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Abstract—In this article, we develop a new alternating projection method to compute nonnegative low rank matrix approximation for

nonnegative matrices. In the nonnegative low rank matrix approximation method, the projection onto the manifold of fixed rank matrices

can be expensive as the singular value decomposition is required. We propose to use the tangent space of the point in the manifold to

approximate the projection onto the manifold in order to reduce the computational cost. We show that the sequence generated by the

alternating projections onto the tangent spaces of the fixed rank matrices manifold and the nonnegative matrix manifold, converge

linearly to a point in the intersection of the two manifolds where the convergent point is sufficiently close to optimal solutions. This

convergence result based inexact projection onto the manifold is new and is not studied in the literature. Numerical examples in data

clustering, pattern recognition and hyperspectral data analysis are given to demonstrate that the performance of the proposed method

is better than that of nonnegative matrix factorization methods in terms of computational time and accuracy.

Index Terms—Alternating projection method, low rank, manifolds, nonnegative matrices, nonnegativity, tangent spaces
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1 INTRODUCTION

NONNEGATIVE data matrices appear in many data analysis
applications. For instance, in image analysis, image

pixel values are nonnegative and the associated nonnegative
image data matrices can be formed for clustering and recog-
nition [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]. In text
mining, the frequencies of terms in documents are nonnega-
tive and the resulted nonnegative term-to-document data
matrices can be constructed for clustering [13], [14], [15],
[16]. In bioinformatics, nonnegative gene expression values
are studied and nonnegative gene expression data matrices
are generated for diseases and genes classification [17], [18],
[19], [20], [21]. Low rank matrix approximation for nonnega-
tive matrices plays a key role in all these applications. Its

main purpose is to identify a latent feature space for objects
representation. The classification, clustering or recognition
analysis can be done by using these latent features.

Nonnegative matrix factorization (NMF) has emerged in
1994 by Paatero and Tapper [22] for performing environ-
mental data analysis. The purpose of NMF is to decompose
an input m-by-n nonnegative matrix A 2 Rm�n

þ into m-by-r
nonnegative matrix B 2 Rm�r

þ and r-by-n nonnegative
matrix C 2 Rr�n

þ : A � BC, and more precisely

min
B;C�0

kA� BCk2F ; (1)

where B;C � 0 means that each entry of B and C is nonneg-
ative, k � kF is the Frobenius norm of a matrix, and r (the
low rank value) is smaller than m and n. Lee and Seung [8]
proposed a simple yet effective algorithm with multiplica-
tive update (MU) rules to solve model (1), i.e., minimizing
the Frobenius norm between the given nonnegative matrix
A and its approximation BC. Their emphasis on the poten-
tial value of the parts-based representation brought by
NMF largely popularized it.

So far, numerous amounts of effort have been devoted to
solve (1). Several well-known and widely used NMF algo-
rithms have been presented, to name a few, the hierarchical
alternating least squares (HALS) [23], the alternating non-
negative least squares (ANLS) [24], the accelerated versions
of MU and HALS [24], the projected gradient (PG) method
and its accelerated version (A-PG) [25], the Nesterov’s opti-
mal gradient method (NeNMF) [26], the active set method
[27], and the version accelerated via block principal pivot-
ing [28]. In general, the solution of those iterative algorithms
may vary with different initializations. Many approaches
focused on the initialization of NMF based on k-means and
spherical k-means [29], rank-one approximations [30], the
nonnegative singular value decomposition (NNSVD) [31].
Meanwhile, additional constraints can be imposed as
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regularization into (1), e.g., the sparsity [32], [33], [34], the
orthogonality [4], [35], [36], the symmetry [7], [37], [38], [39],
the separability [40], [41], [42], the discriminant [43], [44],
[45], the local topological property [46], [47], [48], [49], etc.
Moreover, the factorization paradigm of NMF is not limited
in the format of (1) and new ones, such as the nonnegative
matrix tri-factorization [4], [50], [51], the deep nonnegative
matrix factorization [52], [53], [54], the non-negative tensor
factorization [55], [56], [57], and the recent pioneering disen-
tangled factorization [58], are constantly emerging. Accord-
ingly, above mentioned NMF techniques and their variants
have shown promising capacity on different applications in
various fields, from text data mining [13], [15], [16], [51],
image classification [6], [44], and face recognition [2], [5],
[11], [12], [43], to multi-view clustering [45], [48], [52], [59],
blind source separation [9], [17], [60], [61], social computing
[39], [50]. For a comprehensive review of the development
of NMF, we refer to the recently edited books [62], [63] and
review papers [64], [65].

In [66], Song and Ng proposed a new algorithm for com-
puting nonnegative low rank matrix (NLRM) approxima-
tion for nonnegative matrices. This approach is completely
different from NMF, aiming to find a nonnegative low rank
matrix X such that the difference between X and the given
nonnegative matrix A is as small as possible. The distance
kA� Xk2F can be smaller than kA� BCk2F , where B and C
are two nonnegative matrices determined via solving (1).
This implies that directly finding A could obtain a better
low rank matrix approximation, which would be very
important in many applications [56], [67]. Mathematically,
the nonnegative low rank matrix approximation can be for-
mulated as the following optimization problem

minrankðXÞ¼r;X�0 kA� Xk2F : (2)

The convergence of the their algorithm is studied and
proved. Experimental results for synthetic data and face
images are presented to demonstrate the performance of
NLRM is better than state-of-the-art NMF methods. In addi-
tion, the NLRM method admits a matrix singular value
decomposition (SVD) automatically which provides a sig-
nificant index based on singular values that can be used to
identify important singular basis vectors, while this infor-
mation cannot be obtained by the classical NMF methods.

1.1 The Contribution

In the algorithm proposed in [66], a projection on the fixed-
rank matrices manifold and a projection onto the nonnega-
tive matrices manifold are used alternately to compute a
nonnegative low rank approximation of the given nonnega-
tive matrix. The computational cost of the above alternating
projection method is dominant by the calculation of the sin-
gular value truncations of the matrices derived at each itera-
tion. The computation burden could be very high when the
matrix size is relatively large.

In this article, also considering the nonnegative low-rank
matrix approximation, we propose to use the tangent space
of the point in the manifold to approximate the projection
onto the manifold that can reduce the computational cost.
We show that the sequence generated by the new alternat-
ing projections converges linearly to a point in the

intersection of the two manifolds. Moreover, the convergent
point is proved sufficiently close to one of the optimal solu-
tions. Numerical examples will be presented to demonstrate
that the computational time of the proposed tangent space
based method is less than that of the original alternating
projection method proposed in [66]. Moreover, experimen-
tal results in data clustering, pattern recognition and hyper-
spectral data analysis, are given to demonstrate that the
performance of the proposed method is better than that of
other nonnegative matrix factorization methods in terms of
computational time and accuracy.

The rest of this paper is organized as follows. In Section 2,
we propose tangent space based alternating projection
method. In Section 3, we show the convergence of the pro-
posed method. In Section 4, numerical examples are given
to show the advantages of the proposed method. Finally,
some concluding remarks are given in Section 5.

2 NONNEGATIVE LOW RANK MATRIX

APPROXIMATION

In this article, we are interested in the m� n fixed-rank
matrices manifold

Mr :¼ X 2 Rm�n; rankðXÞ ¼ rf g; (3)

them� n non-negativity matrices manifold

Mn :¼ X 2 Rm�n;Xij � 0; i ¼ 1; . . . ;m; j ¼ 1; . . . ; n
� �

; (4)

and them� n nonnegative fixed rank matrices manifold

Mrn ¼ Mr \Mn ¼ X 2 Rm�n; rankðXÞ ¼ r; Xij � 0;
�
i ¼ 1; . . . ;m; j ¼ 1; . . . ; ng: (5)

The proof of Mrn is a manifold can be found in [66]. Let X 2
Rm�n be an arbitrary matrix in the manifold Mr. Assume
that the SVD of X is denoted as: X ¼ USVT where U 2
Rm�r, S 2 Rr�r, and V 2 Rn�r. Then by Proposition 2.1 in
[68] the tangent space ofMr at X can be expressed as

TMrðXÞ ¼ fUWT þ ZVTg; (6)

where W 2 Rn�r and Z 2 Rm�r are arbitrary. Here �T
denotes the transpose of a matrix. For a givenm-by-nmatrix
Y, the orthogonal projection of Y onto the subspace TMrðXÞ
can be written as

PTMr
ðXÞðYÞ ¼ UUTYþ YVVT �UUTYVVT : (7)

The alternating projection method studied in [66] is based
on projecting the given nonnegative matrix onto the m� n
fixed-rank matrices manifold Mr and the non-negativity
matrices manifold Mn iteratively. The projection onto the
fixed rank matrix set Mr is derived by the Eckart-Young-
Mirsky theorem [69] which can be expressed as follows:

p1ðXÞ ¼
Xr
i¼1

siðXÞuiðXÞvTi ðXÞ; (8)

where siðXÞ is the i-th singular value of X, uiðXÞ and viðXÞ
are their corresponding singular vectors. The projection
onto the nonnegative matrix setMn is expressed as
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p2ðXÞ ¼
Xij; if Xij � 0;

0; if Xij < 0:

�
(9)

Moreover, pðXÞ refers to a matrix onMrn which is closest to
the given nonnegative matrix X, i.e.,

pðXÞ ¼ argmin
Y2Mrn

kX� Yk2F ; (10)

where Mrn is the nonnegative fixed rank matrices manifold
given as in (5).

2.1 Projections Based on Tangent Spaces

Themain aim of this section is to introduce the Tangent space
based Alternating Projection (TAP) method. In the original
alternating projection (AP)method proposed in [66], the pro-
jection onto the fixed rank matrix manifold in computed by
the singular values truncation operator given in (8). Unfortu-
nately, it is expensive when the matrix size is big. Then in
this section, we will make use of tangent spaces to design the
TAP method to compute the nonnnegative low rank matrix
approximationwhich can reduce the computational cost.

The difference between the AP method and the TAP
method is illustrated in Figs. 1 and 2. For the TAP method,
the given nonnegative matrix X0 ¼ A was first projected
onto the manifold Mr by p1ð�Þ, i.e., X1 ¼ p1ðX0Þ, and then
X2 is derived by projecting X1 onto the manifold Mn by
p2ð�Þ. The first two steps are same as the original AP
method. The difference between the two methods starts
from the third step. In the TAP method, the point X2 is first
projected onto the tangent space of the manifold Mr at X1

by the orthogonal projection PTMr
ðX1Þð�Þ, and then the

derived point is projected from the tangent space to the
manifold Mr; i.e., X3 ¼ p1ðPTMr

ðX1ÞðX2ÞÞ. Thus the sequence
generated by the TAP method can be derived as follows:

X0 ¼ A; X1 ¼ p1ðX0Þ; X2 ¼ p2ðX1Þ;
X3 ¼ p1ðPTMr

ðX1ÞðX2ÞÞ; X4 ¼ p2ðX3Þ; . . . ;

X2kþ1 ¼ p1ðPTMr
ðX2k�1ÞÞðX2kÞÞ; X2kþ2 ¼ p2ðX2kþ1Þ; . . .

where PTMr
ðX2k�1ÞÞðX2kÞ denotes the orthogonal projections

of X2k onto the tangent space of Mr at X2k�1. The algorithm
can be summarized as the following algorithm.

Algorithm 1. Tangent Spaces Based Alternating Projec-
tion (TAP) Method

Input: Given a nonnegative matrix A 2 Rm�n this algorithm
computes nearest rank-r nonnegative matrix.
1: Initialize X0 ¼ A;
2: X1 ¼ p1ðX0Þ and X2 ¼ p2ðX1Þ
3: for k = 1,2,...,
4: X2kþ1 ¼ p1ðPTMr

ðX2k�1ÞÞðX2kÞÞ
5: X2kþ2 ¼ p2ðX2kþ1Þ;
6: end
Output: X2kþ1 when the stopping criterion is satisfied.

Let’s analyze the computational cost of each step of the
TAP algorithm. Suppose the skinny SVD decompositions of
X2k�1 are given as X2k�1 ¼ UkSkV

T
k ; k ¼ 1; . . . : By (6), the

tangent space ofMr at X2k�1 can be expressed as

TMrðX2k�1Þ ¼ fUkW
T þ ZVT

k g;

where W 2 Rn�r and Z 2 Rm�r are arbitrary. By (7), X2k can
be projected onto the subspace TMrðX2k�1Þ as follows:

PTMrðX2k�1Þ ðX2kÞ ¼ UkU
T
kX2k þ X2kVkV

T
k

�UkU
T
kX2kVkV

T
k :

Suppose the QR decompositions of ðI�UkU
T
k ÞX2kVk and

ðI�VkV
T
k ÞX2kUk are given as

ðI�UkU
T
k ÞX2kVk ¼ QkRk;

and

ðI�VkV
T
k ÞXT

2kUk ¼ Q̂kR̂k;

respectively. Recall that UT
kQk ¼ VT

k Q̂k ¼ 0; then by a direct
computation, we have

PTMrðX2k�1Þ ðX2kÞ
¼ UkU

T
kX2kðI�VkV

T
k Þ þ ðI�UkU

T
k ÞX2kVkV

T
k

þUkU
T
kX2kVkV

T
k

¼ UkR̂
T
k Q̂

T
k þQkRkV

T
k þUkU

T
kX2kVkV

T
k

¼ Uk Qkð Þ UT
kX2kVk R̂T

k

Rk 0

 !
VT

k

Q̂T
k

 !

:¼ Uk Qkð ÞMk

VT
k

Q̂T
k

 !
:

Fig. 1. The comparison between (a) the original alternating projection
method and (b) the proposed TAP method.

Fig. 2. The zoomed region in Fig. 1b.
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Let Mk ¼ CkGkF
T
k be the skinny SVD of Mk which can

be computed using Oðr3Þ flops. Note that ðUk;QkÞ and
ðVk; Q̂kÞ are orthogonal, then the skinny SVD of

PTMrðX2k�1Þ ðX2kÞ ¼ VkQk
T
k

can be computed by

Vk ¼ Uk;Qkð ÞCk;Qk ¼ Gk and k ¼ Vk; Q̂k

� �
Fk:

It follows that the overall computational cost of p1

ðPTMrðX2k�1Þ ðX2kÞÞ can be expressed as two matrix-matrix

multiplications. In addition, the calculation procedure

involves the QR decomposition of two matrices of sizesm�
r and n� r matrices, and the SVD of a matrix of size 2r�
2r. The total cost per iteration is of 4mnrþOðr2mþ r2nþ
r3Þ. In contrast, the computation of the best rank-r approxi-

mation of a non-structured m� n matrix costs OðmnrÞ þ
mn flops where the constant in front of mnr can be very

large. In practice, the cost per iteration of the proposed TAP

method is less than that of original alternating projection

method. In Section 4, numerical examples will be given to

demonstrate the total computational time of the proposed

TAP method is less than that of the original alternating pro-

jection method.

3 THE CONVERGENCE ANALYSIS

In this section, we mainly consider the convergence of the
proposed TAP method. The convergence of the original
alternating projection method relate to two manifolds has
been proved in [70]. Known from that, the angle of a point
in the intersection of two manifolds plays a key role in the
whole proof process. In our setting, for B 2 Mrn, its angle
aðBÞ can be defined as

aðBÞ ¼ cos�1ðsðBÞÞ; (11)

where

sðBÞ ¼ lim
�!0

sup
B12F�

1
ðBÞ;B22F�

2
ðBÞ

B1 � B;B2 � Bh i
kB1 � BkFkB2 � BkF

� �
;

with

F�
1 ðBÞ ¼ fB1 j B1 2 MrnB;kB1 � BkF � �;

B1 � B?TMr\MnðBÞg;

F �
2 ðBÞ ¼ fB2 j B2 2 MnnB;kB2 � BkF � �;

B2 � B?TMr\MnðBÞg;
and TMr\MnðBÞ is the tangent space of Mr \Mn at point B.
The angle can be calculated by the two points in Mr and
Mn. A point B inMrn is nontangential if aðBÞ has a positive
angle, i.e., 0 � sðAÞ < 1.

In the following, the main convergence results of Algo-
rithm 1 can be listed as follows.

Theorem 3.1. LetMr,Mn andMrn be given as (3), (4) and (5),
the projections onto Mr and Mn be given as (8) and (9),

respectively. Suppose that P 2 Mrn is a non-tangential inter-
section point, then for any given � > 0 and 1 > c > sðPÞ,
there exist an � > 0 such that for any A 2 BallðP; �Þ (the ball
neighborhood of P with radius � contains the given nonnegative
matrixA), the sequence Xk generated by Algorithm 1 converges
to a point X1 2 Mrn, and satisfy

1) kX1 � pðAÞkF � �kA� pðAÞkF ,
2) kX1 � XkkF � const � ckkA� pðAÞkF ,
where pðAÞ is defined in (10).

When the points on the tangent spaces are used as
approximation of the points in the manifold, the following
results can help us to study the distances related to the
proof of Theorem 3.1.

Lemma 3.2 (Proposition 4.3 and Theorem 4.1 in [70]). Let
p1ð�Þ and pð�Þ be defined as (8) and (10), and P 2 Mr. For each
0 < � < 3

5 , there exist an sð�Þ > 0 and an "ð�Þ > 0; such
that for any given Z 2 BallðP; sð�ÞÞ

kp1ðZÞ � PTMr
ðpðZÞÞðZÞkF < 4

ffiffi
�

p kZ� pðZÞkF ; (12)

and

kpðp1ðZÞÞ � pðZÞkF < "ð�ÞkZ� pðZÞkF : (13)

Lemma 3.3 (Proposition 2.4 in [70]). Let P 2 Mr be given.
For each � > 0; there exists s > 0 such that for all C 2
BallðP; sÞ \Mr; we have:

ðiÞ minD02TMr
ðCÞkD�D0kF � �kD� CkF ; 8 D 2 Ball

ðP; sÞ \Mr:
ðiiÞ kD� p1ðDÞkF � �kD� CkF ; 8 D 2 BallðP; sÞ\

TMrðCÞ.
For a point Z around P 2 Mr, the distance between its

projected point on the manifold and the projected point on
the tangent space can be estimated as follows. The proof can
be found in Appendix, available online.

Lemma 3.4. Let PTMr
ð�Þ and p1ð�Þ be given as (7) and (8), and

P 2 Mr. For each 0 < � < 3
5 , there exist an sð�Þ > 0 and a

point Q 2 BallðP; sð�ÞÞ \Mr such that for any given Z 2
BallðP; sð�ÞÞ, we have

kp1ðZÞ � PTMr
ðQÞðZÞkF < 4

ffiffi
�

p kZ�QkF : (14)

Lemma 3.5 (Theorem 4.5 in [70]). Suppose P is a nontangen-
tial point with sðPÞ < c. Then there exists an s > 0 such that
for all Z 2 Mn \BallðP; sÞ, we have

kp1ðZÞ � pðZÞkF < ckZ� pðZÞkF : (15)

Suppose that Q 2 Mr \BallðP; s1ð�ÞÞ is defined as
Lemma 3.4, then the distance between pðp1ðPTMr

ðQÞðZÞÞÞ
and pðZÞ can be estimated as follows. And the proof can be
found in Appendix, available in the online supplemental
material.
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Lemma 3.6. Let P 2 Mrn be given. For each 0 < � < 3
5 , there

exist "1ð�Þ > 0;"2ð�Þ > 0 and s1ð�Þ > 0 such that for all Z 2
BallðP; s1ð�ÞÞ

kpðp1ðPTMr
ðQÞðZÞÞÞ � pðZÞkF �"1ð�ÞkZ� pðZÞkF

þ "2ð�ÞkQ� pðZÞkF :

In order to prove the convergence of Algorithm 1, we
also need to estimate the distance between p1ðPTMr

ðQÞðZÞÞ
and pðZÞ. The proof can be found in Appendix, available in
the online supplemental material.

Lemma 3.7. Suppose P is a nontangential point in Mrn with
sðPÞ < c, and Q 2 Mr. Then there exists an s > 0 such that
when Z ¼ p2ðQÞ 2 Mn \BallðP; sÞ and PTMr

ðQÞðZÞ 2
TMrðQÞ \BallðP; sÞ, we have

kp1ðPTMr
ðQÞðZÞÞ � pðZÞkF < ckZ� pðZÞkF : (16)

With the above tools in hand, we can list the proof of
Theorem 3.1 as follows.

Proof of Theorem 3.1Note that Mrn is a smooth manifold
[66] and P 2 Mrn, then there exists an s0 such that p is con-
tinuous on BallðP; s0Þ. In other words, we can find a con-
stant a > 0 such that

kpðXÞ � pðX0ÞkF � akX� X0kF ; 8 X;X0 2 BallðP; s0Þ: (17)

Suppose that � < 1, and set sðPÞ < c < 1 and

" ¼ 1� c

2ð3� cÞ �; "2ð�Þ ¼ 1� c

2þ 2a
�;

where a is a constant given as in (17). It follows Lemma 3.5-
3.7 that there exist some possibly distinct radii which can
guarantee (15)-(16) are satisfied. Let s denote the minimum
of these possibly radii and pick r < sð1��Þ

4ð2þ�Þ , so that
pðBallðP; rÞÞ 	 BallðP; s4Þ. Then kpðAÞ � PkF < s

4 follows
from the latter condition. Denote l ¼ kA� pðAÞkF and note
that

l ¼ kA� Pþ P� pðAÞkF � kA� PkF þ kP� pðAÞkF
� rþ s

4
:

As pðAÞ 2 Mrn and note that X1 ¼ p1ðAÞ, we have

kX1 �AkF ¼ kp1ðAÞ �AkF � kpðAÞ �AkF ¼ l

and

kX1 � pðX1ÞkF � kX1 � pðAÞkF
� kX1 �AkF þ kA� pðAÞkF � 2l:

In order to prove fXkg derived by Algorithm 1 is conver-
gent, we need to prove fXkg is a Cauchy sequence. By
Lemma 3.7, there exist an c1 such that

kX2kþ1 � pðX2kþ1ÞkF � kX2kþ1 � pðX2kÞkF
� c1kX2k � pðX2kÞkF : (18)

In addition, by Lemma 3.5, there exist an c2 such that

kX2k � pðX2kÞkF � kX2k � pðX2k�1ÞkF
� c2kX2k�1 � pðX2k�1ÞkF : (19)

Set c ¼ maxfc1; c2g, combine (18) and (19) together gives

kXk � pðXkÞkF � ckXk�1 � pðXk�1ÞkF : (20)

Then fXkg is a Cauchy sequence if and only if

fXkg1k¼1 	 BallðP; sÞ (21)

is satisfied. The remaining task is to show (21) is satisfied by
induction. For k ¼ 1,

kX1 � PkF � kX1 �AkF þ kA� PkF � lþ r

2

� 2rþ s

4
� sð1� �Þ

2ð2þ �Þ þ
s

4
< s:

Assume that (21) is satisfied when n ¼ k, then it follows
from (20) that

kXk � pðXkÞkF � ckkX1 � pðX1ÞkF � 2lck: (22)

For an arbitrary k and i ¼ 1 or 2, we have

kXk�2 � pðXk�1ÞkF
¼ kXk�2 � pðpiðXk�2ÞÞkF
¼ kXk�2 � pðXk�2Þ þ pðXk�2Þ � pðpiðXk�2ÞÞkF
� kXk�2 � pðXk�2ÞkF þ kpðXk�2Þ � pðpiðXk�2ÞÞkF
� kXk�2 � pðXk�2ÞkF þ akXk�2 � piðXk�2ÞkF
� ð1þ aÞkXk�2 � pðXk�2ÞkF :

The second part of the second inequality is derived by the
continuous of p; the third inequality is derived by

kXk�2 � piðXk�2ÞkF � kXk�2 � pðXk�2ÞkF ; i ¼ 1; 2:

In addition, when k is even, by Lemma 3.2, we have

kpðXkÞ � pðXk�1ÞkF < "ð�ÞkXk�1 � pðXk�1ÞkF : (23)

When k is odd, applying Lemma 3.6 gives

kpðXkÞ � pðXk�1ÞkF
< "1ð�ÞkXk�1 � pðXk�1ÞkF þ "2ð�ÞkXk�2 � pðXk�1ÞkF
< "1ð�ÞkXk�1 � pðXk�1ÞkF

þ "2ð�Þð1þ aÞkXk�2 � pðXk�2ÞkF
� 2"1ð�Þck�1lþ 2"2ð�Þð1þ aÞck�2l

¼ ð"1ð�Þcþ "2ð�Þð1þ aÞÞ2ck�2l:

Set " ¼ maxf"ð�Þ; "1ð�Þg; then for an arbitrary k, we have

kpðXkÞ � pðXk�1ÞkF � ð"cþ "2ð�Þð1þ aÞÞ2ck�2l: (24)
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By (24) and Lemma 3.2, we have

kpðXkÞ � pðAÞkF
� kpðAÞ � pðX1ÞkF þ kpðX2Þ � pðX1ÞkF

þ k
Xk
j¼3

pðXjÞ � pðXj�1ÞkF

� "lþ 2"lþ
Xk
j¼3

ð"1ð�Þcþ "2ð�Þð1þ aÞÞ2cj�2l

� 3"lþ 2ð"1ð�Þcþ "2ð�Þð1þ aÞÞ
1� c

l

¼ 3"ð1� cÞ þ 2"cþ ð1þ aÞ"2ð�Þ
1� c

l � �l: (25)

Thus,

kP� XkkF � kP� pðAÞkF þ kpðAÞ � pðXkÞkF
þ kpðXkÞ � XkkF � s=4þ �lþ 2l < s;

which shows that (21) is satisfied.
It follows from (24) that the sequence ðpðXkÞÞ1k¼1 is a

Cauchy sequence which converges to a point Z1. Note
that (22) is satisfied, the sequence ðXkÞ1k¼1 also con-
verges. In addition, Z1 ¼ pðZ1Þ can be derived by not-
ing that the projection is local continuous. Moreover, by
taking the limitation of (25) we can get ðiÞ: For ðiiÞ:
Note that

TABLE 1
The Relative Approximation Error and Computation Time on the Synthetic Data Sets With MaxIter = 104

200-by-200 matrix

Relative approximation error Computation time (s)

Method r ¼ 10 r ¼ 20 r ¼ 40 r ¼ 10 r ¼ 20 r ¼ 40

TAP 0.4574 0.4158 0.3426 0.02 0.01 0.02
AP 0.4574 0.4158 0.3426 0.03 0.02 0.03
A-MU: mean 0.4588 0.4244 0.3717 15.18 8.82 8.97
A-MU: range [0.4588,0.4589] [0.4242,0.4246] [0.3713,0.3720] [14.55,15.44] [8.72,9.00] [8.78,9.14]
HALS: mean 0.4588 0.4243 0.3710 16.29 16.35 16.26
HALS: range [0.4588,0.4589] [0.4242,0.4245] [0.3707,0.3712] [16.05,16.72] [16.16,16.48] [16.05,16.50]
A-PG1: mean 0.4588 0.4243 0.3711 15.40 9.46 9.64
A-PG1: range [0.4588,0.4589] [0.4242,0.4244] [0.3708,0.3714] [15.19,15.54] [9.16,10.08] [9.55,9.72]
NeNMF: mean 0.4588 0.4245 0.3723 0.51 0.59 0.72
NeNMF: range [0.4588,0.4589] [0.4243,0.4247] [0.3716,0.3728] [0.45,0.92] [0.45,0.77] [0.51,0.91]
NNSVDLRC: mean 0.4588 0.4243 0.3712 21.19 20.33 19.07
NNSVDLRC: range [0.4588,0.4588] [0.4243,0.4243] [0.3711,0.3712] [20.77,21.81] [19.91,21.30] [17.98,19.58]

400-by-400 matrix

Relative approximation error Computation time (s)

Method r ¼ 20 r ¼ 40 r ¼ 80 r ¼ 20 r ¼ 40 r ¼ 80

TAP 0.4560 0.4153 0.3419 0.03 0.03 0.06
AP 0.4560 0.4153 0.3419 0.04 0.05 0.13
A-MU:mean 0.4593 0.4288 0.3840 8.77 9.02 9.42
A-MU:range [0.4592,0.4593] [0.4287,0.4290] [0.3838,0.3844] [8.62,8.86] [8.91,9.14] [9.33,9.52]
HALS:mean 0.4592 0.4283 0.3823 16.11 15.69 15.89
HALS:range [0.4591,0.4592] [0.4282,0.4284] [0.3822,0.3825] [15.96,16.34] [15.39,16.12] [15.73,16.09]
A-PG1:mean 0.4592 0.4286 0.3836 9.05 9.17 10.00
A-PG1:range [0.4592,0.4593] [0.4285,0.4287] [0.3834,0.3838] [8.85,9.15] [9.06,9.31] [9.74,10.20]
NeNMF:mean 0.4593 0.4291 0.3856 0.74 0.89 0.92
NeNMF:range [0.4593,0.4594] [0.4289,0.4293] [0.3852,0.3859] [0.56,0.99] [0.71,1.20] [0.84,1.12]
NNSVDLRC:mean 0.4592 0.4283 0.3822 16.62 15.83 15.83
NNSVDLRC:range [0.4591,0.4592] [0.4282,0.4284] [0.3820,0.3824] [15.97,18.55] [15.31,17.03] [15.76,15.99]

800-by-800 matrix

Relative approximation error Computation time (s)

Method r ¼ 40 r ¼ 80 r ¼ 160 r ¼ 40 r ¼ 80 r ¼ 160

TAP 0.4551 0.4145 0.3411 0.14 0.16 0.33
AP 0.4551 0.4145 0.3411 0.20 0.28 0.68
A-MU:mean 0.4607 0.4346 0.3977 9.12 9.44 11.32
A-MU:range [0.4606,0.4607] [0.4345,0.4347] [0.3976,0.3978] [9.05,9.19] [9.28,9.76] [11.08,11.51]
HALS:mean 0.4603 0.4334 0.3945 14.58 15.03 15.20
HALS:range [0.4603,0.4604] [0.4334,0.4335] [0.3944,0.3946] [14.29,14.90] [14.87,15.17] [15.00,15.39]
A-PG1:mean 0.4605 0.4339 0.3980 9.58 10.41 11.16
A-PG1:range [0.4605,0.4606] [0.4339,0.4340] [0.3977,0.3985] [9.44,9.78] [10.25,10.54] [10.99,11.38]
NeNMF:mean 0.4609 0.4356 0.3996 1.08 1.30 2.51
NeNMF:range [0.4609,0.4610] [0.4354,0.4357] [0.3993,0.3997] [0.93,1.18] [1.11,1.40] [2.41,2.64]
NNSVDLRC:mean 0.4603 0.4334 0.3946 14.83 15.09 15.30
NNSVDLRC:range [0.4603,0.4604] [0.4334,0.4335] [0.3945,0.3947] [14.43,15.06] [14.94,15.25] [15.09,15.50]

The best values are respectively highlighted by bolder fonts. Here the same random initialization is used for NMF methods in each trial.
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kpðXkÞ � X1kF �
X1
j¼kþ1

kpðXjÞ � pðXj�1ÞkF

� 2l"ck

1� c
þ 2ð1þ aÞl"2ð�Þck�1

1� c
;

and combine with (22), we can get

kXk � X1kF � kXk � pðXkÞkF þ kpðXkÞ � X1kF
� 2lþ 2l"

1� c
þ 2ð1þ aÞl"2ð�Þ

1� c

	 

ck

¼ bckl;

with a constant b as desired.

4 EXPERIMENTAL RESULTS

The main aim of this section is to demonstrate that (i) the
computational time requried by the proposed TAPmethod is
faster than that by the original alternating projection (AP)
method with about the same approximation ability; (ii) the
performance of the proposed TAP method is better than that
of nonnegative matrix factorization methods in terms of
computational time and accuracy for examples in data clus-
tering, pattern recognition and hyperspectral data analysis.

The experiments in Subsection 4.1 are performed under
Windows 10 and MATLAB R2020a running on a desktop
(Intel Core i7, @ 5.1GHz, 32.00G RAM) and experiments in
Subsection 4.2-4.6 are performed under Windows 10 and
MATLAB R2020a running on a desktop (AMD Ryzen 9
3950, @ 3.49GHz, 64.00G RAM).

TABLE 2
The Relative Approximation Error and Computation Time on the Synthetic Data Sets With MaxIter = 102

200-by-200 matrix

Relative approximation error Computation time (s)

Method r ¼ 10 r ¼ 20 r ¼ 40 r ¼ 10 r ¼ 20 r ¼ 40

TAP 0.4574 0.4158 0.3426 0.01 0.01 0.01
AP 0.4574 0.4158 0.3426 0.01 0.01 0.03
A-MU:mean 0.4593 0.4262 0.3766 0.08 0.11 0.11
A-MU:range [0.4591,0.4594] [0.4259,0.4264] [0.3760,0.3771] [0.07,0.09] [0.10,0.12] [0.11,0.12]
HALS:mean 0.4596 0.4258 0.3742 0.02 0.03 0.05
HALS:range [0.4593,0.4599] [0.4253,0.4260] [0.3738,0.3746] [0.01,0.04] [0.02,0.03] [0.04,0.05]
A-PG1:mean 0.4590 0.4252 0.3746 0.11 0.16 0.20
A-PG1:range [0.4589,0.4592] [0.4249,0.4254] [0.3742,0.3751] [0.09,0.19] [0.15,0.18] [0.20,0.22]
NeNMF:mean 0.4591 0.4251 0.3735 0.07 0.14 0.27
NeNMF:range [0.4590,0.4592] [0.4249,0.4254] [0.3732,0.3738] [0.05,0.12] [0.11,0.18] [0.24,0.30]
NNSVDLRC:mean 0.4592 0.4255 0.3734 0.05 0.04 0.06
NNSVDLRC:range [0.4592,0.4592] [0.4254,0.4255] [0.3734,0.3734] [0.03,0.14] [0.03,0.04] [0.06,0.07]

400-by-400 matrix
Relative approximation error Computation time (s)

Method r ¼ 20 r ¼ 40 r ¼ 80 r ¼ 20 r ¼ 40 r ¼ 80

TAP 0.4560 0.4153 0.3419 0.02 0.03 0.06
AP 0.4560 0.4153 0.3419 0.03 0.05 0.12
A-MU:mean 0.4600 0.4309 0.3887 0.31 0.30 0.33
A-MU:range [0.4598,0.4601] [0.4307,0.4311] [0.3883,0.3890] [0.30,0.34] [0.29,0.31] [0.31,0.35]
HALS:mean 0.4601 0.4300 0.3853 0.05 0.10 0.23
HALS:range [0.4600,0.4602] [0.4298,0.4302] [0.3852,0.3856] [0.05,0.06] [0.09,0.10] [0.23,0.25]
A-PG1:mean 0.4598 0.4306 0.3893 0.50 0.52 0.69
A-PG1:range [0.4597,0.4599] [0.4303,0.4307] [0.3890,0.3897] [0.49,0.56] [0.51,0.53] [0.66,0.72]
NeNMF:mean 0.4596 0.4296 0.3856 0.22 0.42 0.72
NeNMF:range [0.4595,0.4597] [0.4295,0.4298] [0.3852,0.3859] [0.19,0.30] [0.38,0.44] [0.65,0.85]
NNSVDLRC:mean 0.4599 0.4298 0.3852 0.07 0.13 0.29
NNSVDLRC:range [0.4599,0.4599] [0.4298,0.4298] [0.3851,0.3853] [0.07,0.08] [0.12,0.13] [0.28,0.33]

800-by-800 matrix
Relative approximation error Computation time (s)

Method r ¼ 40 r ¼ 80 r ¼ 160 r ¼ 40 r ¼ 80 r ¼ 160

TAP 0.4551 0.4145 0.3411 0.11 0.13 0.26
AP 0.4551 0.4145 0.3411 0.15 0.22 0.53
A-MU:mean 0.4614 0.4364 0.4010 0.83 0.95 1.50
A-MU:range [0.4614,0.4615] [0.4363,0.4364] [0.4008,0.4012] [0.80,0.89] [0.94,0.99] [1.48,1.55]
HALS:mean 0.4614 0.4350 0.3970 0.23 0.45 0.98
HALS:range [0.4613,0.4615] [0.4349,0.4352] [0.3969,0.3971] [0.22,0.23] [0.44,0.46] [0.97,1.00]
A-PG1:mean 0.4610 0.4352 0.4047 1.60 1.68 2.47
A-PG1:range [0.4610,0.4611] [0.4351,0.4352] [0.4044,0.4049] [1.57,1.65] [1.66,1.71] [2.45,2.50]
NeNMF:mean 0.4610 0.4356 0.3996 0.77 1.03 2.02
NeNMF:range [0.4609,0.4610] [0.4354,0.4357] [0.3993,0.3997] [0.70,0.81] [0.91,1.09] [1.92,2.13]
NNSVDLRC:mean 0.4610 0.4347 0.3968 0.35 0.64 1.31
NNSVDLRC:range [0.4610,0.4611] [0.4347,0.4348] [0.3968,0.3969] [0.31,0.42] [0.58,0.69] [1.24,1.38]

The best values are respectively highlighted by bolder fonts. Here the same random initialization is used for NMF methods in each trial.
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4.1 The First Experiment

The synthetic matrices are of the sizes 200-by-200, 400-by-400
and 800-by-800 and for each size we run nonnegative matrix
factorization algorithms (A-MU [24], A-HALS [24], A-PG1 [25],

NeNMF [26], and NNSVDLRC [31]) 10 times. In the experi-

ment, we randomly generated n-by-n nonnegative matrices A

where their matrix entries follow a uniform distribution in

between 0 and 1.We employed the proposed TAPmethod and

the original alternating projection (AP) method [66] to test the

relative approximation error kA� XckF=kAkF , where Xc are

the computed rank r solutions by different methods. The stop-

ping criteria of each method is that the successive relative

approximation error is less than 10�5 or themaximumnumber

(MaxIter) of iterations (104 or 102) is attained. In Tables 1 and 2,

the same randomly initial guess is employed in A-MUm A-

HALS, A-PG1, NeNMF. In Tables 3 and 4, different randomly

initial guesses are employed in A-MUm A-HALS, A-PG1,

NeNMF for each trial. However, for NNSVDLRC, which

works on generating initial factor matrices, the initial guesses

are get fromNNSVDLRT and then input intoA-HALS [24].
Tables 1, 2, 3, and 4 shows the relative approximation

error of the computed solutions from the proposed TAP

method and the other testing methods for synthetic data

sets of different sizes. We have the following results.

� For the TAP and AP methods, the non-negative con-
straint are only added to the low-rank matrix itself,

while non-negative constraints are simultaneously

added to the two low rank factor matrices. Thus, the

relative approximation errors of TAP and AP are

TABLE 3
The Relative Approximation Error and Computation Time on the Synthetic Data Sets With MaxIter = 104

200-by-200 matrix

Relative approximation error Computation time (s)

Method r ¼ 10 r ¼ 20 r ¼ 40 r ¼ 10 r ¼ 20 r ¼ 40

TAP 0.4574 0.4158 0.3426 0.01 0.01 0.01
AP 0.4574 0.4158 0.3426 0.01 0.01 0.02
A-MU:mean 0.4588 0.4245 0.3721 3.85 4.14 4.20
A-MU:range [0.4588,0.4589] [0.4243,0.4247] [0.3718,0.3723] [3.71,3.93] [4.08,4.22] [4.14,4.26]
HALS:mean 0.4588 0.4243 0.3711 0.79 1.20 2.25
HALS:range [0.4588,0.4589] [0.4241,0.4244] [0.3706,0.3713] [0.76,0.82] [1.18,1.23] [2.17,2.32]
A-PG1:mean 0.4588 0.4243 0.3713 4.69 4.53 4.83
A-PG1:range [0.4588,0.4589] [0.4242,0.4245] [0.3710,0.3717] [4.61,4.77] [4.40,4.68] [4.65,4.96]
NeNMF:mean 0.4588 0.4246 0.3723 0.48 0.51 0.56
NeNMF:range [0.4588,0.4590] [0.4244,0.4249] [0.3718,0.3728] [0.45,0.69] [0.45,0.71] [0.45,0.72]
NNSVDLRC:mean 0.4588 0.4243 0.3710 0.80 1.22 2.26
NNSVDLRC:range [0.4588,0.4589] [0.4243,0.4245] [0.3709,0.3713] [0.79,0.81] [1.18,1.25] [2.18,2.35]

400-by-400 matrix
Relative approximation error Computation time (s)

Method r ¼ 20 r ¼ 40 r ¼ 80 r ¼ 20 r ¼ 40 r ¼ 80

TAP 0.4560 0.4153 0.3419 0.02 0.03 0.06
AP 0.4560 0.4153 0.3419 0.03 0.05 0.12
A-MU:mean 0.4593 0.4291 0.3846 4.15 4.24 4.43
A-MU:range [0.4593,0.4594] [0.4290,0.4292] [0.3845,0.3847] [4.09,4.24] [4.17,4.30] [4.37,4.49]
HALS:mean 0.4592 0.4284 0.3823 2.65 4.95 7.21
HALS:range [0.4591,0.4592] [0.4283,0.4285] [0.3821,0.3825] [2.61,2.67] [4.89,5.09] [6.93,7.42]
A-PG1:mean 0.4593 0.4288 0.3845 4.54 4.31 4.51
A-PG1:range [0.4592,0.4593] [0.4287,0.4291] [0.3843,0.3847] [4.44,4.81] [4.19,4.43] [4.41,4.58]
NeNMF:mean 0.4593 0.4291 0.3855 0.64 0.71 0.78
NeNMF:range [0.4593,0.4594] [0.4289,0.4294] [0.3851,0.3857] [0.54,0.79] [0.56,0.85] [0.70,0.89]
NNSVDLRC:mean 0.4592 0.4283 0.3825 2.74 5.18 7.30
NNSVDLRC:range [0.4592,0.4592] [0.4283,0.4284] [0.3823,0.3826] [2.70,2.81] [5.11,5.25] [7.07,7.42]

800-by-800 matrix
Relative approximation error Computation time (s)

Method r ¼ 40 r ¼ 80 r ¼ 160 r ¼ 40 r ¼ 80 r ¼ 160

TAP 0.4551 0.4145 0.3411 0.10 0.13 0.27
AP 0.4551 0.4145 0.3411 0.15 0.22 0.54
A-MU:mean 0.4608 0.4350 0.3984 4.29 4.47 5.60
A-MU:range [0.4608,0.4609] [0.4348,0.4351] [0.3983,0.3986] [4.20,4.36] [4.36,4.68] [5.39,6.28]
HALS:mean 0.4603 0.4335 0.3948 7.17 7.45 7.62
HALS:range [0.4603,0.4604] [0.4334,0.4335] [0.3947,0.3948] [7.03,7.38] [7.24,7.57] [7.50,7.76]
A-PG1:mean 0.4606 0.4342 0.4001 4.43 4.86 5.63
A-PG1:range [0.4606,0.4607] [0.4342,0.4343] [0.3999,0.4004] [4.29,4.56] [4.76,4.99] [5.43,5.82]
NeNMF:mean 0.4609 0.4354 0.3995 0.85 1.09 2.05
NeNMF:range [0.4608,0.4610] [0.4352,0.4356] [0.3991,0.3997] [0.74,0.96] [1.00,1.18] [1.99,2.13]
NNSVDLRC:mean 0.4604 0.4335 0.3949 7.23 7.53 7.70
NNSVDLRC:range [0.4604,0.4604] [0.4335,0.4336] [0.3947,0.3950] [7.11,7.40] [7.41,7.63] [7.62,7.85]

The best values are respectively highlighted by bolder fonts. Here different random initializations are used in NMF methods in each trial.
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always lower than those of NMF methods. These

results are confirmed in the tables. Because of tan-

gent space method, the computational time required

by the proposed TAP method is less than that

required by AP method.
� We find in the tables that the relative approximation

errors computed by the TAP method is the same as
those by the AP method. It implies that the proposed
TAP method can achieve the same accuracy of classi-
cal alternating projection.

� NMF algorithms can be sensitive to initial guesses, see
Tables 1, 2, 3, and 4. We illustrate this phenomena by
displaying the mean relative approximation error and
the range containing both the minimum and the
maximum relative approximation errors by ten initial

guesses randomly generated. According to the tables,
this phenomena is still valid when different (or same)
randomly randomly initializations are used in NMF
methods in each trial or the maximum number (Max-
Iter) of iterations is set to be 104 or 102. However, the
computational time required by the TAP method is
smaller than those required byNMFmethods.

4.2 The Second Experiment

4.2.1 Face Data

In this subsection, we consider two frequently-used face
data sets, i.e., the ORL face date set1 and the extended Yale

TABLE 4
The Relative Approximation Error and Computation Time on the Synthetic Data Sets With MaxIter = 102

200-by-200 matrix

Relative approximation error Computation time (s)

Method r ¼ 10 r ¼ 20 r ¼ 40 r ¼ 10 r ¼ 20 r ¼ 40

TAP 0.4574 0.4158 0.3426 0.01 0.01 0.01
AP 0.4574 0.4158 0.3426 0.01 0.01 0.02
A-MU:mean 0.4593 0.4261 0.3765 0.08 0.11 0.12
A-MU:range [0.4591,0.4596] [0.4258,0.4265] [0.3761,0.3768] [0.07,0.09] [0.11,0.12] [0.12,0.12]
HALS:mean 0.4596 0.4258 0.3743 0.02 0.03 0.05
HALS:range [0.4594,0.4600] [0.4255,0.4260] [0.3739,0.3748] [0.01,0.02] [0.02,0.03] [0.04,0.05]
A-PG1:mean 0.4591 0.4252 0.3745 0.10 0.16 0.21
A-PG1:range [0.4589,0.4593] [0.4248,0.4255] [0.3739,0.3755] [0.09,0.11] [0.16,0.17] [0.21,0.23]
NeNMF:mean 0.4591 0.4251 0.3734 0.05 0.15 0.28
NeNMF:range [0.4590,0.4593] [0.4250,0.4254] [0.3729,0.3740] [0.05,0.06] [0.12,0.17] [0.24,0.30]
NNSVDLRC:mean 0.4592 0.4255 0.3734 0.03 0.04 0.06
NNSVDLRC:range [0.4592,0.4592] [0.4255,0.4255] [0.3734,0.3735] [0.02,0.03] [0.03,0.04] [0.06,0.06]

400-by-400 matrix
Relative approximation error Computation time (s)

Method r ¼ 20 r ¼ 40 r ¼ 80 r ¼ 20 r ¼ 40 r ¼ 80

TAP 0.4560 0.4153 0.3419 0.02 0.03 0.06
AP 0.4560 0.4153 0.3419 0.04 0.05 0.12
A-MU:mean 0.4600 0.4309 0.3887 0.32 0.32 0.35
A-MU:range [0.4599,0.4603] [0.4306,0.4310] [0.3883,0.3892] [0.31,0.32] [0.31,0.33] [0.34,0.40]
HALS:mean 0.4602 0.4301 0.3854 0.06 0.10 0.24
HALS:range [0.4601,0.4603] [0.4298,0.4303] [0.3852,0.3856] [0.05,0.06] [0.10,0.11] [0.23,0.26]
A-PG1:mean 0.4598 0.4307 0.3892 0.51 0.55 0.72
A-PG1:range [0.4597,0.4598] [0.4304,0.4309] [0.3889,0.3894] [0.50,0.54] [0.54,0.56] [0.70,0.74]
NeNMF:mean 0.4596 0.4295 0.3855 0.24 0.46 0.78
NeNMF:range [0.4595,0.4597] [0.4293,0.4297] [0.3851,0.3857] [0.21,0.28] [0.44,0.47] [0.71,0.90]
NNSVDLRC:mean 0.4599 0.4298 0.3852 0.08 0.14 0.29
NNSVDLRC:range [0.4599,0.4599] [0.4297,0.4298] [0.3851,0.3852] [0.07,0.08] [0.13,0.14] [0.26,0.31]

800-by-800 matrix
Relative approximation error Computation time (s)

Method r ¼ 40 r ¼ 80 r ¼ 160 r ¼ 40 r ¼ 80 r ¼ 160

TAP 0.4551 0.4145 0.3411 0.10 0.13 0.27
AP 0.4551 0.4145 0.3411 0.15 0.22 0.53
A-MU:mean 0.4615 0.4363 0.4009 0.83 0.96 1.50
A-MU:range [0.4614,0.4615] [0.4362,0.4365] [0.4008,0.4011] [0.82,0.84] [0.95,0.97] [1.49,1.52]
HALS:mean 0.4614 0.4350 0.3970 0.23 0.45 0.98
HALS:range [0.4613,0.4615] [0.4349,0.4351] [0.3968,0.3973] [0.22,0.23] [0.44,0.47] [0.96,1.00]
A-PG1:mean 0.4610 0.4351 0.4047 1.61 1.71 2.50
A-PG1:range [0.4610,0.4611] [0.4350,0.4352] [0.4045,0.4050] [1.59,1.64] [1.69,1.75] [2.48,2.53]
NeNMF:mean 0.4609 0.4354 0.3995 0.79 1.09 2.04
NeNMF:range [0.4609,0.4610] [0.4352,0.4356] [0.3991,0.3997] [0.76,0.82] [1.00,1.18] [1.99,2.13]
NNSVDLRC:mean 0.4610 0.4347 0.3968 0.36 0.67 1.36
NNSVDLRC:range [0.4610,0.4611] [0.4347,0.4348] [0.3967,0.3969] [0.30,0.38] [0.63,0.78] [1.25,1.47]

The best values are respectively highlighted by bolder fonts. Here different random initializations are used in NMF methods in each trial.

1. http://www.uk.research.att.com/facedatabase.html
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B face data set 2. The ORL face data set contains images from
40 individuals, each providing 10 different images with the
size 112� 92 . In the extended Yale B face data set, we take
a subset which consists of 38 people and 64 facial images
with different illuminations for each individual. Each test-
ing image is reshaped to a vector, and all the image vectors
are combined together to form a nonnegative matrix. Here
we perform NMF algorithms and TAP algorithm to obtain
low rank approximations with a predefined rank r. There
are several NMF algorithms to be compared, namely multi-
plicative updates (MU) [8], [71], accelerated MU (A-MU)
[24], hierarchical alternating least squares (HALS) algorithm
[23], accelerated HALS (A-HALS) [24], projected gradient
(PG) method [25], accelerated PG (A-PG)[25], NeNMF [26],
and NNSVDLRC [31].

Approximation. First, we compare the low rank approxi-
mation results by different methods with respect to different
predefined ranks r. We report the relative approximation
errors in Table 5. For ORL data set, we set r to be 10 and 40
because face data contains 40 individuals and each individ-
ual has 10 different images. Similarly, r is set to be 38 and 64
for the extended Yale B data set. In the numerical results, we
compare the relative approximation error: kXc �AkF =kAkF .
For the TAP and AP methods the nonnegative low rank
approximation is directly computed, while for the NMF
methods, we multiply the factor matrices. We can see from
the table that the relative approximation errors by TAP and
APmethods are lower than those byNMFmethods.

The relative approximation errors on these two face data
sets with respect to different ranks r are plotted in Fig. 3. We
can see that as r increases, the gap of relative approximation
errors between TAP (or AP) method and NMF methods
becomes larger. The total computational time required by
the proposed TAP method (2.84 seconds) is less than that
(17.44 seconds) required by the AP method. The proposed
TAPmethod is more efficient than the APmethod.

Recognition. Next, we test the face recognition perfor-
mance with respect to TAP approximations and NMF
approximations. We use the k-fold cross-validation strategy.
For each data set, the data is split into k (k ¼ 10 for the ORL
data set and k ¼ 64 for the Yale B data set) groups and each
group contains one facial image of each individual. For
instance, the ORL data set is split into k ¼ 10 groups and
each group contains 40 facial images. Then, we circularly
take one group as a test data set and the remaining groups
as a training data set until all the groups have been selected

as the test data. Given the original training data Atrain with
the size m� n, where n indicates the pixels of each face
image andm is the amount of training samples, we first per-
form NMF and TAP (or AP) algorithms to obtain non-nega-
tive low rank approximations Atrain � BNMFtran CNMFtrain

and Atrain � UTAPtrainSTAPtrain VTAPtrain respectively with

TABLE 5
The Relative Approximation Error on the Yale-B Data Set and the ORL Data Set

Dataset r MU A-MU HALS A- PG A-PG Ne- NNSV- AP TAP

HALS NMF DLRC

Extented- 38 0.186 0.182 0.181 0.182 0.187 0.184 0.182 0.181 0.164 0.164
ed Yale B 64 0.160 0.157 0.152 0.152 0.159 0.159 0.159 0.151 0.131 0.131

ORL 10 0.206 0.206 0.205 0.205 0.206 0.206 0.205 0.205 0.204 0.204
40 0.159 0.156 0.155 0.155 0.160 0.158 0.154 0.154 0.147 0.147

The best values and the second best values are respectively highlighted by bolder fonts and underlines.

Fig. 3. Relative approximation errors on the ORL data set (a) and the
extended Yale B data set (b), with respect to the different ranks r.

Fig. 4. The recognition accuracy (%) on the extended Yale-B data set
with respect to rank r.2. http://vision.ucsd.edu/
leekc/ExtYaleDatabase/ExtYaleB.html
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rank r. The new representations of Atrain are given by
UT

NMFtrainAtrain and UT
TAPtrainAtrain respectively by the NMF

methods and the TAP (or AP) method. The nearest neighbor
(NN) classifier is adopted by recognized the testing data
based on the distance between their representations and the
projected training data.

The face recognition results are exhibited in Table 6.
From this table, we can see that the accuracies based on
TAP approximations are higher than those based on NMF
approximations. To further investigate how the rank r
affects the recognition results, we plot the recognition accu-
racy on the extended Yale B data set with respect to r in
Fig. 4. It can be found that the recognition accuracy based
on TAP and AP approximations is always better than those
based on NMF approximations. Meanwhile, to see the fea-
tures learned by different methods, we exhibit the column
vectors of BNMFtrain and singular vectors of UTAPtrain in
Fig. 5. These vectors are reshaped to the same size as facial
images and their values are normalized to [0,255] for the
display purpose. We see that the nonnegative low rank
matrix approximation methods do not give the part-based
representations, but provides different important facial rep-
resentations in the recognition.

4.2.2 Document Data

In this subsection, we use the NIST Topic Detection and
Tracking (TDT2) corpus as the document data. The TDT2

corpus consists of data collected during the first half of 1998
and taken from 6 sources, including 2 newswires (APW,
NYT), 2 radio programs (VOA, PRI) and 2 television pro-
grams (CNN, ABC). It consists of 11201 on-topic documents
which are classified into 96 semantic categories. In this
experiment, the documents appearing in two or more cate-
gories were removed, and only the largest 30 categories
were kept, thus leaving us with 9394 documents in total.
Then, each document is represented by the weighted term-
frequency vector [16], and all the documents are gathered
as a matrix Adoc of size 9394� 36771. By using the proce-
dure given in [16], we compute the projected results
UT

TAPATAP ¼ STAPV
T
TAP, and then use k-means clustering

method and Kuhn-Munkres algorithm to find the best map-
ping which maps each cluster label to the equivalent label
from the document corpus. For NMF methods, we scale
each column of BNMF such that their ‘2 norms are equal to 1,
and the corresponding scaled CNMF is used for clustering
and label assignment. To quantitatively evaluate the cluster-
ing performance of each method, we selected two metrics,
i.e., the accuracy and the normalized mutual information
(NMI) (we refer to [46] for detailed discussion). According
to Table 7, it is clear that nonnegative low rank matrix
approximation can provide more effective latent features
(UT

TAPATAP ¼ STAPV
T
TAP) for document clustering task.

Note that the computational time required by the proposed
TAP method (309.22 seconds) is less than that (3417.33 sec-
onds) required by the AP method. Again the results demon-
strate that the proposed TAP method is more efficient than
the AP method.

4.3 Separable Nonnegative Matrices

In this subsection, we compare the performance of the non-
negative low rank matrix approximation method and sepa-
rable NMF algorithms. Here we generate two kinds of
synthetic separable nonnegative matrices.

TABLE 6
The Recognition Accuracy on the Yale-B Data Set and the ORL Data Set

Dataset Parameter MU A-MU HALS A-HALS PG A-PG NeNMF NNSVDLRC AP TAP

Yale B r ¼ 38 61.061% 61.143% 61.637% 62.253% 58.306% 60.074% 61.102% 62.130% 66.776% 67.681%
r ¼ 64 69.942% 70.477% 72.821% 72.821% 65.502% 68.586% 69.572% 72.656% 76.563% 76.809%

ORL r ¼ 10 95.750% 96.250% 96.250% 96.250% 96.500% 96.500% 95.750% 96.000% 96.750% 96.750%
r ¼ 40 98.250% 98.000% 98.250% 98.500% 79.250% 98.250% 97.750% 98.500% 98.500% 98.500%

The best values and the second best values are respectively highlighted by bolder fonts and underlines.

Fig. 5. The first 20 singular vectors of the results by the TAP (or AP)
method and the columns of left factor matrices resulted by NMF meth-
ods when the rank r ¼ 20. These vectors are reshaped to the size of
facial images and their values are adaptively normalized.

Fig. 6. Average relative approximation error on separable matrices (Case
1), with respect to the different values of s.
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� (Separable) The first case A ¼ BCþN is generated
the same as [40], in which B 2 R200�20 is uniform dis-
tributed and C ¼ ½I20;H0� 2 R20�210 with H0 contain-
ing all possible combinations of two non-zero entries
equal to 0.5 at different positions. The columns of
BH0 are all the middle points of the columns of B.
Meanwhile, the i-th column of N, denoted as ni,
obeys ni ¼ sðmi � �wÞ for 21 � i � 210, where s > 0
is the noise level, mi is the i-th column of B, and �w
denotes the average of columns of B. This means
that we move the columns of A toward the outside
of the convex hull of the columns of B.

� (Generalized separable) The second case is generated
almost the same as the first case but simultaneously
considering the separability of rows, known as gen-
eralized separable NMF [42]. For this case, the size of
A is set as 78� 55 with column-rank 10 and row-
rank 12, being the same as [42].

First, we test the approximation ability of TAP and AP
methods, NMF methods, and the successive projection algo-
rithm (SPA) [40], [41] for separable NMF for synthetic separa-
ble data. For the generalized separable case, we compare the
TAP (or AP) method with SPA, the generalized SPA (GSPA)
[42], and the generalized separable NMF with a fast gradient
method (GS-FGM) [42]. Note that when we apply SPA on the
generalized separable matrix, we run it first to identify the
important columns and with the transpose of the input to
identify the important rows. This variant is referred to SPA*.
The noise level s is logarithmic spaced in the interval ½10�3; 1�.
For each noise level, we independently generate 25 matrices
for both separable and generalized separable cases, respec-
tively. We report the averaged approximation error in Figs. 6
and 7. It can be found that TAP and AP methods can achieve
the lowest average errors in the testing examples.

The approximation errors of TAP and AP methods are
much lower than separable and generalized separable NMF
methods when the noise level is high. Note that the average
computational time required by the proposed TAP method
(0.0064 seconds) is less than that (0.0165 seconds) required
by the AP method.

It is interesting whether a better nonnegative low rank
matrix approximation could contribute to a better separable
(or generalized separable) NMF result. To further investi-
gate whether nonnegative low rank matrix approximation
could help separable and generalized separable NMF meth-
ods, we conduct the experiments with inputting the non-
negative low rank approximation to separable and
generalized separable NMF methods. We adopt the accu-
racy and the distance to ground truth defined in Eqs. (16)
and (17) of [42] as the quantitative metrics. The accuracy
reports the proportion of correctly identified row and col-
umn indices while the distance to ground truth reports the
relative errors between the identified important rows (col-
umns) to the ground truth important rows (columns). We
present the computational results in Fig. 8. When the noise
level is between 0.1 and 1, the nonnegative low rank matrix
approximation by our TAP method obviously enhances the
accuracy and decrease the distance between the identified
rows (columns) to the ground truth.

4.4 Symmetric Nonnegative Matrices for Graph
Clustering

In this subsection, we test TAP and AP methods on the sym-
metric matrices. It can readily be found that the output of
TAP and AP algorithms would be symmetric if the input
matrix is symmetric since that the projection onto the non-
negative matrix manifold or the low rank matrix manifold
would never affect the symmetry. Here symmetric NMF
methods are the coordinate descent algorithm (denoted as
“CD-symNMF ”) [38], the Newton-like algorithm (denoted
as “Newton-symNMF”) [37], and the alternating least
squares algorithm (denoted as “ALS-symNMF”) [37].

We perform experiments by using symmetric NMF
methods, TAP and AP methods on the synthetic graph
data, which is reproduced from [72] with six different cases.
The data points in 2-dimensional space are displayed in the
first row of Fig. 9. Each case contains clear cluster structures.
By following the procedures in [37], [72], a similarity matrix
A 2 Rn�n, where n represents the number of data points, is
constructed to characterize the similarity between each pair
of data points. Each data point is assumed to be only con-

TABLE 7
The Accuracy and NMI Values of the Document Clustering Results on the TDT2 Data Set

Metric MU A-MU HALS A-HALS PG A-PG NeNMF NNSVDLRC AP TAP

Accuracy 52.800% 50.724% 54.322% 53.108% 54.205% 51.661% 54.68% 47.23% 61.294% 61.326%
NMI 0.674 0.651 0.663 0.643 0.681 0.661 0.693 0.667 0.728 0.728

Fig. 7. Average relative approximation error on generalized separable
matrices (Case 2), with respect to the different values of s.

Fig. 8. Average accuracy (left) and distance to ground truth (right) for the
different algorithms on generalized separable matrices (Case 2), with
respect to the different ss.
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nected to its nearest nine neighbors. Given a specific pair of
the i-th and j-th data points xi and xj, we first construct the
distance matrix D 2 Rn�n with Dij ¼ Dji ¼ kxi � xjk22.
Then, the similarity matrix is given as

Aij ¼
0; if i ¼ j;

e
ð�Dij
sisj

Þ
; if i 6¼ j;

(
(26)

where si is the euclidean distance between the i-th data
point xi and its 9th neighbor. Then, we perform NMF, TAP
and AP methods for A.

The clustering results of the symmetric NMF methods
and nonnegative low rank matrix approximation are
obtained by using the k-means method on B and U respec-
tively. The clustering results are shown in Fig. 9. CD-
symNMFmethod fails in most examples except the example
in the second column. Both Newton-symNMF and ALS-
symNMF methods fail in the example in the fifth column.
However, TAP and AP methods perform well for all the
examples. The average computational time required by the
proposed TAP method (0.0321 seconds) is less than that
(0.1035 seconds) required by the AP method. The proposed
TAP is faster than the AP method.

4.5 Orthogonal Decomposable Non-Negative
Matrices

In this subsection, we test TAP and APmethods and orthog-
onal NMF (ONMF) methods [4], [35] on the approximation
of the synthetic data and the unmixing of hyperspectral
images. The orthogonal NMF method is a multiplicative
updating algorithm proposed by Ding et al. [4]. We refer to
Ding-Ti-Peng-Park (DTPP)-ONMF. A multiplicative updat-
ing algorithm utilizing the true gradient in Stiefel manifold
is proposed in [35]. We refer to SM-ONMF.

We construct an orthogonal nonnegative matrix B 2
R100�10, whose transpose is shown in Fig. 10. Then a matrix
C 2 R10�30 is generated with entries uniformly distributed
in [0, 1]. Then, we obtain an orthogonal decomposable
matrix A ¼ BC 2 R100�30. Next, a noise matrix based on
MATLAB command s � randð100; 30Þ is added to A. We set
s ¼ 0; 0:02; 0:04; . . . ; 0:1. The relative approximation errors
of the results by different methods are shown in Table 8. We

Fig. 9. The graph clustering results by the TAP (or AP) method and symmetric NMF methods on 6 cases of synthetic graph data. Different color rep-
resents different clusters.

Fig. 10. An illustration of the generated BT .
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can see that the approximation errors of TAP and AP meth-
ods are the lowest among the testing examples.

As a real-world application of ONMF, hyperspectral
image unmixing aims at factoring the observed hyperspec-
tral image in matrix format into an endmember matrix and
an abundance matrix. The abundance matrix is indeed the
classification of the pixels to different clusters, with each
corresponding to a material (endmember). In this part, we
use a sub-image of the Samson data set [73], consisting of
95� 95 ¼ 9025 spatial pixels and 156 spectral bands. We
form a matrix A of size 9025� 156 to represent this sub-
image. Three different materials, i.e., “Tree”, “Rock”, and
“Water”, are in this sub-image, and we set the rank r as 3.
The factor matrices B 2 R9025�3 and C 2 R3�156 can be
obtained by the orthogonal NMF methods. We use k-means
and do hard clustering on B 2 R9025�3 to obtain the abun-
dance matrix, and we can obtain the i-th feature image by
reshaping its i-th column to a 95� 95 matrix. Each row of C
represents the spectral reflectance of on material (“Tree”,
“Rock”, or “Water”). As for TAP and AP methods, we apply
singular value decomposition on approximated non-nega-
tive low rank matrices to obtain the left singular value
matrices which contain the first 3 left singular vectors.
Then, we use k-means and do hard clustering on the left sin-
gular matrices to cluster three materials and obtain abun-
dance matrices and endmember matrices.

To quantitatively evaluate the umixing results, we
employ two metrics. The first one is the spectral angle dis-
tance (SAD) as follows:

SAD ¼ 1

r

Xr
i¼1

arccos
sTi ŝi

ksik2kŝik2

	 

;

where fsigri¼1 are the estimated spectral reflectance (rows of
the endmember matrix) and fŝigri¼1 are the groundtruth
spectral reflectance. The second one is the similarity of the
abundance feature image [74] as follows:

Similarity ¼ 1

r

Xr
i¼1

aTi âi
kaik2kâik2

;

where faigri¼1 are the estimated abundance feature (columns
of the abundance matrix) and fâigri¼1 are the groundtruth
ones. We note that a larger Similarity and a smaller SAD
indicate a better unmixing result. We exhibit the quantita-
tive metrics in Table 9.

We can evidently see that the proposed TAP andAPmeth-
ods obtain the best metrics. Meanwhile, we illustrate the esti-
mated spectral reflectance and abundance feature images in
Fig. 9. It can be found from the second row that DTPP-ONMF

and SM-ONMF perform well for the materials “Rock” and
“Tree” but poor on “Water”. TAP and AP methods unmix
these three materials well, but the proposed TAPmethod (the
computational time = 0.1492 seconds) is faster than the AP
method (the computational time = 0.3738 seconds).

4.6 Other Applications

As we discussed in the introduction part, the NMF has been
utilized in a wide range of applications. In this part, we
select two representative examples, i.e., multi-view cluster-
ing and community detection, and show how our TAP
could be applied for these tasks.

4.6.1 Community Detection

The community detection aims at figuring out groups of
nodes with dense internal connections and sparse external
connections, for real-world complex interaction systems
characterized by complex networks. When the network G ¼
ðV; EÞ with n ¼ jVj nodes and m ¼ jEj edges is described by
an adjacency matrix A, which is symmetric, the community
detection is a direct application of graph clustering on sym-
metric nonnegative matrices in Section 4.4. In this part, we
select 6 widely-used real networks, listed in Table 10, for
evaluation. As the superiority of our TAP over traditional
symmetric NMF methods has been illustrated in Section 4.4,
we consider two more recent methods, i.e., the deep nonlin-
ear reconstruction method [80] (denoted as “DNR”) and the
deep autoencoder-like nonnegative matrix factorization
method [53] (denoted as “DANMF”). We perform all the
methods with feeding them the adjacency matrix A. The
clustering results of our TAP is obtained by using the k-
means method on U while clustering results of DNR and
DANMF are obtained by using the k-means method on their
factors. We run DNR and DANMF 20 times with different
random initializations and the k-means method is also con-
ducted 20 times on U for our TAP. Two quantitative met-
rics, i.e., the accuracy and the NMI, are reported in Table 11.
We can see that our method achieves comparable perfor-
mance compared with DANMF and obtains the best results
for many cases.

4.6.2 Multi-View Clustering

Compared to traditional data that describes objects from
single perspective, multi-view data, collected from different
sources in diverse domains (or obtained from various fea-
ture collectors), is semantically richer, more useful, however
more complex. The goal of multi-view clustering is to
explore the underlying structure of data by leveraging het-
erogeneous information of different views. In this part, we

TABLE 8
The Relative Approximation Errors (�100) on the Orthogonal

Symmetric Matrix Data

s 0 0.02 0.04 0.06 0.08 0.1

DTPP-ONMF 0.022 2.730 5.231 7.567 9.465 11.232
SM-ONMF 0.016 2.741 5.169 7.533 9.424 14.180
AP 0.000 2.364 4.471 6.529 8.215 9.700
TAP 0.000 2.364 4.471 6.529 8.215 9.700

TABLE 9
The Quantitative Metrics of the Unmixing Results on the Hyper-

spetral Image Samson

Metric DTPP-ONMF SM-ONMF AP TAP

SAD 0.3490 0.4389 0.0765 0.0765
Similartity 0.5887 0.5640 0.9383 0.9383

The best values and the second best values are respectively highlighted by
bolder fonts and underlines.
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conduct experiments on the following multi-view datasets,
which are commonly used in the literature.

� 3 source data set3 (3sourse): This data set consists of 169
news reported by three news organizations, i.e., BBC, Reu-
ters, and The Guardian. Each news was manually annotated
with one of six topical labels.

� BBC data set4 (BBC): It is collected from the BBC news
website. BBC data set consists of 685 documents. Each docu-
ment was split into four segments and was manually anno-
tated with one of five topical labels.

� Handwritten digit 2 source data set5 (HW2sources):
This is a handwritten numerals (0�9) data set containing
2000 samples and 10 digits from two sources, i.e., MNIST
Handwritten Digits and USPS Handwritten Digits.

� Yale-B 3 views 6 (Yale-B3): This data set is constructed
via extracting three kinds of features , i.e., intensity, LBP
[81], and Gabor [82], from 165 facial images (15 individuals)
of the Yale B facial image data set.

The statistics of above data sets are summaries in
Table 12.

Our TAP is designed for the approximation of single-
view matrices and it is interesting to extend our method for
multi-view clustering. It would be our future research direc-
tion. As we can see in Section 4.3, here our method could be
helpful when it serves as a preprocessing step. That is, we
apply our nonnegative low rank matrix approximation
method first on data matrices with different views, the per-
formance of the subsequent multi-view clustering method
could be improved. In order to validate this preprocessing
procedure, we compare multi-view clustering methods
with and without the preprocessing by our method on
above data sets. Selected multi-view clustering methods are
the multiview concept clustering (denoted as “MVCC”) [48]

TABLE 10
Data Sets for Community Detection

Data set Karate Dolphins Friendship6 Friendship7 Football Polbooks

[75] [76] [77] [77] [78] [79]

# samples 34 62 68 68 115 105
# clusters 2 2 6 7 12 3

TABLE 11
The Quantitative Metrics (Mean Values and Standard deviations) of Community Detection Results

Method Metrics Karate [75] Dolphins [76] Friendship6 [77] Friendship7 [77] Football [78] Polbooks [79]

DNR Accuracy 88.53% (0.112) 93.15% (0.039) 72.03% (0.068) 75.51% (0.047) 87.09% (0.041) 74.38% (0.017)
NMI 0.607 (0.287) 0.667 (0.109) 0.714 (0.046) 0.736 (0.038) 0.893 (0.018) 0.467 (0.019)

DANMF Accuracy 100.00% (0.000) 98.39% (0.000) 80.22% (0.018) 92.10% (0.014) 86.22% (0.022) 82.33% (0.013)
NMI 1.000 (0.000) 0.889 (0.000) 0.814 (0.031) 0.877 (0.021) 0.877 (0.013) 0.535 (0.016)

TAP Accuracy 100.00% (0.000) 98.39% (0.000) 81.52% (0.050) 80.29% (0.050) 90.70% (0.014) 82.86% (0.000)
NMI 1.000 (0.000) 0.889 (0.000) 0.764 (0.044) 0.763 (0.037) 0.918 (0.011) 0.571 (0.000)

The best values are highlighted by bolder fonts.

TABLE 12
Multi-View Data Sets

Data set # samples # views # clusters

3sources 169 3 6
BBC 685 4 5
HW2sources 2000 2 10
Yale-B2 165 3 15

Fig. 11. Left: Abundance maps of Rock, Tree, and Water; Right: Reflec-
tance of Rock, Tree, and Water. From top to bottom: groundtruth, DTPP-
ONMF, SM-ONMF, AP, TAP.

3. http://mlg.ucd.ie/datasets/3sources.html
4. http://mlg.ucd.ie/datasets/segment.html
5. https://cs.nyu.edu/roweis/data.html
6. https://github.com/hdzhao/DMF_MVC/blob/master/data/

yale_mtv.mat
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method, which is based on the matrix concept factorization
with the local manifold regularization, the graph-based
multi-view clustering (denoted as “GMC”) method [83], and
a deep matrix factorization (DMF) [52] method. In Table 13,
we report quantitative metrics, i.e., the accuracy and the NMI,
of all results on four data sets. As the results of DMF and
MVCCwould vary with different initializations, we runDMF
and MVCC 10 trails and report the mean value and the stan-
dard deviation. We can see that, compared with GMC,
MVCC is more suitable for the data sets 3sources and BBC.
With the help of our TAP, all the methods obtain better
results. Some improvements brought in by our method are
significant, e.g., theMVCConHW2sources, GMCon 3sources
and BBC, and DMF on Yale-B2. Meanwhile, when the data
matrices are preprocessed by ourmethod, the standard devia-
tions also become smaller inmany cases.

5 CONCLUSION

In this article, we have proposed a new alternating projec-
tion method to compute nonnegative low rank matrix
approximation for nonnegative matrices. Our main idea is
to use the tangent space of the point in the fixed-rank matrix
manifold to approximate the projection onto the manifold in
order to reduce the computational cost. Numerical exam-
ples in data clustering, pattern recognition and hyperspec-
tral data analysis have shown that the proposed alternating
projection method is better than that of nonnegative matrix
factorization methods in terms of accuracy, and the compu-
tational time required by the proposed alternating projec-
tion method is less than that required by the original
alternating projection method.

Moreover, we have shown that the sequence generated
by the alternating projections onto the tangent spaces of the
fixed rank matrices manifold and the nonnegative matrix
manifold, converge linearly to a point in the intersection of
the two manifolds where the convergent point is sufficiently
close to optimal solutions. Our theoretical convergence
results are new and are not studied in the literatures. We
remark that Andersson and Carlsson [70] assumed that the
exact projection onto each manifold and then obtained the
convergence result of the alternating projection method.
Because of our proposed inexact projection onto each mani-
fold, our proof can be extended to show the sequence gener-
ated by alternating projections on one or two nontangential
manifolds based on tangent spaces, converges linearly to a
point in the intersection of the two manifolds.

As a future research work, it is interesting to study (i) the
convergence results when inexact projections on several
manifolds are employed, and (ii) applications where the

other norms (such as l1 norm) in data fitting instead of the
Frobenius norm. It is necessary to develop the related algo-
rithms for such manifold optimization problems. Mean-
while, it will also be interesting to extend our method for
the case where multiple data matrices need to be processed.
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