) to obtain the clustering information from the factor
matrices and the joint connection weight from the core tensor.

The greatest advantage of the NTD model is that the core tensor and factor matrices
can be interpretable thanks to the requirement of the factorized components. How-
ever, the approximation X is not the best approximation of A for the given Tucker
rank (rq, ..., rp,). Hence, it is required to find the best low Tucker rank nonnegative
approximation for a given nonnegative tensor .A with interpretable factor matrices and
a core tensor. In this paper, we propose the following problem. Given a nonnegative

tensor A € R we consider
r)?i% |A— X%, st rankr(X) = (r1,72, ..., 'm). 4)
>
From rankp(X) = (r1,r2,...,rm), we can deduce that there exist a core tensor

S € R/>"2%XIm and orthogonal factor matrices {Py : Py € R”k”k,PkTPk =1, k=
1, ..., m}, such that

X:SX]P] X2P2 X3---XmP s

and the entries of A" are nonnegative (X > 0). For k = 1, ..., m, let X be the k-th
unfolding of the tensor X, defined as X; € R (tt1-nmn1-ne—1)  From the definition
of the Tucker decomposition, we deduce that r, = rank(Xy), and the factor matrix
P; can be obtained by a singular value decomposition of X:

X; =P 2Qf,

Here, Xy is a diagonal matrix of size r¢-by-rg, and Qy is ]—[;’;k n;-by-ry with orthonor-
mal columns (Q,{ is the transpose of Q).

We remark that problem (4) without the nonnegativity constraint on the approxi-
mation X'is referred to as the best low multilinear rank approximation problem, which
has been well discussed and used widely as a tool in dimensionality reduction and
signal subspace estimation during the last two decades. The classical methods for
the problem are the truncated higher-order SVD (HOSVD) [8] and the higher-order
orthogonal iteration (HOOI) [9, 14], which is a higher-order extension of an iteration
method for matrices. Without the nonnegative constraint, the solution X'may have neg-
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144 T-X.Jiang et al.

ative entries that cannot preserve the nonnegative property of the given nonnegative
tensor.

Note that in the proposed model (4), we require X’ to be nonnegative, while its
factorized components (S, {Pr};’_,) are not necessarily nonnegative. For example,
given a hyperspectral image A, X can be seen as an approximate image of A, but
with a lower multilinear rank. On the one hand, we keep the approximate image X as
nonnegative. On the other hand, no constraints are added to the factorized components.
Therefore we can consider a similar idea utilized in HOSVD to identify important
features in the approximation, which are ranked based on their importance. Then we
can identify the important factorized components for classification purposes; see Sect.
4.5 for an example.

1.1 Outline and contributions

The main aim of this paper is to propose and study low multiliear rank nonnegative
tensor approximations for multidimensional image applications. In Sect. 2, we propose
an alternating manifold projection method for computing the nonnegative low multi-
linear rank tensor approximation. The projection method is developed by constructing
two projections; one is a combination of a projection of low rank matrix manifolds
and the nonnegative projection; the other one is a projection of taking the average of
the tensors. In Sect. 3, the convergence of the proposed method is studied and shown.
Section 4 presents the experimental results for synthetic data and multidimensional
images in noisy and noise-free cases. It demonstrates that the performance of the pro-
posed nonnegative low multilinear rank tensor approximation method is better than
the state-of-the-art NTF methods. Some concluding remarks are given in Sect. 5.

2 Nonnegative low rank tensor approximation

Let us first start with some tensor operations used throughout this paper. The inner
product of two same-sized tensors A and B is defined as

(Av B) = Z AiliZ"'[rrl BiliZ"'il71'

1,02, ,im
The Frobenius norm of an m-dimensional tensor A is defined as

1
2

Il =VA A= > A,

11,02, 5im

2.1 The optimization model

We first give the following lemma to demonstrate that the set of constraints in (4) is
nonempty.
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Nonnegative low rank tensor approximations 145

Lemma1 The set of constraints {X € RM>*"2X > | rank(X) = rp (kK =
1...,m), X > 0} in (4) is nonempty.

Proof First, we will prove that there always exists a tensor S € R/} ™™™ that has full
unfolding matrix rank for each mode.

For any 1 € R [let (S) (1) € R/ 7k=17k+1"m hold the elements of 7. Let
(Sk)(t);, be the ri x ry sub matrix of (S¢)(#) and det((Sk)(¢),,) be its determinant.
As we know that det ((Sr)(?),,) is a polynomial in the entries of ¢, it either vanishes
on a set of zero measures or it is a zero polynomial. We may choose (Si)(#),, to be
the identity matrix, which implies that det((S¢)(),,) are not zero polynomials. This
means the Lebesgue measure of the space whose det ((S¢)(),,) = 0 is zero, i.e., the
rank of (Sg)(¢), is rx almost everywhere.

Thus, for k = 1, ..., m, construct 7, = {S € Rr'x"'xr’"vank(&() = ry}, and let
Ty be its complement From the above analysis, we know that the Lebesgue measure
of 7; is equal to zero. Let 7 = N}, 7;; then, its complement T= Ui ]Tk, and its
Lebesgue measure is the summation of that of 7; from k = 1 to k = m, equal to zero.

This implies that the Lebesque measure of Zequals 1, i.e., S € R’} XX of unfolding
matrix rank (rq, ..., ry) exists almost everywhere.
Suppose Py € R”k”k, and Py = [Ix|Ug], where I is the identity matrix of r; and
Uy, € R'* x(nk=r1) g a random nonnegative matrix for all k = 1, ..., m. Construct
X=SxP; x---xPy,,
we obtain that X'is nonnegative and its multilinear rank is (r1, - - - , r;,,). Hence the set
of constraints is nonempty. O

From the definition of Tucker decomposition and the property of multilinear rank
that rp = rank(Xy) for k = 1, --- , m, the mathematical model in (4) can be refor-
mulated as the following optimization problem:

min Ar — Xkl %, 5
rank(X,)=ri. Xk>02” = Xl ©)
(k=

where X, and Ay are the k-th modes of the unfolding matrix of X’ and A, respectively.
The sizes of Ay and Xy, are n-by-Ny with Ny = I—[f"#k n;.

Note that from (5), {Xx }le | can be seen as m manifolds of low rank and nonnegative
matrices. Meanwhile, as the Frobenius norm is employed in the objective function,
to a certain extent, our model is tolerant to noise, which is unavoidable in real-world
data. In the next section, an alternating projections on the manifolds algorithm will be
proposed to solve model in (5).

2.2 The proposed algorithm
To start showing the proposed algorithm for (5), we first define two projections. Let

= (X e RS | x> 0} ©)
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146 T-X.Jiang et al.

be the set of nonnegative tensors. Then the nonnegative projection that projects a given
tensor onto the tensor manifold M can be expressed as follows:

— ‘)(l'lizn-im, if Xi1i2-~-im > 0’
= { 0, if Xijiyei,, <O. 7
Let
My ={Xe€ RA1IX X | rank(Xg) =r¢ }, k=1, ...,m, 8)

be the set of tensors whose k-mode unfolding matrices have fixed rank r;. By the
Eckart-Young-Mirsky theorem [11], the k-mode projections that project tensor X onto
My, are presented as follows:

7 (X) = foldy (Z o; Xp)u; Xp)v; (Xk)T) , k=1,..,m, )

i=1

where Xy is the k-mode unfolding matrix of &, 0;(Xy) is the i-th singular value of
Xk, and their corresponding left and right singular vectors are u; (Xy) and v; (Xg),
respectively. “fold;” denotes the operator that folds a matrix into a tensor along the
k-mode.

In model (5), the multilinear rank of the nonnegative approximation X’ is required
tobe (r1, ..., ru), which means &' will fall in the intersection of the sets {M};’_; and
the nonnegative tensor set M, i.e., X € [j— (Mx [ M). In the following, we define two
tensor sets on the product space R1X*/m x . .. x R1XXm (1 times of R/ >/m )
and their corresponding projections:

[ ]

Q ={&, &, X)Xy == =&, eM}. (10)

We remark that Q; is a convex and affine manifold since M is a convex set and an affine
manifold. The projection 7g, defined on Q; is given by

an(le T Xm)

1 1
= <— (X)) + -+ (X)), - ,—(H(X1)+--'+7T(Xm))>, (1)
m m

where 7 is defined in (7).
[ ]

Q={X1,X,...,&,) : X1 €M, X, €My, ..., &, €M,}. (12)

Foreachi € {1, ..., m},M; is a C* manifold (Example 2 in [17]). Hence, 2, can be
regarded as a product of m C° manifolds, i.e., 2 = Mj x My - - - X M,,. The projection
7TQ, on Qy is given by

where 7 (k = 1, ..., m) are defined in (9).
We alternately project the given A onto Q; and Q; by the projections 7q, (&) and
7q, () until it is convergent, and refer the algorithm to as the alternating projections
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Nonnegative low rank tensor approximations 147

algorithm for the nonnegative low rank tensor (NLRT) approximation problem. The
proposed algorithm is summarized in Algorithm 1. Note that the dominant overall
computational cost of Algorithm 1 can be expressed as the SVDs of m unfolding
matrices with sizes ny by Ny = ]_[?#k nj, respectively, which leads to a total of

0Ty nj) Xy ri) flops.

Algorithm 1 Alternating Projections Algorithm for Nonnegative Low Rank Tensor
(NLRT) Approximation

Input: Given a nonnegative tensor 4 € R™1*">*/m _this algorithm computes a Tucker rank (ry, rp, ..., F'm)
nonnegative tensor close to A with respect to (5).

1: Initialize s = 0, 20 = .. = 2 = Aand 2@ = 2V, 2V, .., 2I0)
2: while the convergence criterion is not satisfied

BT Lo (=D s—1) (s—1)

4 O Y =, (2T 2 2 )

s 2. 200 2y = ) 8

6: end while

Output: &) = (21", 2, ... z)

Remark: The convergence criterion can be used by setting the maximum number of iterations; or/and the
relative difference between successive iterates HZ(X) — z6=D ||p/||Z(571) || F being less than a positive
number €. In our numerical results, we set the convergence criterion based on the relative difference with
e=1072,

3 Convergence analysis

The framework of this algorithm is the same as the convex problem of finding a point
in the intersection of several closed sets, and the projection sets here are two product
manifolds. In [17], Lewis and Malick proved that a sequence of alternating projec-
tions converges locally linearly if the two projected sets are C2-manifolds intersecting
transversally. Lewis et al. [15] proved local linear convergence when two projected
sets intersect nontangentially in the sense of linear regularity, and one of the sets is
super regular. Later, Bauschke et al. [3, 4] further investigated the case of nontangential
intersections and proved linear convergence under weaker regularity and the transver-
sality hypotheses. In [20], Noll and Rondepierre generalized the existing results by
studying the intersection condition of the two projected sets. They established local
convergence of alternating projections between subanalytic sets under a mild regular-
ity hypothesis on one of the sets. Here, we analyze the convergence of the alternating
projections algorithm by using the results in [20].

We remark that the sets Q1 and Q; given in (10) and (12), respectively, are two C*
smooth manifolds that are not closed. The convergence cannot be derived directly by
applying the convergence results of the alternating projections between two closed
subanalytic sets. By using results in variational analysis and differential geometry, the
main convergence results are shown in the following theorem.

Theorem 1 LetM;,i = 1, .., m, and M be the manifolds given in (8) and (6), respec-
tively. Let M € M N ---NM,, "M # (. Then there exists a neighborhood U of M
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148 T-X.Jiang et al.

such that whenever a sequence {Z®Y derived by Algorithm 1 falls in U, and it con-
verges to some Z* € My N - -- N\ M,, N M with rate | Z® — Z*||p = O (k%) for some
8 € (0, +00).

To show Theorem 1, it is necessary to study Holder regularity and separable inter-
section. For a detailed discussion, we refer to Noll and Rondepierre [20].

Definition 1 [20] Let A and B be two sets of points in a Hilbert space equipped with
the inner product (-, -) and the norm || - ||. Denote pa(x) = {a € A: ||x —al| = da(x)},
where dp (x) = min{||x —a|| : a € A}. Similarly, denote pg(x) = {b € B: ||x —b| =
dg(x)}, where dg(x) = min{||x — b|| : b € B}. Let o € [0, 1). The set B is o -Holder
regular with respect to A at x* € A N B if there exists a neighborhood U of x* and a
constant ¢ > 0 such that for every y € AN U and every X € pg(y) N U, one has

Ball(5, 1 +)r)Ni{x | 5 € pax), (§ — %, x — %) > Jer" T x =%} nB =9,

where r = ||y — x||. Note that pg(y) is the projection of ¥ onto B and pa(x) is the
projection of x onto A, with respect to the norm. We say that B is Holder regular with
respect to A if it is o-Holder regular with respect to A for every o € [0, 1).

Hoélder regularity is mild compared with some other regularity concepts such as
prox-regularity [22], Clarke regularity [7] and superregularity [16].

Definition 2 [20] Let A and B be two sets of points in a Hilbert space equipped with
the inner product (-, -) and the norm || - ||. We say B intersects separably A at x™ € ANB
with exponent @ € [0, 2) if there exists a neighborhood U of x* such that for every
building block z — y — 7 in U, the condition

(2=, 2= =U=ylz=3I"Nz -3z =¥l (14)
holds with a positive number y, i.e., it is equivalent to

1 —cosa -
=Y,
Iy —zl

where y is a projection point of z onto A, Z is a projection point of y onto B, and « is
the angle between z — y and z — y.

This separable intersection definition is a new geometric concept that generalizes
the transversal intersection [17], the linear regular intersection [15], and the intrinsic
transversality intersection [10]. It shows that the definitions of these three kinds of
intersections imply @ = 0 in the separable intersection.

The following results are needed to prove our main results.

Theorem 2 (Theorem 1 and Corollary 4 in [20]) Suppose B intersects A separately
at x* € A N B with exponent w € (0, 2), and B is w/2-Hdolder regular at x* with

L' {z®)} falls in U means there exists a positive integer kq such that {Z<k)}k2k0 (@R
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Nonnegative low rank tensor approximations 149

respect to B. Then there exists a neighborhood U of x* such that every sequence of
alternating projections between A and B falls in U, converges to a point x* € AN B

with a convergence rate of by — x* = O(k*%w) and a, — x* = 0(k722;ww).

Proof of Theorem 1 Let Q; and Q, be given as (10) and (12), respectively. It is clear
that finding a point in M} N --- N M, N M is equivalent to finding a point X* in the
intersection of Q1 and Q. We can set Q; and Q, to be B and A, respectively, in Theorem
2.

The first task is to show that Q; is Holder regular with respect to 2, at X*. Note
that Q; is a convex set, and g () is single-valued for every ¥ € R >>Mm x ... x
R™1>>xmm Therefore, Q) is prox-regular. It implies that Q; is w/2-Holder regular with
respect to Qp at X* where w € (0, 2).

The next task is to show that Q; intersects separably Q; at X* € Q; N Qy with
exponent w € (0, 2). Define f : @, — R as

1
FX) =80,(X) + 543 (X), X = (X1, X2, 0., X) €, (15)
with
. 0 if X € Q,
80, (X) = { 400 otherwise,
and

do, (X) = min{||[(X — W|F: W € Q}.

It follows from the definition of f(X) that f(X*) = 0 and X* is a critical point of f.
Recall that Q) and ; are two C° manifolds. Then, f islocally Lipschitz continuous,

i.e., foreach X € Qy, thereis anr > 0 such that f is Lipschitz continuous on the open
ball of center X with radius r. Assume that (V, v) is a local smooth chart of 2, around
X* with bounded V. Therefore, f (V) is bounded by the fact that f is local Lipschitz
continuous. According to the definition of the semialgebraic function [18], we can
deduce that f oy~ is also semialgebraic. Then, the Kurdyka-Eojasiweicz inequality
[1] for f o 1//‘1 holds for W := ¥ (X™). This implies that there exist n € (0, co) and
a concave function t : [0, n] such that

1) (0)=0;

(i) tisC;
(iii) T/ > 0 on (0, n);

(iv) forall W € ¥ (V) = Uwith foyr ' (W) < foy L (W) < for(W))+1n, we

have

(f oy N (W) — foy (W) dist(0, (f oy (W) > 1.

Moreover, t is analytic on V; thus, D () is continuous on V, where D is the differential
operator. For every compact subset K in V, there exists Cx := supycx [[D(W (W),
where || - || denotes the operator norm. Suppose that V isan open set containing X * in V
such that K = cl(V/) C int(V) is compact (cl (V/) denotes the closure of V' and i nt (V)
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150 T-X.Jiang et al.

denotes the interior of V). Then, forevery X € V' with f(X* < f(X) < fF(X®)+n,
we have .
Cxt'(f(X) — f(X™)) dist(0, d(f (X)) = 1, (16)

where 9 f(X) is the Fréchet subdifferential of f. We see that the Kurdyka-t.ojasiweicz
inequality is satisfied for f given in (15).

Here, we construct a function T = 117? (0 < 6 < 1) that satisfies (1)-(iv). Because
f(X*) =0, (16) becomes

Cxt'(f(X)) dist(0, d(f (X)) > 1.

Since 7/(¢) = (1 —0)r~?, there always exists a neighborhood U of X* € Q; NQ; such
that Cx(1 — )| F(X) | |IgllF = 1. ie.,

1

x)| ¢ >c, ithc = ——,
LfFXOIlglF = ¢, withe -0

a7)

forall X € Qo NU and every g € 5f(X).
By using Algorithm 1, we construct the following sequences according to Definition
2:

Z—->Y—>Z—---
Here, Y is the projection g, (Z) and Z isthe projection 7rq, (Y), with 7q, (1) and g, ()
being defined as (11) and (13), respectively. Suppose Z and ZareinU,Y € UNQ;

we obtain the proximal normal cone to Q, at Y:

NSZ(I_/) ={AV:r=0Y eng (¥ + V)

According to the definition of the Fréchet subdifferential, G € 3 f (Y) if and only if
G=V+Y—ZforeveryV e N&(Y) of the form V = A(Z — Y).

Note that ¥ € 7Q,(Z), from (15), we have f¥) = %dél (Y). Substitute f(Y) into
(17) to obtain

2do, (V) NIMZ -Y)+ (Y = 2)|F = ¢ >0,
for every A > 0. It follows that

do, (V)™ min |M(Z = ¥) + (¥ = D)llr = 27"c. (18)

Let o be the angle between the iterates, which can be defined as the angle between
Z —Y and Z — Y. Let us consider two cases:
(1) When 0 < @ < /2, we have

min [|A(Z — Y)+ (Y = 2)|r = IIY = Z||F sina.
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Nonnegative low rank tensor approximations 151

By substituting it into (18), we obtain

sin« _p
dQl(;‘/)ze—l -

Note that 1 — cosa > % sin? . We have

1 —cosua 2612

oS 1
dQI(Y)49_2 - (19)

When the numerator tends to 0, the denominator has to go to zero, which implies that
49 —2 > 0,ie., 60 > 3.

(i) When 7/2 < a < m, we have cosa < 0, i.e., | — cosa > 1. The infimum in
(18) is attained at A = 0, and (18) becomes dg, (Y)1=20 > 2-9¢. Therefore,

. 2202  5=20-12
dQ] (Y)4‘972 -
) I —cosa —2—-1.0 - . . .
Since 1 — cosa > 1, we have ——— > 2 ¢, i.e., (19) is satisfied with

0> 4

2
Therefore, Q; intersects Qy separably with the exponent w = 40 — 2 € (0, 2), the
corresponding number y in Definition 2 can be set to be 272¢~1¢2. By Theorem 2,
the result follows by setting § = (2 — w) /2w € (0, +00). O

In the next section, we test our method and nonnegative tensor decomposition
methods on synthetic data and real-world data. The results show that the performance
of the proposed alternating projections method is better than the others.

4 Experimental results

4.1 Methods compared

We compare the following state-of-the-art Nonnegative Tucker decomposition (NTD)
methods for the nonnegative tensor decomposition:

NTD-HALS: An HALS algorithm [32]

NTD-MU: A multiple updating algorithm [32]

NTD-BCD: A block coordinate descent method [30]
NTD-APG: An accelerated proximal gradient algorithm [32]
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152 T-X.Jiang et al.

We also compare the proposed model with a well-known nonnegative CANDE-
COMP/PARAFAC decomposition (NCPD), that is, given a tensor A € R! ™27/,

Z
min A - Y ha*! @a*2 @ a2,

z=1

st. A=(A1--2z)=0, A'=(al"-a®")>0 (¢t=1,....m).

(20)

The state-of-the-art methods for the NCPD model are presented as follows.

NCPD-HALS: A hierarchical ALS algorithm [5, 6]

NCPD-MU: A fixed point (FP) algorithm with multiplicative updating [28]
NCPD-BCD: A block coordinate descent (BCD) method [30]

NCPD-APG: An accelerated proximal gradient method [31]

NCPD-CDTF: A block coordinate descent method [23]

NCPD-SaCD: A saturating coordinate descent method with the Lipschitz
continuity-based element importance updating rule [2]

We list the computational cost of these methods in Table 1. The cost of the proposed
NLRT method per iteration is approximately the same as that of the NTD-type methods.
As they involve the calculation of nonnegative vectors only, the cost of the NCP-type
methods per iteration is smaller than that of the proposed NLRT method.

The stopping criterion of the proposed method and the other comparison methods
is that the relative difference between successive iterates is smaller than 107>, All the
experiments are conducted on an Intel(R) Core(TM) 19-9900K CPU @3.60 GHz with
32 GB of RAM using MATLAB. Throughout this section, we mainly test the low-
rank approximation ability of our method and the nonnegative tensor decomposition
methods with a given rank. That is, the CP rank and the multilinear rank are manu-
ally prescribed. For real-world applications, we suggest two adaptive rank adjusting
strategies proposed in [29]. The basic idea is to use a large (or a small) value of the
rank as the initial guess and adaptively decrease (or increase) the rank based on the QR
decomposition of the unfolding matrices as the algorithm iterates. The effectiveness
of those strategies has been demonstrated in [29].

4.2 Synthetic data sets

We first test different methods on synthetic data sets. We generate two kinds of
synthetic data as follows:

— Case 1 (Noisy nonnegative low-rank tensor): We generate low rank nonnegative
tensors in two steps. First, a core tensor of size r; Xrp X. . . X1y, (i.€., the multilinear
rank is (ry, rp, - - - , 1)) and m factor matrices of sizesn; xr; i =1,2,--- ,m)
are generated with the entries uniformly distributed in [0, 1]. Second, these factor
matrices are multiplied by the core tensor via the tensor-matrix product to generate
the low rank nonnegative tensors of size n; x ny X --- X n,, and each entry is
elementwisely divided by the maximal value, being in the interval of [0, 1]. Finally,
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Table 1 The computational cost

Method Complexity Details of the most expensive computations
NCPD-MU O (mr nT:l nj) Khatri-Rao product and unfolding matrices
’ times Khatri-Rao product
NCPD-HALS O(mr ]_['anl nj) Khatri-Rao product and unfolding matrices
times Khatri-Rao product
NCPD-BCD O (mr ]_[;”:1 nj) Khatri-Rao product and unfolding matrices
times Khatri-Rao product.
NCPD-APG O (mr nT:l nj) Khatri-Rao product and unfolding matrices
’ times Khatri-Rao product
NCPD-CDTF O (m%r ]_[;”:l nj) Khatri-Rao product of rank one components
and vectors times Khatri-Rao product.
NCPD-SaCD O (mr ]_[37’:] nj) Khatri-Rao product and unfolding matrices
times Khatri-Rao product
NTD-MU o, [—[’;'# njriz) MU on unfolding matrices {A; }};.
NTD-HALS o, H;" i i) HALS on unfolding matrices {A;}7"_
NTD-BCD o, ]_[;" i i (ri  n) The tensor-matrix multiplication and the

matrix multiplication between the i-th
unfolding matrix of G x j—y j; UY) and
its transpose

NTD-APG o, I—[’;l;éi njriz) The tensor-matrix multiplications among a)
the i-th factor matrix b) the transpose of
the i-th unfolding matrix of
ng_:l,j;éiU(ﬂ and c) the i-th unfolding
matrix of ng:l,_j;ﬁiU(-/)

NLRT 0((]_[7;1 np) Y ri) SVDs of unfolding matrices {A;}7__;

we add Gaussian noise to generate noisy tensors with different signal-to-noise ratio
(SNR)2.

— Case 2 (Nonnegative random tensor): We randomly generate nonnegative tensors
of sizen| xny x - - - X n,,, where their entries follow a uniform distribution between
0 and 1. The tensor data are fixed once generated, and the low rank minimizer is
unknown in this setting. For CP decomposition methods, the CP rank is set to r.
For Tucker decomposition methods, the multilinear rank is set to be [r, r, ..., r].

It is not straightforward to make the comparison between the NCPD methods with
low multilinear rank-based methods fair, owing to different definitions of the rank. For
NCPD methods, determining the CP rank of a given tensor is NP-hard [13]. Fortunately,
we have that given the multilinear rank (71, 2, . . ., 1) of a tensor, its CP rank cannot
be larger than ]_[km:1 rr. Therefore, in Case 1, we select the CP rank in the NCPD
methods from a set with three candidates, i.e., {]_[21:l Tk, ZZ’ZI rr, max; r; }. Then, we
report the best relative approximation error in the NCPD methods. We believe this
makes the comparison with the NCPD methods possible and fair to a certain extent in

2 To avoid making the entries negative, we first simulate noise with a standard normal distribution and then
I Xgroundlruth [Fa

set the negative noisy value to 0. The SNR in dB is defined as SNRyg = 201log; [Noisell
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Case 1. In Case 2, we set the CP rank as r for the NCPD methods when the multilinear
rank is [r, r, ..., r]. In this situation, the results by the NCPD methods only reflect
the representation ability of these NCPD methods.

We report the relative approximation error® to quantitatively measure the approx-
imation quality. The ground truth tensor is the generated tensor without noise. The
relative approximation errors of the results by different methods in Case 1 are reported
in Table 2. The reported entries of all the comparison methods in the table are the aver-
age values together with the standard deviations of ten trials with different random
initial guesses in the CP decomposition vectors and the Tucker decomposition matri-
ces. However, the results of the proposed NLRT method are deterministic when the
input nonnegative tensor is fixed. We can see from Table 2 that the proposed NLRT
method achieves the best performance and is also quite robust to different noise levels.

In Table 3, we report the average running time of each method. For tensors with
the same size, the NCPD methods and NTD methods need the same computation time
for different noise levels. The running time of our NLRT becomes less when the SNR
value is larger. This indicates that our method could converge faster with less noise.
Meanwhile, we can see that as the number of total elements in the tensor grows from
100 (100 x 100 x 100) to 2.3 x 107 (30 x 30 x 30 x 30 x 30), the running time
of all the methods increases rapidly. Since our method involves SVD computations,
whose computational complexity grows cubically with the dimension, our superior
efficiency is obvious for smaller data.

The relative approximation errors in Case 2 with respect to different values of r are
plotted in Fig. 1. As we stated, the tensor of a given size will be fixed once generated.
Then, for different values of r, we run each algorithm 10 times, and the averaged values
are plotted. From Fig. 1, we can see that the proposed NLRT method and NTD-BCD
perform better than the other methods. For tensors of size 40 x 40 x 40, the superiority
of our method over NTD-BCD is obvious when the rank is between 27 and 39.

4.3 Video data

In this subsection, we select 5 videos* to test our method on the task of approximation.
Three videos (named “foreman”, “coastguard” and “news”) are of size 144 x 176 x 100
(heightx width x frame), and one (named “basketball”) is of size 44 x 256 x 40. One
long video (named “bridge-far”) of size 144 x 176 x 2000 is also selected to test
the approximation ability for large-scale data. First, we set the multilinear rank to
be (r,r,---,r) and the CP rank to be r. We test our method to approximate these
five videos with varying r from 5 to 100. Moreover, we add Gaussian noise to the
video “coastguard” with different noise levels (SNRgp = 20, 30, 40, 50) and test the
approximation ability of different methods for noisy video data.

We plot the relative approximation errors with respect to » on 5 videos in Figs.
2 and 3. Although, for some videos the approximation errors of the results by the
NCPD methods are much higher than those for others, because setting CP rank to r

| Vesti -4 I
3 Defined as esum;ed groundtruth Il )
] groundtruth IIF

4 Videos are available at http://trace.eas.asu.edu/yuv/ and https:/sites.google.com/site/jamiezeminzhang/
publications.
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Fig. 1 Relative approximation errors on the randomly generated tensors in Case 2 with respect to the
different rank settings

largely constrain s the model’s representation ability; however, we can still see that the
potential of the NCPD methods are promising. For example, for the videos “news” and
“bridge-far”, the NCPD methods are even occasionally superior to the NTD methods.
Thus, the comparison with the NCPD methods provides some insights. From Figs. 2
and 3, it can be seen that the approximation errors of the results by our method are the
lowest. Fig. 4 shows the relative approximation errors on the noisy video “coastguard”
with respect to r. Similarly, our method achieves the lowest approximation errors on
the video “coastguard” with respect to different rank settings and different noise levels.
In Table 4, we list the average running time of each method.

4.4 Hyperspectral data

In this subsection, we test the different methods on hyperspectral data. We consider
four hyperspectral images (HSIs): a subimage of the Pavia City Center> data set of size

5 Data available at http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes.
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Fig.4 Relative approximation errors on the noisy video “coastguard” with respect to different rank settings
and different noise levels

200 x 200 x 80 (height x widthx spectrum), a subimage of the Washington DC Mall®
data set of size 200 x 200 x 160, the Remotelmage7 of size 200 x 200 x 89, and a
subimage of the Curprite® data set of size 150 x 150 x 150. Meanwhile, a hyperspectral
video (HSV)? of size 120 x 188 x 33 x 31 (heightx widthx spectrum x time) is also
selected to test the effectiveness of the different methods on a fourth-order tensor.

Figs. 5 and 6 report the relative approximation errors with respect to different values
of rank r, i.e., multilinear rank = (r, r, r) or (r, r, r, r) and CPrank = r. It is evident that
the relative approximation errors by our NLRT are the lowest among all the methods.
It is interesting to note that the difference between our method and NTD-BCD (the
second best method in our comparison) is more significant than that on the synthetic
fourth-order tensor data.

In Fig. 7, we display the pseudocolor images of the results for the Washington
DC Mall data set with a multilinear rank (100,100,100) and a CP rank 100. The
pseudocolor image is composed of the 113-th, 2-nd, and 16-th bands as the red, green

6 Data available at https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html.
7 Data available at https://www.cs.rochester.edu/~jliu/code/TensorCompletion.zip.
8 Data available at https://aviris.jpl.nasa.gov/data/free_data.html.

9 Data available at http://openremotesensing.net/knowledgebase/hyperspectral-video/.
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(a)NCPD-MU
PSNR: 28.32 SSIM: 0.81

(d)NCPD-BCD
PSNR: 29.10 SSIM: 0.84

(g)NTD-MU
PSNR: 29.69 SSIM: 0.85

(j)NTD-BCD
PSNR: 29.78 SSIM: 0.85

(b)NCPD-HALS
PSNR:29.12 SSIM: 0.84

(€)NCPD-CDTF
PSNR: 29.11 SSIM: 0.84

(h)NTD-HALS
PSNR: 28.65 SSIM: 0.82

(K)NLRT
PSNR: 34.56 SSIM: 0.94

(c)NCPD-APG
PSNR: 29.15 SSIM: 0.84

(f)NCPD-SaCD
PSNR: 23.78 SSIM: 0.65

(i) NTD-APG
PSNR: 29.56 SSIM: 0.84

(1) Original
PSNR: 28.32 SSIM:0.81

Fig. 7 Pseudocolor images composed of the 113-th, 2-nd, and 16-th bands of the nonnegative low-rank
approximations by the different methods when setting the rank 100 on the Washington DC Mall
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and blue channels, respectively. We also compute two image quality assessments
(IQAs): the peak signal-to-noise ratio (PSNR)!'? and the structural similarity index
(SSIM) [27] of all the spectral bands for each band. Higher values of these two indices
indicate a better reconstruction quality. In Fig. 7, we report the mean values across the
spectral bands of these two IQAs. It can be found in Fig. 7 that both the visual and
quality assessments of the NCPD methods are comparable to the NTD methods. The
proposed NLRT method largely outperforms the other methods in terms of two IQAs,
achieving first place.

4.5 Selection of features

One advantage of the proposed NLRT method is that it can provide a significant
index based on the singular values of the unfolding matrices [25] that can be used to
identify important singular basis vectors in the approximation. Those singular values
and singular vectors are natural concomitants brought out by our algorithm without
additional computations of the SVD.

Here, we take the HSI Washington DC Mall as an example. We compute the low-
rank approximations of the proposed NLRT method and the other methods in our
comparison with multilinear rank (r, r, r) and CP rank r for r = 20, 40, 60, 80, 160.
For the approximation results by NCPD methods, we normalize the base vectors in
(20) such that the £, norms of ak*l, ak2 and a*3 are equal to 1, and rearrange the
resulting values A’ in descending order in the CP decomposition. In Fig. 8, we plot

A = Aneep(DIF/IAlF

with respect to j, where Xncpp(j) = Zi:l rakl @ ak? @ ak3. Similarly, for the
results of the NTD methods, we also plot

A= ANt (DIF/IIANF

with respect to j, where Xntp(j) = [G x1 UM x5 U(z)];);,kj X3 U:(igj, [Gx; UD x,
U(z)];’;’kj is the k j-th mode-12 (spatial) slice of [G x| UD x, UP], and each [G x;
UM x, U(z)];y;,k ; is normalized with its Frobenius norm equal to 1, and k; indicates

a vector composed of the indices corresponding to the j largest £, norms of U®)’s
columns. For the results by our methods, we plot

A — XNerT (DI F/ Al F

with respect to j, where Xxprr(j) = fold (Z‘i’:l 0i (X3)u; (X3)v/ (X3)), 0;(X3) is
the i-th singular value of X3, and X3 is the third-mode unfolding matrix of X. The
third mode of X is chosen in NTD and our NLRT, and we are interested in observing
how many indices are required in the spectral mode of the given hyperspectral data.

10 https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
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Fig. 9 The comparison of relative residuals with respect to the number of the first mode (upper two rows

from (a) to (f)) and the second mode (bottom two rows from (g) to (1)) components to be used in the tensor
approximation with R = 20, 40, 60, 80, 160 for the hyperspectral image Washington DC Mall

In Fig. 8, we can see that when the number of components (namely, j) increases,

in the first or second modes of X.

the relative residual decreases. Our NLRT could provide a significant index based
on singular values to identify important singular basis vectors for the approximation.
Thus, the relative residuals by the proposed NLRT algorithm are significantly smaller
than those of the NTD and NCPD algorithms. Similar phenomena can be found in
Fig. 9, in which AnTp(j) and Xyvp-NLrT(j) are computed using the number of indices
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2

— 0
(a) The 10-th band of the original HSI. (b) The ground truth categorization map.

Fig. 10 Indian Pines image and the related ground truth categorization information

4.6 Image classification

The advantage of the proposed NLRT method is that the important singular basis
vectors can be identified within the algorithm. Such basis vectors can provide useful
information for image recognitions such as classification. Here, we conduct hyper-
spectral image classification experiments on the Indian Pines'! data set. This data
set was captured by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
sensor over the Indian Pines test site in northwestern Indiana in June 1992. After
removing 20 bands, which cover the region of water absorption, this HSI is of size
145 x 145 x 200. The ground truth contains 16 land cover classes, as shown in Fig.
10. Therefore, we set the multilinear rank to (16, 16, 16) and the CP rank to 16 for
all the methods compared. We randomly choose s of the available labeled samples,
which are exhibited in Table 5. Labeled samples from each class are used for training,
and the remaining samples are used for testing.

After obtaining low rank approximations, 16 singular vectors corresponding to the
largest 16 singular values of the unfolding matrix of the tensor approximation along
the spectral mode (the third mode) are employed for classification. We apply the k-
nearest neighbor (k-NN, k = 1, 3, 5) classifiers to identify the testing samples in the
projected trained sample representation. The classification accuracy, which is defined
as the portion of correctly identified entries, with respect to different values of s
is reported in Table 6. The results in Table 6 show that classification based on our
nonnegative low rank approximation is better than those for other methods in our
comparison.

5 Conclusion

In this paper, we proposed a new idea for computing a nonnegative low rank tensor
approximation. We proposed a method called NLRT, which determines a nonnegative

1T Data available at https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html.
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low rank approximation for the given data by making use of low rank matrix manifolds
and the nonnegativity property. A convergence analysis is provided. Experiments with
synthetic data sets and multidimensional image data sets are conducted to present
the performance of the proposed NLRT method. They show that the NLRT method
is better than the classical nonnegative tensor factorization methods.
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