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Tangent Space Based Alternating Projections for
Nonnegative Low Rank Matrix Approximation

Guangjing Song, Michael K. Ng

, and Tai-Xiang Jiang

Abstract—In this article, we develop a new alternating projection method to compute nonnegative low rank matrix approximation for
nonnegative matrices. In the nonnegative low rank matrix approximation method, the projection onto the manifold of fixed rank matrices
can be expensive as the singular value decomposition is required. We propose to use the tangent space of the point in the manifold to
approximate the projection onto the manifold in order to reduce the computational cost. We show that the sequence generated by the
alternating projections onto the tangent spaces of the fixed rank matrices manifold and the nonnegative matrix manifold, converge
linearly to a point in the intersection of the two manifolds where the convergent point is sufficiently close to optimal solutions. This
convergence result based inexact projection onto the manifold is new and is not studied in the literature. Numerical examples in data
clustering, pattern recognition and hyperspectral data analysis are given to demonstrate that the performance of the proposed method
is better than that of nonnegative matrix factorization methods in terms of computational time and accuracy.

Index Terms—Alternating projection method, low rank, manifolds, nonnegative matrices, nonnegativity, tangent spaces

1 INTRODUCTION

ONNEGATIVE data matrices appear in many data analysis
N applications. For instance, in image analysis, image
pixel values are nonnegative and the associated nonnegative
image data matrices can be formed for clustering and recog-
nition [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]. In text
mining, the frequencies of terms in documents are nonnega-
tive and the resulted nonnegative term-to-document data
matrices can be constructed for clustering [13], [14], [15],
[16]. In bioinformatics, nonnegative gene expression values
are studied and nonnegative gene expression data matrices
are generated for diseases and genes classification [17], [18],
[19], [20], [21]. Low rank matrix approximation for nonnega-
tive matrices plays a key role in all these applications. Its
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main purpose is to identify a latent feature space for objects
representation. The classification, clustering or recognition
analysis can be done by using these latent features.

Nonnegative matrix factorization (NMF) has emerged in
1994 by Paatero and Tapper [22] for performing environ-
mental data analysis. The purpose of NMF is to decompose
an input m-by-n nonnegative matrix A € R"*" into m-by-r
nonnegative matrix B € R7*" and r-by-n nonnegative
matrix C € R}": A = BC, and more precisely

min ||A — BC||3, o))
B,C>0

where B, C > 0 means that each entry of B and C is nonneg-
ative, || - || is the Frobenius norm of a matrix, and r (the
low rank value) is smaller than m and n. Lee and Seung [8]
proposed a simple yet effective algorithm with multiplica-
tive update (MU) rules to solve model (1), i.e., minimizing
the Frobenius norm between the given nonnegative matrix
A and its approximation BC. Their emphasis on the poten-
tial value of the parts-based representation brought by
NMF largely popularized it.

So far, numerous amounts of effort have been devoted to
solve (1). Several well-known and widely used NMF algo-
rithms have been presented, to name a few, the hierarchical
alternating least squares (HALS) [23], the alternating non-
negative least squares (ANLS) [24], the accelerated versions
of MU and HALS [24], the projected gradient (PG) method
and its accelerated version (A-PG) [25], the Nesterov’s opti-
mal gradient method (NeNMF) [26], the active set method
[27], and the version accelerated via block principal pivot-
ing [28]. In general, the solution of those iterative algorithms
may vary with different initializations. Many approaches
focused on the initialization of NMF based on k-means and
spherical k-means [29], rank-one approximations [30], the
nonnegative singular value decomposition (NNSVD) [31].
Meanwhile, additional constraints can be imposed as
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regularization into (1), e.g., the sparsity [32], [33], [34], the
orthogonality [4], [35], [36], the symmetry [7], [37], [38], [39],
the separability [40], [41], [42], the discriminant [43], [44],
[45], the local topological property [46], [47], [48], [49], etc.
Moreover, the factorization paradigm of NMF is not limited
in the format of (1) and new ones, such as the nonnegative
matrix tri-factorization [4], [50], [51], the deep nonnegative
matrix factorization [52], [53], [54], the non-negative tensor
factorization [55], [56], [57], and the recent pioneering disen-
tangled factorization [58], are constantly emerging. Accord-
ingly, above mentioned NMF techniques and their variants
have shown promising capacity on different applications in
various fields, from text data mining [13], [15], [16], [51],
image classification [6], [44], and face recognition [2], [5],
[11], [12], [43], to multi-view clustering [45], [48], [52], [59],
blind source separation [9], [17], [60], [61], social computing
[39], [50]. For a comprehensive review of the development
of NMF, we refer to the recently edited books [62], [63] and
review papers [64], [65].

In [66], Song and Ng proposed a new algorithm for com-
puting nonnegative low rank matrix (NLRM) approxima-
tion for nonnegative matrices. This approach is completely
different from NMF, aiming to find a nonnegative low rank
matrix X such that the difference between X and the given
nonnegative matrix A is as small as possible. The distance
|A — X]||% can be smaller than ||A — BC||%, where B and C
are two nonnegative matrices determined via solving (1).
This implies that directly finding A could obtain a better
low rank matrix approximation, which would be very
important in many applications [56], [67]. Mathematically,
the nonnegative low rank matrix approximation can be for-
mulated as the following optimization problem

minrank(X):’r’,XEO ”A - XH?’ 2

The convergence of the their algorithm is studied and
proved. Experimental results for synthetic data and face
images are presented to demonstrate the performance of
NLRM is better than state-of-the-art NMF methods. In addi-
tion, the NLRM method admits a matrix singular value
decomposition (S§VD) automatically which provides a sig-
nificant index based on singular values that can be used to
identify important singular basis vectors, while this infor-
mation cannot be obtained by the classical NMF methods.

1.1 The Contribution

In the algorithm proposed in [66], a projection on the fixed-
rank matrices manifold and a projection onto the nonnega-
tive matrices manifold are used alternately to compute a
nonnegative low rank approximation of the given nonnega-
tive matrix. The computational cost of the above alternating
projection method is dominant by the calculation of the sin-
gular value truncations of the matrices derived at each itera-
tion. The computation burden could be very high when the
matrix size is relatively large.

In this article, also considering the nonnegative low-rank
matrix approximation, we propose to use the tangent space
of the point in the manifold to approximate the projection
onto the manifold that can reduce the computational cost.
We show that the sequence generated by the new alternat-
ing projections converges linearly to a point in the
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intersection of the two manifolds. Moreover, the convergent
point is proved sufficiently close to one of the optimal solu-
tions. Numerical examples will be presented to demonstrate
that the computational time of the proposed tangent space
based method is less than that of the original alternating
projection method proposed in [66]. Moreover, experimen-
tal results in data clustering, pattern recognition and hyper-
spectral data analysis, are given to demonstrate that the
performance of the proposed method is better than that of
other nonnegative matrix factorization methods in terms of
computational time and accuracy.

The rest of this paper is organized as follows. In Section 2,
we propose tangent space based alternating projection
method. In Section 3, we show the convergence of the pro-
posed method. In Section 4, numerical examples are given
to show the advantages of the proposed method. Finally,
some concluding remarks are given in Section 5.

2 NONNEGATIVE Low RANK MATRIX
APPROXIMATION

In this article, we are interested in the m x n fixed-rank
matrices manifold

M, = {X e R™", rank(X) = r}, 3)
the m x n non-negativity matrices manifold

M, ={XeR™" X;>0,i=1,...,m, j=1,...,n}, 4)

and the m x n nonnegative fixed rank matrices manifold

M,y = M, N M, = {X € R™", rank(X) =r, X;; > 0,
i=1,...,m, j=1,...,n}. 5)

The proof of M,,, is a manifold can be found in [66]. Let X €
R™" be an arbitrary matrix in the manifold M,. Assume
that the SVD of X is denoted as: X = UXV’ where U €
R™", % € R™, and V € R"". Then by Proposition 2.1 in
[68] the tangent space of M, at X can be expressed as

Ty, (X) = {UWT 4 ZVT} (6)

where W e R and Z € R™" are arbitrary. Here -
denotes the transpose of a matrix. For a given m-by-n matrix
Y, the orthogonal projection of Y onto the subspace T, (X)
can be written as

Pr,, 00(Y) = UUTY + YWV - UUTYVVT. M

The alternating projection method studied in [66] is based
on projecting the given nonnegative matrix onto the m x n
fixed-rank matrices manifold M, and the non-negativity
matrices manifold M,, iteratively. The projection onto the
fixed rank matrix set M, is derived by the Eckart-Young-
Mirsky theorem [69] which can be expressed as follows:

7100 = 3 e 0 00 (%) ®

where o;(X) is the i-th singular value of X, «;(X) and v;(X)
are their corresponding singular vectors. The projection
onto the nonnegative matrix set M,, is expressed as
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(b)

Fig. 1. The comparison between (a) the original alternating projection
method and (b) the proposed TAP method.

X5, if X;; >0,
ﬂg(x):{ J J

9
0, if X;‘j < 0( )

Moreover, 7(X) refers to a matrix on M,,, which is closest to
the given nonnegative matrix X, i.e.,

7(X) = argmin ||X — Y||3,,
YeM,
where M,., is the nonnegative fixed rank matrices manifold

given as in (5).

(10)

2.1 Projections Based on Tangent Spaces
The main aim of this section is to introduce the Tangent space
based Alternating Projection (TAP) method. In the original
alternating projection (AP) method proposed in [66], the pro-
jection onto the fixed rank matrix manifold in computed by
the singular values truncation operator given in (8). Unfortu-
nately, it is expensive when the matrix size is big. Then in
this section, we will make use of tangent spaces to design the
TAP method to compute the nonnnegative low rank matrix
approximation which can reduce the computational cost.
The difference between the AP method and the TAP
method is illustrated in Figs. 1 and 2. For the TAP method,
the given nonnegative matrix Xo = A was first projected
onto the manifold M, by 7(-), i.e.,, X; = m1(Xp), and then
Xy is derived by projecting X; onto the manifold M, by
m2(-). The first two steps are same as the original AP
method. The difference between the two methods starts
from the third step. In the TAP method, the point X; is first
projected onto the tangent space of the manifold M, at X;
by the orthogonal projection Pr,, (x,)(-), and then the
derived point is projected from the tangent space to the
manifold M,, i.e., X3 = ”l(PTM,. x,)(X2)). Thus the sequence
generated by the TAP method can be derived as follows:

Xo=A, X; = nl(X0)7 Xy = 772(X1)7
Xs = m1(Pry, x)(X2)), Xa = m2(Xs), ...,

Xoe1 = T (Pry, (xyy_y) Xak)); Xorpo = m2(Xopga), -

11919

e P o) |

m(Pry,, (x,)(X2))

Fig. 2. The zoomed region in Fig. 1b.

where Pr,, (x,, ,)(Xar) denotes the orthogonal projections
of Xy, onto the tangent space of M, at Xy;—;. The algorithm
can be summarized as the following algorithm.

Algorithm 1. Tangent Spaces Based Alternating Projec-
tion (TAP) Method

Input: Given a nonnegative matrix A € R"™*" this algorithm
computes nearest rank-r nonnegative matrix.

1: Initialize Xy = A;

2: X1 =T (Xo) and X2 = ﬂg(xl)

3:fork=1,2,..,

4 Xowpr = m(Pry, xy ) (Xat))

50 Xopra = ma(Xops1);

6: end

Output: X511 when the stopping criterion is satisfied.

Let’s analyze the computational cost of each step of the
TAP algorithm. Suppose the skinny SVD decompositions of
Xo—1 are given as Xop; = U3, V] k=1,.... By (6), the
tangent space of M, at X;_; can be expressed as

T, Xop1) = {UWT + 2V

where W € R"*" and Z € R™" are arbitrary. By (7), Xy can

be projected onto the subspace Ty, (x,, ,) as follows:

PTMr(szfl) (ng) = Ukszzk + ngVka
— ULU; X, Vi V]

Suppose the QR decompositions of (I — U;CUg)X%V;C and
(r— Vng)XQkUk are given as

(I- U U)X, Vi = QiR
and
(I-V,VD)XL U, = QiRy,
respectively. Recall that U/ Q, = VI'Q,, = 0, then by a direct

computation, we have

Pry o Xar)

= UU] Xoi (I = Vi VY) + (I — U U} )Xo, Vi VS
+ U Ul X VL V]

= UsR}Qf + QiR V] + U U Xp, Vi V]

B UIXa Ve RE\ (Vi
= (U Qk)( R, 0>(Qf)

Vi
= (U QM| o |-
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Let M;, = ‘PkaCI)z be the skinny SVD of M, which can
be computed using O(r*) flops. Note that (Ui, Q) and
(Vi, Qy) are orthogonal, then the skinny SVD of

PTM'r(xu:fl) (X%) = Qk@k{

can be computed by
Qk = (U}H Qk)‘l’k, ®k = Fk and k= (V]“ Qk)q)k

It follows that the overall computational cost of m;
(Pry, x,, ,)(X2k)) can be expressed as two matrix-matrix
multiplications. In addition, the calculation procedure
involves the QR decomposition of two matrices of sizes m x
r and n x r matrices, and the SVD of a matrix of size 2r x
2r. The total cost per iteration is of 4mnr + O(r*m + r*n +
r%). In contrast, the computation of the best rank-r approxi-
mation of a non-structured m x n matrix costs O(mnr) +
mn flops where the constant in front of mnr can be very
large. In practice, the cost per iteration of the proposed TAP
method is less than that of original alternating projection
method. In Section 4, numerical examples will be given to
demonstrate the total computational time of the proposed
TAP method is less than that of the original alternating pro-
jection method.

3 THE CONVERGENCE ANALYSIS

In this section, we mainly consider the convergence of the
proposed TAP method. The convergence of the original
alternating projection method relate to two manifolds has
been proved in [70]. Known from that, the angle of a point
in the intersection of two manifolds plays a key role in the
whole proof process. In our setting, for B € M,,, its angle
«(B) can be defined as

a(B) = cos ! (o(B)), 11)
where
B, —B,B, — B
o(B) = lim sup { (B, — B, B, — B) },
gﬁ()BleFf(B),Bgng(B) HBl _B”F”B2 _B”F
with

F{(B) = {B, | B, € M,\B,|B, - B[ <&,
Bl - BLTMTQM1L(B)}’

F5(B) = {By | B € M,\B,||B, — B|| . <&,
By — BJ-TM,-ﬂMn(B)},

and T, nm, (B) is the tangent space of M, N M,, at point B.
The angle can be calculated by the two points in M, and
M.,,. A point B in M,,, is nontangential if «(B) has a positive
angle,ie., 0 <og(4) < 1L

In the following, the main convergence results of Algo-
rithm 1 can be listed as follows.

Theorem 3.1. Let M,., M,, and M,., be given as (3), (4) and (5),
the projections onto M, and M,, be given as (8) and (9),

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 11, NOVEMBER 2023

respectively. Suppose that P € M,,, is a non-tangential inter-
section point, then for any given € > 0 and 1 > ¢ > o(P),
there exist an & > 0 such that for any A € Ball(P,§) (the ball
neighborhood of P with radius & contains the given nonnegative
matrix A), the sequence Xj, generated by Algorithm 1 converges
to a point Xoo € M,,, and satisfy

D X = (A)|[p < el|A = (A,
2) [Xeo — Xil < const - H|A — w(A)]|,
where w(A) is defined in (10).

When the points on the tangent spaces are used as
approximation of the points in the manifold, the following
results can help us to study the distances related to the
proof of Theorem 3.1.

Lemma 3.2 (Proposition 4.3 and Theorem 4.1 in [70]). Let
71(+) and 7(-) be defined as (8) and (10), and P € M,.. For each
0 < € < 2, there exist an s(e) > 0 and an e(e) > 0, such
that for any given Z € Ball(P, s(e))

17r1(Z) = Pry, (2 (2l < WVelZ = 7(Z)]|, (12)

and

l7(71(2)) = 7(Z) || < e()NZ = 7(Z)| - (13)

Lemma 3.3 (Proposition 2.4 in [70]). Let P € M, be given.
For each € > 0, there exists s > 0 such that for all C €
Ball(P, s) N M,., we have:

(i) minyep,, (C)[D—D[|p <€D —Clp, VD € Ball
(P,s) N M,.

(i) |D — 71 (D)||p < €[|D — C||p, ¥V D € Ball(P, s)N
T, (C).

For a point Z around P € M,, the distance between its
projected point on the manifold and the projected point on
the tangent space can be estimated as follows. The proof can
be found in Appendix, available online.

Lemma 3.4. Let Pr,, () and 7:1(-) be given as (7) and (8), and
Pec M, Foreach0 < € < g, there exist an s(e) > 0 and a
point Q € Ball(P,s(e)) N M, such that for any given Z &
Ball(P, s(¢)), we have

I71(Z) = Pry, @ @)lr < 4VellZ - Qlp- (14)

Lemma 3.5 (Theorem 4.5 in [70]). Suppose P is a nontangen-
tial point with o(P) < c. Then there exists an s > 0 such that
forallZ € M,, N Ball(P, s), we have

7U(Z) = 7(Z)llp < cllZ = 7(Z)]|p- (15)

Suppose that Q € M, N Ball(P,s1(e)) is defined as
Lemma 3.4, then the distance between n(mi(Pr,, (9)(Z)))
and 7(Z) can be estimated as follows. And the proof can be
found in Appendix, available in the online supplemental
material.
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Lemma 3.6. Let P € M,,, be given. For each 0 < € < 3‘, there
exist e1(€) > 0,e9(€) > 0and s1(e) > 0 such that forall Z €
Ball(P, s1(€))

(1 (Pry, (@)(Z))) = 7(Z)|[p <e1(NZ = 7(Z)l|p
+2(9)[|Q — 7(Z)|| -

In order to prove the convergence of Algorithm 1, we
also need to estimate the distance between 1 (Pr,, (9)(Z))
and 7(Z). The proof can be found in Appendix, available in
the online supplemental material.

Lemma 3.7. Suppose P is a nontangential point in M,,, with
o(P) < ¢, and Q € M,. Then there exists an s > 0 such that
when Z =m2(Q) € M,, N Ball(P,s) and Pr, (Z) e
T, (Q) N Ball(P, s), we have

[71(Pry, 0)(Z2) = 7(Z)llp < c|Z —n(Z)]|p. (16)

With the above tools in hand, we can list the proof of
Theorem 3.1 as follows.

Proof of Theorem 3.1Note that M,,, is a smooth manifold
[66] and P € M,,, then there exists an s’ such that 7 is con-
tinuous on Ball(P, s'). In other words, we can find a con-
stant@ > 0 such that

I7(X) = 7(X) ||y < @l|X = X||,V X, X' € Ball(P, ). (17)

Suppose thate < 1,and seto(P) < ¢ < land

1-c
2(3—-1¢)

1—
€, eo(e) = ¢ €,

E =

where « is a constant given as in (17). It follows Lemma 3.5-
3.7 that there exist some possibly distinct radii which can
guarantee (15)-(16) are satisfied. Let s denote the minimum
of these possibly radii and pick r < %, so that
7(Ball(P,r)) C Ball(P,%). Then |[7(A)—-P|, <% follows
from the latter condition. Denote ! = ||A — 7(A)|| and note
that

[=[A=P+P—n(A)lp <[A=P|p+[P—-r(A)g

<r42
T —.
- 4

As (A) € M,, and note that X; = 7;(A), we have
1Xi = Allp = [l71(A) = Allp < [|7(A) — Allp =1
and

Xy =2 (X[ < X1 = 7(A)l|
< X = Allp + 1A = = (A)ll < 2L
In order to prove {X;} derived by Algorithm 1 is conver-

gent, we need to prove {X,} is a Cauchy sequence. By
Lemma 3.7, there exist an ¢; such that

11921
Xar+1 — 7(Xors1) [ p < [ Xan1r — 7(Xap) || 2
S Cl||X2k _N(XQk)HF~ (18)
In addition, by Lemma 3.5, there exist an ¢, such that
Xar — w(Xap) | 2 < [ Xor — 7(Xor—1) |
< || Xop—1 — w(Xor—1)|| - (19)

Set ¢ = max{cy, ¢2 }, combine (18) and (19) together gives

X, = 70 - < ellXis = 7K (20)
Then {X;} is a Cauchy sequence if and only if
{Xi}ily € Ball(P, s) (21)

is satisfied. The remaining task is to show (21) is satisfied by
induction. For k = 1,

T
Xt = Pl < % — Al + A= Pl <1+

<9 Jrs<s(176)+5
eyl hd
- 47 22+¢ 4

< Ss.

Assume that (21) is satisfied when n = k, then it follows
from (20) that
X, = (X < X0 — (X0l < 21k, (22)

For an arbitrary kand ¢ = 1 or 2, we have

X2 = 7(Xe-1) | 2
= X2 = (i (Xe—2)) |
= X2 = w(Xp—2) + 7(Xy2) = 7(70: (X)) [
< X2 = 7 Xp2) ||+ [l7(Ki2) = 7(70 (X)) [

< Xk = 7(Xp—2) || + @[ X — 73 (Xi—2) ||
< (T + @) X2 — 7(Xj—2) | p-

The second part of the second inequality is derived by the
continuous of =, the third inequality is derived by

X2 — i (Xp—2) [ p < [ X2 = 7(Xpp—2) || p, @ =1,2.
In addition, when £ is even, by Lemma 3.2, we have

le(Xi) = (Xl < () Xp1 = 7(Xp—1) | - (23)

When £ is odd, applying Lemma 3.6 gives

7 (Xk) — (X1l
< e1()[Xp-1 = T(Xp—1) | p + £2(6) [ Xi—2 — 7(Xe1) | o
< (@) Xe-1 = 7(Xp-1)l
+ e2(e) (1 + ) [Xp—2 — 7(Xp—2) || p
< 21 () + 2e9(€) (1 + &) F 2
= (e1(e)c + ex(e)(1 + ))2¢F 2.

Set ¢ = max{e(e),e1(€) }, then for an arbitrary k, we have

[7(Xs) — 7(Xe—1)|| o < (e¢ + ea(e) (1 +a))2¢"21. (24)
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TABLE 1
The Relative Approximation Error and Computation Time on the Synthetic Data Sets With Maxlter = 10*

200-by-200 matrix

Relative approximation error Computation time (s)

Method r=10 r=20 r=40 r=10 r=20 r =40
TAP 0.4574 0.4158 0.3426 0.02 0.01 0.02
AP 0.4574 0.4158 0.3426 0.03 0.02 0.03
A-MU: mean 0.4588 0.4244 0.3717 15.18 8.82 8.97
A-MU: range [0.4588,0.4589] [0.4242,0.4246] [0.3713,0.3720] [14.55,15.44] [8.72,9.00] [8.78,9.14]
HALS: mean 0.4588 0.4243 0.3710 16.29 16.35 16.26
HALS: range [0.4588,0.4589] [0.4242,0.4245] [0.3707,0.3712] [16.05,16.72] [16.16,16.48] [16.05,16.50]
A-PG1: mean 0.4588 0.4243 0.3711 15.40 9.46 9.64
A-PG1: range [0.4588,0.4589] [0.4242,0.4244] [0.3708,0.3714] [15.19,15.54] [9.16,10.08] [9.55,9.72]
NeNMF: mean 0.4588 0.4245 0.3723 0.51 0.59 0.72
NeNMF: range [0.4588,0.4589] [0.4243,0.4247] [0.3716,0.3728] [0.45,0.92] [0.45,0.77] [0.51,0.91]
NNSVDLRC: mean 0.4588 0.4243 0.3712 21.19 20.33 19.07
NNSVDLRC: range [0.4588,0.4588] [0.4243,0.4243] [0.3711,0.3712] [20.77,21.81] [19.91,21.30] [17.98,19.58]
400-by-400 matrix

Relative approximation error Computation time (s)
Method r =20 r =40 r =380 r=20 r =40 r =80
TAP 0.4560 0.4153 0.3419 0.03 0.03 0.06
AP 0.4560 0.4153 0.3419 0.04 0.05 0.13
A-MU:mean 0.4593 0.4288 0.3840 8.77 9.02 9.42
A-MU:range [0.4592,0.4593] [0.4287,0.4290] [0.3838,0.3844] [8.62,8.86] [8.91,9.14] [9.33,9.52]
HALS:mean 0.4592 0.4283 0.3823 16.11 15.69 15.89
HALS:range [0.4591,0.4592] [0.4282,0.4284] [0.3822,0.3825] [15.96,16.34] [15.39,16.12] [15.73,16.09]
A-PGl:mean 0.4592 0.4286 0.3836 9.05 9.17 10.00
A-PGlrange [0.4592,0.4593] [0.4285,0.4287] [0.3834,0.3838] [8.85,9.15] [9.06,9.31] [9.74,10.20]
NeNMF:mean 0.4593 0.4291 0.3856 0.74 0.89 0.92
NeNMF:range [0.4593,0.4594] [0.4289,0.4293] [0.3852,0.3859] [0.56,0.99] [0.71,1.20] [0.84,1.12]
NNSVDLRC:mean 0.4592 0.4283 0.3822 16.62 15.83 15.83
NNSVDLRC:range [0.4591,0.4592] [0.4282,0.4284] [0.3820,0.3824] [15.97,18.55] [15.31,17.03] [15.76,15.99]

800-by-800 matrix

Relative approximation error Computation time (s)
Method r =40 r =280 r =160 r =40 r =80 r =160
TAP 0.4551 0.4145 0.3411 0.14 0.16 0.33
AP 0.4551 0.4145 0.3411 0.20 0.28 0.68
A-MU:mean 0.4607 0.4346 0.3977 9.12 9.44 11.32
A-MU:range [0.4606,0.46071 [0.4345,0.4347] [0.3976,0.3978] [9.05,9.19] [9.28,9.76] [11.08,11.51]
HALS:mean 0.4603 0.4334 0.3945 14.58 15.03 15.20
HALS:range [0.4603,0.4604] [0.4334,0.4335] [0.3944,0.3946] [14.29,14.90] [14.87,15.17] [15.00,15.39]
A-PGl:mean 0.4605 0.4339 0.3980 9.58 10.41 11.16
A-PGlirange [0.4605,0.4606] [0.4339,0.4340] [0.3977,0.3985] [9.44,9.78] [10.25,10.54] [10.99,11.38]
NeNMF:mean 0.4609 0.4356 0.3996 1.08 1.30 251
NeNMF:range [0.4609,0.4610] [0.4354,0.4357] [0.3993,0.3997] [0.93,1.18] [1.11,1.40] [2.41,2.64]
NNSVDLRC:mean 0.4603 0.4334 0.3946 14.83 15.09 15.30
NNSVDLRC:range [0.4603,0.4604] [0.4334,0.4335] [0.3945,0.39471] [14.43,15.06] [14.94,15.25] [15.09,15.50]

The best values are respectively highlighted by bolder fonts. Here the same random initialization is used for NMF methods in each trial.

By (24) and Lemma 3.2, we have

[l72(Xk) = (A

IN

+1
=3

IN

IA

3el +

2(e1(€)c+ e2(6)(1 +a))

[7(A) = 2(XD[p + [[7(Xa) = 2(X1)[|
k
> 7)) = 7 (X5l

k
el + 2el + Z(el(e)c +e2(e)(1 +@))2¢ 721
=3

l

3e(1 —¢) 4 2ec+ (1 + a)ea(e)

1—c¢

1—c¢

| <el.

(25)

Thus,

[P —Xillp < IP = m(A)|[p + [l7(A) = 7(Xp) ]|
+ 7 Xe) = Xpllp < s/4+el +21 < s,

which shows that (21) is satisfied.

It follows from (24) that the sequence (n(Xy));—; is a
Cauchy sequence which converges to a point Z,. Note
that (22) is satisfied, the sequence (X;),—, also con-
verges. In addition, Z,, = n(Z«) can be derived by not-
ing that the projection is local continuous. Moreover, by
taking the limitation of (25) we can get (z). For (7).

Note that
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TABLE 2
The Relative Approximation Error and Computation Time on the Synthetic Data Sets With MaxIter = 102

200-by-200 matrix

Relative approximation error

Computation time (s)

Method r=10 r =20 r =40 r=10 r=20 r =40
TAP 0.4574 0.4158 0.3426 0.01 0.01 0.01
AP 0.4574 0.4158 0.3426 0.01 0.01 0.03
A-MU:mean 0.4593 0.4262 0.3766 0.08 0.11 0.11
A-MU:range [0.4591,0.4594] [0.4259,0.4264] [0.3760,0.3771] [0.07,0.09] [0.10,0.12] [0.11,0.12]
HALS:mean 0.4596 0.4258 0.3742 0.02 0.03 0.05
HALS:range [0.4593,0.4599] [0.4253,0.4260] [0.3738,0.3746] [0.01,0.04] [0.02,0.03] [0.04,0.05]
A-PGl:mean 0.4590 0.4252 0.3746 0.11 0.16 0.20
A-PGl:range [0.4589,0.4592] [0.4249,0.4254] [0.3742,0.3751] [0.09,0.19] [0.15,0.18] [0.20,0.22]
NeNMF:mean 0.4591 0.4251 0.3735 0.07 0.14 0.27
NeNMF:range [0.4590,0.4592] [0.4249,0.4254] [0.3732,0.3738] [0.05,0.12] [0.11,0.18] [0.24,0.30]
NNSVDLRC:mean 0.4592 0.4255 0.3734 0.05 0.04 0.06
NNSVDLRC:range [0.4592,0.4592] [0.4254,0.4255] [0.3734,0.3734] [0.03,0.14] [0.03,0.04] [0.06,0.07]
400-by-400 matrix
Relative approximation error Computation time (s)
Method r=20 r =40 r =80 r =20 r =40 r =80
TAP 0.4560 0.4153 0.3419 0.02 0.03 0.06
AP 0.4560 0.4153 0.3419 0.03 0.05 0.12
A-MU:mean 0.4600 0.4309 0.3887 0.31 0.30 0.33
A-MU:range [0.4598,0.4601] [0.4307,0.4311] [0.3883,0.3890] [0.30,0.34] [0.29,0.31] [0.31,0.35]
HALS:mean 0.4601 0.4300 0.3853 0.05 0.10 0.23
HALS:range [0.4600,0.4602] [0.4298,0.4302] [0.3852,0.3856] [0.05,0.06] [0.09,0.101 [0.23,0.25]
A-PGl:mean 0.4598 0.4306 0.3893 0.50 0.52 0.69
A-PGl:range [0.4597,0.4599] [0.4303,0.43071] [0.3890,0.3897] [0.49,0.56] [0.51,0.53] [0.66,0.72]
NeNMF:mean 0.4596 0.4296 0.3856 0.22 0.42 0.72
NeNMF:range [0.4595,0.4597] [0.4295,0.4298] [0.3852,0.3859] [0.19,0.30] [0.38,0.44] [0.65,0.85]
NNSVDLRC:mean 0.4599 0.4298 0.3852 0.07 0.13 0.29
NNSVDLRC:range [0.4599,0.4599] [0.4298,0.4298] [0.3851,0.3853] [0.07,0.08] [0.12,0.13] [0.28,0.33]
800-by-800 matrix
Relative approximation error Computation time (s)

Method r =40 r =280 r =160 r =40 r =280 r =160
TAP 0.4551 0.4145 0.3411 0.11 0.13 0.26
AP 0.4551 0.4145 0.3411 0.15 0.22 0.53
A-MU:mean 0.4614 0.4364 0.4010 0.83 0.95 1.50
A-MU:range [0.4614,0.4615] [0.4363,0.4364] [0.4008,0.4012] [0.80,0.89] [0.94,0.99] [1.48,1.55]
HALS:mean 0.4614 0.4350 0.3970 0.23 0.45 0.98
HALS:range [0.4613,0.4615] [0.4349,0.4352] [0.3969,0.3971] [0.22,0.23] [0.44,0.46] [0.97,1.00]
A-PGl:mean 0.4610 0.4352 0.4047 1.60 1.68 2.47
A-PGl:range [0.4610,0.4611] [0.4351,0.4352] [0.4044,0.4049] [1.57,1.65] [1.66,1.71] [2.45,2.50]
NeNMF:mean 0.4610 0.4356 0.3996 0.77 1.03 2.02
NeNMF:range [0.4609,0.4610] [0.4354,0.4357] [0.3993,0.3997] [0.70,0.81] [0.91,1.09] [1.92,2.13]
NNSVDLRC:mean 0.4610 0.4347 0.3968 0.35 0.64 1.31
NNSVDLRC:range [0.4610,0.4611] [0.4347,0.4348] [0.3968,0.3969] [0.31,0.42] [0.58,0.691 [1.24,1.38]

The best values are respectively highlighted by bolder fonts. Here the same random initialization is used for NMF methods in each trial.
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with a constant 8 as desired.
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4 EXPERIMENTAL RESULTS

The main aim of this section is to demonstrate that (i) the
computational time requried by the proposed TAP method is
faster than that by the original alternating projection (AP)
method with about the same approximation ability; (ii) the
performance of the proposed TAP method is better than that
of nonnegative matrix factorization methods in terms of
computational time and accuracy for examples in data clus-
tering, pattern recognition and hyperspectral data analysis.

The experiments in Subsection 4.1 are performed under
Windows 10 and MATLAB R2020a running on a desktop
(Intel Core i7, @ 5.1GHz, 32.00G RAM) and experiments in
Subsection 4.2-4.6 are performed under Windows 10 and
MATLAB R2020a running on a desktop (AMD Ryzen 9
3950, @ 3.49GHz, 64.00G RAM).
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TABLE 3
The Relative Approximation Error and Computation Time on the Synthetic Data Sets With MaxIter = 10*

200-by-200 matrix

Relative approximation error

Computation time (s)

Method r=10 r =20 r =40 r=10 r=20 r =40
TAP 0.4574 0.4158 0.3426 0.01 0.01 0.01
AP 0.4574 0.4158 0.3426 0.01 0.01 0.02
A-MU:mean 0.4588 0.4245 0.3721 3.85 414 4.20
A-MU:range [0.4588,0.4589] [0.4243,0.4247] [0.3718,0.3723] [3.71,3.93] [4.08,4.22] [4.14,4.26]
HALS:mean 0.4588 0.4243 0.3711 0.79 1.20 2.25
HALS:range [0.4588,0.4589] [0.4241,0.4244] [0.3706,0.3713] [0.76,0.82] [1.18,1.23] [2.17,2.32]
A-PGl:mean 0.4588 0.4243 0.3713 4.69 4.53 4.83
A-PGl:range [0.4588,0.4589] [0.4242,0.4245] [0.3710,0.3717] [4.61,4.77] [4.40,4.68] [4.65,4.96]
NeNMF:mean 0.4588 0.4246 0.3723 0.48 0.51 0.56
NeNMF:range [0.4588,0.4590] [0.4244,0.4249] [0.3718,0.3728] [0.45,0.69] [0.45,0.71] [0.45,0.72]
NNSVDLRC:mean 0.4588 0.4243 0.3710 0.80 1.22 2.26
NNSVDLRC:range [0.4588,0.4589] [0.4243,0.4245] [0.3709,0.3713] [0.79,0.81] [1.18,1.25] [2.18,2.35]
400-by-400 matrix
Relative approximation error Computation time (s)
Method r=20 r =40 r =80 r =20 r =40 r =80
TAP 0.4560 0.4153 0.3419 0.02 0.03 0.06
AP 0.4560 0.4153 0.3419 0.03 0.05 0.12
A-MU:mean 0.4593 0.4291 0.3846 4.15 4.24 443
A-MU:range [0.4593,0.4594] [0.4290,0.4292] [0.3845,0.3847] [4.09,4.24] [4.17,4.30] [4.37,4.49]
HALS:mean 0.4592 0.4284 0.3823 2.65 4.95 7.21
HALS:range [0.4591,0.4592] [0.4283,0.4285] [0.3821,0.3825] [2.61,2.67] [4.89,5.09] [6.93,7.42]
A-PGl:mean 0.4593 0.4288 0.3845 4.54 431 451
A-PGl:range [0.4592,0.4593] [0.4287,0.4291] [0.3843,0.3847] [4.44,4.81] [4.19,4.43] [4.41,4.58]
NeNMF:mean 0.4593 0.4291 0.3855 0.64 0.71 0.78
NeNMF:range [0.4593,0.4594] [0.4289,0.4294] [0.3851,0.3857] [0.54,0.79] [0.56,0.85] [0.70,0.89]
NNSVDLRC:mean 0.4592 0.4283 0.3825 2.74 5.18 7.30
NNSVDLRC:range [0.4592,0.4592] [0.4283,0.4284] [0.3823,0.3826] [2.70,2.81] [5.11,5.25] [7.07,7.42]
800-by-800 matrix
Relative approximation error Computation time (s)

Method r =40 r =280 r =160 r =40 r =280 r =160
TAP 0.4551 0.4145 0.3411 0.10 0.13 0.27
AP 0.4551 0.4145 0.3411 0.15 0.22 0.54
A-MU:mean 0.4608 0.4350 0.3984 4.29 4.47 5.60
A-MU:range [0.4608,0.4609] [0.4348,0.4351] [0.3983,0.3986] [4.20,4.36] [4.36,4.68] [5.39,6.28]
HALS:mean 0.4603 0.4335 0.3948 7.17 7.45 7.62
HALS:range [0.4603,0.4604] [0.4334,0.4335] [0.3947,0.3948] [7.03,7.38] [7.24,7.57] [7.50,7.76]
A-PGl:mean 0.4606 0.4342 0.4001 4.43 4.86 5.63
A-PGl:range [0.4606,0.4607] [0.4342,0.4343] [0.3999,0.4004] [4.29,4.56] [4.76,4.99] [5.43,5.82]
NeNMF:mean 0.4609 0.4354 0.3995 0.85 1.09 2.05
NeNMF:range [0.4608,0.4610] [0.4352,0.4356] [0.3991,0.3997] [0.74,0.96] [1.00,1.18] [1.99,2.13]
NNSVDLRC:mean 0.4604 0.4335 0.3949 7.23 7.53 7.70
NNSVDLRC:range [0.4604,0.4604] [0.4335,0.4336] [0.3947,0.3950] [7.11,7.40] [7.41,7.63] [7.62,7.85]

The best values are respectively highlighted by bolder fonts. Here different random initializations are used in NMF methods in each trial.

4.1 The First Experiment

The synthetic matrices are of the sizes 200-by-200, 400-by-400
and 800-by-800 and for each size we run nonnegative matrix
factorization algorithms (A-MU [24], A-HALS [24], A-PG1 [25],
NeNMF [26], and NNSVDLRC [31]) 10 times. In the experi-
ment, we randomly generated n-by-n nonnegative matrices A
where their matrix entries follow a uniform distribution in
between 0 and 1. We employed the proposed TAP method and
the original alternating projection (AP) method [66] to test the
relative approximation error ||A — X.||z/||A||z, where X, are
the computed rank r solutions by different methods. The stop-
ping criteria of each method is that the successive relative
approximation error is less than 10~° or the maximum number
(Maxlter) of iterations (10? or 102) is attained. In Tables 1 and 2,
the same randomly initial guess is employed in A-MUm A-

HALS, A-PG1, NeNMF. In Tables 3 and 4, different randomly
initial guesses are employed in A-MUm A-HALS, A-PGI,
NeNMF for each trial. However, for NNSVDLRC, which
works on generating initial factor matrices, the initial guesses
are get from NNSVDLRT and then input into A-HALS [24].

Tables 1, 2, 3, and 4 shows the relative approximation
error of the computed solutions from the proposed TAP
method and the other testing methods for synthetic data
sets of different sizes. We have the following results.

e For the TAP and AP methods, the non-negative con-
straint are only added to the low-rank matrix itself,
while non-negative constraints are simultaneously
added to the two low rank factor matrices. Thus, the
relative approximation errors of TAP and AP are
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TABLE 4
The Relative Approximation Error and Computation Time on the Synthetic Data Sets With MaxIter = 102

200-by-200 matrix

Relative approximation error Computation time (s)

Method r=10 r =20 r =40 r=10 r=20 r =40
TAP 0.4574 0.4158 0.3426 0.01 0.01 0.01
AP 0.4574 0.4158 0.3426 0.01 0.01 0.02
A-MU:mean 0.4593 0.4261 0.3765 0.08 0.11 0.12
A-MU:range [0.4591,0.4596] [0.4258,0.4265] [0.3761,0.3768] [0.07,0.09] [0.11,0.12] [0.12,0.12]
HALS:mean 0.4596 0.4258 0.3743 0.02 0.03 0.05
HALS:range [0.4594,0.4600] [0.4255,0.4260] [0.3739,0.3748] [0.01,0.02] [0.02,0.03] [0.04,0.05]
A-PGl:mean 0.4591 0.4252 0.3745 0.10 0.16 0.21
A-PGl:range [0.4589,0.4593] [0.4248,0.4255] [0.3739,0.3755] [0.09,0.11] [0.16,0.17] [0.21,0.23]
NeNMF:mean 0.4591 0.4251 0.3734 0.05 0.15 0.28
NeNMF:range [0.4590,0.4593] [0.4250,0.4254] [0.3729,0.3740] [0.05,0.06] [0.12,0.17] [0.24,0.30]
NNSVDLRC:mean 0.4592 0.4255 0.3734 0.03 0.04 0.06
NNSVDLRC:range [0.4592,0.4592] [0.4255,0.4255] [0.3734,0.3735] [0.02,0.03] [0.03,0.04] [0.06,0.06]
400-by-400 matrix
Relative approximation error Computation time (s)
Method r=20 r =40 r =80 r =20 r =40 r =80
TAP 0.4560 0.4153 0.3419 0.02 0.03 0.06
AP 0.4560 0.4153 0.3419 0.04 0.05 0.12
A-MU:mean 0.4600 0.4309 0.3887 0.32 0.32 0.35
A-MU:range [0.4599,0.4603] [0.4306,0.4310] [0.3883,0.3892] [0.31,0.32] [0.31,0.33] [0.34,0.40]
HALS:mean 0.4602 0.4301 0.3854 0.06 0.10 0.24
HALS:range [0.4601,0.4603] [0.4298,0.4303] [0.3852,0.3856] [0.05,0.06] [0.10,0.11] [0.23,0.26]
A-PGl:mean 0.4598 0.4307 0.3892 0.51 0.55 0.72
A-PGl:range [0.4597,0.4598] [0.4304,0.4309] [0.3889,0.3894] [0.50,0.54] [0.54,0.56] [0.70,0.74]
NeNMF:mean 0.4596 0.4295 0.3855 0.24 0.46 0.78
NeNMF:range [0.4595,0.4597] [0.4293,0.4297] [0.3851,0.3857] [0.21,0.28] [0.44,0.47] [0.71,0.90]
NNSVDLRC:mean 0.4599 0.4298 0.3852 0.08 0.14 0.29
NNSVDLRC:range [0.4599,0.4599] [0.4297,0.4298] [0.3851,0.3852] [0.07,0.08] [0.13,0.14] [0.26,0.31]
800-by-800 matrix
Relative approximation error Computation time (s)

Method r =40 r =280 r =160 r =40 r =280 r =160
TAP 0.4551 0.4145 0.3411 0.10 0.13 0.27
AP 0.4551 0.4145 0.3411 0.15 0.22 0.53
A-MU:mean 0.4615 0.4363 0.4009 0.83 0.96 1.50
A-MU:range [0.4614,0.4615] [0.4362,0.4365] [0.4008,0.4011] [0.82,0.84] [0.95,0.97] [1.49,1.52]
HALS:mean 0.4614 0.4350 0.3970 0.23 0.45 0.98
HALS:range [0.4613,0.4615] [0.4349,0.4351] [0.3968,0.3973] [0.22,0.23] [0.44,0.47] [0.96,1.00]
A-PGl:mean 0.4610 0.4351 0.4047 1.61 171 2.50
A-PGl:range [0.4610,0.4611] [0.4350,0.4352] [0.4045,0.4050] [1.59,1.64] [1.69,1.75] [2.48,2.53]
NeNMF:mean 0.4609 0.4354 0.3995 0.79 1.09 2.04
NeNMF:range [0.4609,0.4610] [0.4352,0.4356] [0.3991,0.3997] [0.76,0.82] [1.00,1.18] [1.99,2.13]
NNSVDLRC:mean 0.4610 0.4347 0.3968 0.36 0.67 1.36
NNSVDLRC:range [0.4610,0.4611] [0.4347,0.4348] [0.3967,0.3969] [0.30,0.38] [0.63,0.78] [1.25,1.47]

The best values are respectively highlighted by bolder fonts. Here different random initializations are used in NMF methods in each trial.

always lower than those of NMF methods. These
results are confirmed in the tables. Because of tan-
gent space method, the computational time required
by the proposed TAP method is less than that
required by AP method.

We find in the tables that the relative approximation
errors computed by the TAP method is the same as
those by the AP method. It implies that the proposed
TAP method can achieve the same accuracy of classi-
cal alternating projection.

NMF algorithms can be sensitive to initial guesses, see
Tables 1, 2, 3, and 4. We illustrate this phenomena by
displaying the mean relative approximation error and
the range containing both the minimum and the
maximum relative approximation errors by ten initial

guesses randomly generated. According to the tables,
this phenomena is still valid when different (or same)
randomly randomly initializations are used in NMF
methods in each trial or the maximum number (Max-
Iter) of iterations is set to be 10* or 102. However, the
computational time required by the TAP method is
smaller than those required by NMF methods.

4.2 The Second Experiment

4.2.1

Face Data

In this subsection, we consider two frequently-used face
data sets, i.e., the ORL face date set' and the extended Yale

1. http:/ /www.uk.research.att.com/facedatabase.html
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TABLE 5
The Relative Approximation Error on the Yale-B Data Set and the ORL Data Set
Dataset r MU A-MU HALS A- PG A-PG Ne- NNSV- AP TAP
HALS NMF DLRC
Extented- 38 0.186 0.182 0.181 0.182 0.187 0.184 0.182 0.181 0.164 0.164
ed Yale B 64 0.160 0.157 0.152 0.152 0.159 0.159 0.159 0.151 0.131 0.131
ORL 10 0.206 0.206 0.205 0.205 0.206 0.206 0.205 0.205 0.204 0.204
40 0.159 0.156 0.155 0.155 0.160 0.158 0.154 0.154 0.147 0.147

The best values and the second best values are respectively highlighted by bolder fonts and underlines.

B face data set >. The ORL face data set contains images from
40 individuals, each providing 10 different images with the
size 112 x 92 . In the extended Yale B face data set, we take
a subset which consists of 38 people and 64 facial images
with different illuminations for each individual. Each test-
ing image is reshaped to a vector, and all the image vectors
are combined together to form a nonnegative matrix. Here
we perform NMF algorithms and TAP algorithm to obtain
low rank approximations with a predefined rank r. There
are several NMF algorithms to be compared, namely multi-
plicative updates (MU) [8], [71], accelerated MU (A-MU)
[24], hierarchical alternating least squares (HALS) algorithm
[23], accelerated HALS (A-HALS) [24], projected gradient
(PG) method [25], accelerated PG (A-PG)[25], NeNMF [26],
and NNSVDLRC [31].

Approximation. First, we compare the low rank approxi-
mation results by different methods with respect to different
predefined ranks 7. We report the relative approximation
errors in Table 5. For ORL data set, we set r to be 10 and 40
because face data contains 40 individuals and each individ-
ual has 10 different images. Similarly, r is set to be 38 and 64
for the extended Yale B data set. In the numerical results, we
compare the relative approximation error: | X. — A||z/||Al| -
For the TAP and AP methods the nonnegative low rank
approximation is directly computed, while for the NMF
methods, we multiply the factor matrices. We can see from
the table that the relative approximation errors by TAP and
AP methods are lower than those by NMF methods.

The relative approximation errors on these two face data
sets with respect to different ranks r are plotted in Fig. 3. We
can see that as 7 increases, the gap of relative approximation
errors between TAP (or AP) method and NMF methods
becomes larger. The total computational time required by
the proposed TAP method (2.84 seconds) is less than that
(17.44 seconds) required by the AP method. The proposed
TAP method is more efficient than the AP method.

Recognition. Next, we test the face recognition perfor-
mance with respect to TAP approximations and NMF
approximations. We use the k-fold cross-validation strategy.
For each data set, the data is split into k (k = 10 for the ORL
data set and k£ = 64 for the Yale B data set) groups and each
group contains one facial image of each individual. For
instance, the ORL data set is split into £ = 10 groups and
each group contains 40 facial images. Then, we circularly
take one group as a test data set and the remaining groups
as a training data set until all the groups have been selected

2. http:/ /vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html

as the test data. Given the original training data A..in with
the size m x n, where n indicates the pixels of each face
image and m is the amount of training samples, we first per-
form NMF and TAP (or AP) algorithms to obtain non-nega-
tive low rank approximations Again & Bxwmpiran CNMFtrain
and Atrain ~ UTAPtrainETAPtra‘in VTAPtrain l‘eSPQCtiVely with
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Fig. 3. Relative approximation errors on the ORL data set (a) and the
extended Yale B data set (b), with respect to the different ranks r.
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TABLE 6
The Recognition Accuracy on the Yale-B Data Set and the ORL Data Set
Dataset Parameter =~ MU A-MU HALS A-HALS PG A-PG  NeNMF NNSVDLRC AP TAP
YaleB r =38 61.061% 61.143% 61.637% 62.253% 58.306% 60.074% 61.102% 62.130% 66.776% 67.681%
r=064 69.942% 70.477% 72.821% 72.821% 65.502% 68.586% 69.572% 72.656% 76.563% 76.809%
ORL r=10 95.750% 96.250% 96.250% 96.250% 96.500% 96.500% 95.750% 96.000% 96.750% 96.750%
r =40 98.250% 98.000% 98.250% 98.500% 79.250% 98.250% 97.750% 98.500% 98.500% 98.500%

The best values and the second best values are respectively highlighted by bolder fonts and underlines.

rank 7. The new representations of A.m are given by
Ul ForainAvrain and Ul pe o Ay respectively by the NMF
methods and the TAP (or AP) method. The nearest neighbor
(NN) classifier is adopted by recognized the testing data
based on the distance between their representations and the
projected training data.

The face recognition results are exhibited in Table 6.
From this table, we can see that the accuracies based on
TAP approximations are higher than those based on NMF
approximations. To further investigate how the rank r
affects the recognition results, we plot the recognition accu-
racy on the extended Yale B data set with respect to r in
Fig. 4. It can be found that the recognition accuracy based
on TAP and AP approximations is always better than those
based on NMF approximations. Meanwhile, to see the fea-
tures learned by different methods, we exhibit the column
vectors of Byyruain and singular vectors of Urapipain in
Fig. 5. These vectors are reshaped to the same size as facial
images and their values are normalized to [0,255] for the
display purpose. We see that the nonnegative low rank
matrix approximation methods do not give the part-based
representations, but provides different important facial rep-
resentations in the recognition.

4.2.2 Document Data

In this subsection, we use the NIST Topic Detection and
Tracking (TDT2) corpus as the document data. The TDT2

MU HALS PG NeNMF
2ol (S win g B AMIAEES S AR
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Fig. 5. The first 20 singular vectors of the results by the TAP (or AP)
method and the columns of left factor matrices resulted by NMF meth-
ods when the rank r = 20. These vectors are reshaped to the size of
facial images and their values are adaptively normalized.

corpus consists of data collected during the first half of 1998
and taken from 6 sources, including 2 newswires (APW,
NYT), 2 radio programs (VOA, PRI) and 2 television pro-
grams (CNN, ABCQ). It consists of 11201 on-topic documents
which are classified into 96 semantic categories. In this
experiment, the documents appearing in two or more cate-
gories were removed, and only the largest 30 categories
were kept, thus leaving us with 9394 documents in total.
Then, each document is represented by the weighted term-
frequency vector [16], and all the documents are gathered
as a matrix Ago. of size 9394 x 36771. By using the proce-
dure given in [16], we compute the projected results
U%APATAP = ETApVgAP, and then use k-means clustering
method and Kuhn-Munkres algorithm to find the best map-
ping which maps each cluster label to the equivalent label
from the document corpus. For NMF methods, we scale
each column of Byyp such that their /; norms are equal to 1,
and the corresponding scaled Cxuyr is used for clustering
and label assignment. To quantitatively evaluate the cluster-
ing performance of each method, we selected two metrics,
i.e., the accuracy and the normalized mutual information
(NMI) (we refer to [46] for detailed discussion). According
to Table 7, it is clear that nonnegative low rank matrix
approximation can provide more effective latent features
(UXspArap = Z1apVi,p) for document clustering task.
Note that the computational time required by the proposed
TAP method (309.22 seconds) is less than that (3417.33 sec-
onds) required by the AP method. Again the results demon-
strate that the proposed TAP method is more efficient than
the AP method.

4.3 Separable Nonnegative Matrices
In this subsection, we compare the performance of the non-
negative low rank matrix approximation method and sepa-
rable NMF algorithms. Here we generate two kinds of
synthetic separable nonnegative matrices.

10°

Relative error

Noise level (o)

Fig. 6. Average relative approximation error on separable matrices (Case
1), with respect to the different values of o.
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TABLE 7
The Accuracy and NMI Values of the Document Clustering Results on the TDT2 Data Set
Metric MU A-MU HALS  A-HALS PG A-PG NeNMF NNSVDLRC AP TAP
Accuracy 52.800% 50.724%  54.322%  53.108%  54.205% 51.661%  54.68% 47.23% 61.294%  61.326%
NMI 0.674 0.651 0.663 0.643 0.681 0.661 0.693 0.667 0.728 0.728

e (Separable) The first case A =BC + N is generated
the same as [40], in which B € R*™**" is uniform dis-
tributed and C = [Ty, H'] € R?*!” with H' contain-
ing all possible combinations of two non-zero entries
equal to 0.5 at different positions. The columns of
BH’ are all the middle points of the columns of B.
Meanwhile, the i-th column of N, denoted as n;,
obeys n; = o(m; — w) for 21 < ¢ < 210, where o > 0
is the noise level, m; is the i-th column of B, and w
denotes the average of columns of B. This means
that we move the columns of A toward the outside
of the convex hull of the columns of B.

o (Generalized separable) The second case is generated
almost the same as the first case but simultaneously
considering the separability of rows, known as gen-
eralized separable NMF [42]. For this case, the size of
A is set as 78 x 55 with column-rank 10 and row-
rank 12, being the same as [42].

First, we test the approximation ability of TAP and AP
methods, NMF methods, and the successive projection algo-
rithm (SPA) [40], [41] for separable NMF for synthetic separa-
ble data. For the generalized separable case, we compare the
TAP (or AP) method with SPA, the generalized SPA (GSPA)
[42], and the generalized separable NMF with a fast gradient
method (GS-FGM) [42]. Note that when we apply SPA on the
generalized separable matrix, we run it first to identify the
important columns and with the transpose of the input to
identify the important rows. This variant is referred to SPA*.
The noise level o is logarithmic spaced in the interval [1072, 1].
For each noise level, we independently generate 25 matrices
for both separable and generalized separable cases, respec-
tively. We report the averaged approximation error in Figs. 6
and 7. It can be found that TAP and AP methods can achieve
the lowest average errors in the testing examples.

The approximation errors of TAP and AP methods are
much lower than separable and generalized separable NMF
methods when the noise level is high. Note that the average
computational time required by the proposed TAP method
(0.0064 seconds) is less than that (0.0165 seconds) required
by the AP method.

04} ;
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Fig. 7. Average relative approximation error on generalized separable
matrices (Case 2), with respect to the different values of o.

It is interesting whether a better nonnegative low rank
matrix approximation could contribute to a better separable
(or generalized separable) NMF result. To further investi-
gate whether nonnegative low rank matrix approximation
could help separable and generalized separable NMF meth-
ods, we conduct the experiments with inputting the non-
negative low rank approximation to separable and
generalized separable NMF methods. We adopt the accu-
racy and the distance to ground truth defined in Eqs. (16)
and (17) of [42] as the quantitative metrics. The accuracy
reports the proportion of correctly identified row and col-
umn indices while the distance to ground truth reports the
relative errors between the identified important rows (col-
umns) to the ground truth important rows (columns). We
present the computational results in Fig. 8. When the noise
level is between 0.1 and 1, the nonnegative low rank matrix
approximation by our TAP method obviously enhances the
accuracy and decrease the distance between the identified
rows (columns) to the ground truth.

4.4 Symmetric Nonnegative Matrices for Graph
Clustering

In this subsection, we test TAP and AP methods on the sym-
metric matrices. It can readily be found that the output of
TAP and AP algorithms would be symmetric if the input
matrix is symmetric since that the projection onto the non-
negative matrix manifold or the low rank matrix manifold
would never affect the symmetry. Here symmetric NMF
methods are the coordinate descent algorithm (denoted as
“CD-symNMF ”) [38], the Newton-like algorithm (denoted
as “Newton-symNMF”) [37], and the alternating least
squares algorithm (denoted as “ALS-symNMF”) [37].

We perform experiments by using symmetric NMF
methods, TAP and AP methods on the synthetic graph
data, which is reproduced from [72] with six different cases.
The data points in 2-dimensional space are displayed in the
first row of Fig. 9. Each case contains clear cluster structures.
By following the procedures in [37], [72], a similarity matrix
A € R™", where n represents the number of data points, is
constructed to characterize the similarity between each pair
of data points. Each data point is assumed to be only con-
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Fig. 8. Average accuracy (left) and distance to ground truth (right) for the
different algorithms on generalized separable matrices (Case 2), with
respect to the different os.
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Fig. 9. The graph clustering results by the TAP (or AP) method and symmetric NMF methods on 6 cases of synthetic graph data. Different color rep-

resents different clusters.

nected to its nearest nine neighbors. Given a specific pair of
the i-th and j-th data points z; and x;, we first construct the
distance matrix D e R™" with D;; = Dy = |ja; — a:ng
Then, the similarity matrix is given as

if i = 4,
Ajj=4 Lu o (26)
e %%’ if i # g,

where o; is the euclidean distance between the i-th data
point z; and its 9th neighbor. Then, we perform NMF, TAP
and AP methods for A.

The clustering results of the symmetric NMF methods
and nonnegative low rank matrix approximation are
obtained by using the k-means method on B and U respec-
tively. The clustering results are shown in Fig. 9. CD-
symNMF method fails in most examples except the example
in the second column. Both Newton-symNMF and ALS-
symNMF methods fail in the example in the fifth column.
However, TAP and AP methods perform well for all the
examples. The average computational time required by the
proposed TAP method (0.0321 seconds) is less than that
(0.1035 seconds) required by the AP method. The proposed
TAP is faster than the AP method.

4.5 Orthogonal Decomposable Non-Negative
Matrices

In this subsection, we test TAP and AP methods and orthog-
onal NMF (ONMF) methods [4], [35] on the approximation
of the synthetic data and the unmixing of hyperspectral
images. The orthogonal NMF method is a multiplicative
updating algorithm proposed by Ding et al. [4]. We refer to
Ding-Ti-Peng-Park (DTPP)-ONMF. A multiplicative updat-
ing algorithm utilizing the true gradient in Stiefel manifold
is proposed in [35]. We refer to SM-ONMF.

We construct an orthogonal nonnegative matrix B €
R10%10 whose transpose is shown in Fig. 10. Then a matrix
C € R' s generated with entries uniformly distributed
in [0, 1]. Then, we obtain an orthogonal decomposable
matrix A = BC € R'%3 Next, a noise matrix based on
MATLAB command o x rand(100, 30) is added to A. We set
0 =0,0.02,0.04,...,0.1. The relative approximation errors
of the results by different methods are shown in Table 8. We

Fig. 10. An illustration of the generated BT
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TABLE 8
The Relative Approximation Errors (x100) on the Orthogonal
Symmetric Matrix Data
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TABLE 9
The Quantitative Metrics of the Unmixing Results on the Hyper-
spetral Image Samson

o 0 002 0.04 006 0.08 0.1 Metric DTPP-ONMF  SM-ONMF AP TAP
DTPP-ONMF 0.022 2730 5.231 7.567 9.465 11.232 SAD 0.3490 0.4389 0.0765  0.0765
SM-ONMF 0016 2741 5.169 7533 9424 14.180 Similartity 0.5887 0.5640 0.9383  0.9383
AP 0.000 2364 4.471 6.529 8.215 9.700

TAP 0.000 2.364 4.471 6.529 8.215 9.700 The best values and the second best values are respectively highlighted by

can see that the approximation errors of TAP and AP meth-
ods are the lowest among the testing examples.

As a real-world application of ONMF, hyperspectral
image unmixing aims at factoring the observed hyperspec-
tral image in matrix format into an endmember matrix and
an abundance matrix. The abundance matrix is indeed the
classification of the pixels to different clusters, with each
corresponding to a material (endmember). In this part, we
use a sub-image of the Samson data set [73], consisting of
95 x 95 = 9025 spatial pixels and 156 spectral bands. We
form a matrix A of size 9025 x 156 to represent this sub-
image. Three different materials, i.e., “Tree”, “Rock”, and
“Water”, are in this sub-image, and we set the rank r as 3.
The factor matrices B € R and C e R*' can be
obtained by the orthogonal NMF methods. We use k-means
and do hard clustering on B € R%*? to obtain the abun-
dance matrix, and we can obtain the i-th feature image by
reshaping its i-th column to a 95 x 95 matrix. Each row of C
represents the spectral reflectance of on material (“Tree”,
“Rock”, or “Water”). As for TAP and AP methods, we apply
singular value decomposition on approximated non-nega-
tive low rank matrices to obtain the left singular value
matrices which contain the first 3 left singular vectors.
Then, we use k-means and do hard clustering on the left sin-
gular matrices to cluster three materials and obtain abun-
dance matrices and endmember matrices.

To quantitatively evaluate the umixing results, we
employ two metrics. The first one is the spectral angle dis-
tance (SAD) as follows:

1< Ts,;
SAD =— E arccos <‘6‘7$A) ,
T i i

|3z||2H51H2

where {s;};_, are the estimated spectral reflectance (rows of
the endmember matrix) and {§;};_, are the groundtruth
spectral reflectance. The second one is the similarity of the
abundance feature image [74] as follows:

Z (a
llai

Similarity =
lollaally”

where {a;};_, are the estimated abundance feature (columns
of the abundance matrix) and {d;},_, are the groundtruth
ones. We note that a larger Similarity and a smaller SAD
indicate a better unmixing result. We exhibit the quantita-
tive metrics in Table 9.

We can evidently see that the proposed TAP and AP meth-
ods obtain the best metrics. Meanwhile, we illustrate the esti-
mated spectral reflectance and abundance feature images in
Fig. 9. It can be found from the second row that DTPP-ONMF

bolder fonts and underlines.

and SM-ONMF perform well for the materials “Rock” and
“Tree” but poor on “Water”. TAP and AP methods unmix
these three materials well, but the proposed TAP method (the
computational time = 0.1492 seconds) is faster than the AP
method (the computational time = 0.3738 seconds).

4.6 Other Applications

As we discussed in the introduction part, the NMF has been
utilized in a wide range of applications. In this part, we
select two representative examples, i.e., multi-view cluster-
ing and community detection, and show how our TAP
could be applied for these tasks.

4.6.1 Community Detection

The community detection aims at figuring out groups of
nodes with dense internal connections and sparse external
connections, for real-world complex interaction systems
characterized by complex networks. When the network G =
(V,€) with n = |V| nodes and m = |£| edges is described by
an adjacency matrix A, which is symmetric, the community
detection is a direct application of graph clustering on sym-
metric nonnegative matrices in Section 4.4. In this part, we
select 6 widely-used real networks, listed in Table 10, for
evaluation. As the superiority of our TAP over traditional
symmetric NMF methods has been illustrated in Section 4.4,
we consider two more recent methods, i.e., the deep nonlin-
ear reconstruction method [80] (denoted as “DNR”) and the
deep autoencoder-like nonnegative matrix factorization
method [53] (denoted as “DANMEF”). We perform all the
methods with feeding them the adjacency matrix A. The
clustering results of our TAP is obtained by using the k-
means method on U while clustering results of DNR and
DANMEF are obtained by using the k-means method on their
factors. We run DNR and DANMEF 20 times with different
random initializations and the k-means method is also con-
ducted 20 times on U for our TAP. Two quantitative met-
rics, i.e., the accuracy and the NMI, are reported in Table 11.
We can see that our method achieves comparable perfor-
mance compared with DANMEF and obtains the best results
for many cases.

4.6.2 Multi-View Clustering

Compared to traditional data that describes objects from
single perspective, multi-view data, collected from different
sources in diverse domains (or obtained from various fea-
ture collectors), is semantically richer, more useful, however
more complex. The goal of multi-view clustering is to
explore the underlying structure of data by leveraging het-
erogeneous information of different views. In this part, we
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TABLE 10
Data Sets for Community Detection
Data set Karate Dolphins Friendship6 Friendship?7 Football Polbooks
[75] [76] [771] (771 [78] [79]
# samples 34 62 68 68 115 105
# clusters 2 2 6 7 12 3
TABLE 11

The Quantitative Metrics (Mean Values and Standard deviations) of Community Detection Results

Method Metrics Karate [75] Dolphins [76]  Friendship6 [77]  Friendship7 [77] Football [78] Polbooks [79]
DNR Accuracy  88.53% (0.112)  93.15% (0.039) 72.03% (0.068) 75.51% (0.047) 87.09% (0.041) 74.38% (0.017)

NMI 0.607 (0.287) 0.667 (0.109) 0.714 (0.046) 0.736 (0.038) 0.893 (0.018) 0.467 (0.019)
DANMF  Accuracy 100.00% (0.000) 98.39% (0.000)  80.22% (0.018) 92.10% (0.014)  86.22% (0.022)  82.33% (0.013)

NMI 1.000 (0.000) 0.889 (0.000) 0.814 (0.031) 0.877 (0.021) 0.877 (0.013) 0.535 (0.016)
TAP Accuracy 100.00% (0.000) 98.39% (0.000)  81.52% (0.050) 80.29% (0.050)  90.70% (0.014)  82.86% (0.000)

NMI 1.000 (0.000) 0.889 (0.000) 0.764 (0.044) 0.763 (0.037) 0.918 (0.011) 0.571 (0.000)

The best values are highlighted by bolder fonts.

conduct experiments on the following multi-view datasets, TABLE 12
which are commonly used in the literature. Multi-View Data Sets
e 3 source data set’ (3sourse): This data set consists of 169
news reported by three news organizations, i.e., BBC, Reu- Data set # samples # views # clusters
ters, and The Guardian. Each news was manually annotated  355rces 169 3 6
with one of six topical labels. BBC 685 4 5
e BBC data set* (BBQ): It is collected from the BBC news HW2sources 2000 2 10
website. BBC data set consists of 685 documents. Each docu- ~ Yale-B2 165 3 15
ment was split into four segments and was manually anno-
tated with one of five topical labels.
e Handwritten digit 2 source data set’ (HW2sources):
This is a handwritten numerals (0—9) data set containing Abundance Reflectance
2000 samples and 10 digits from two sources, i.e., MNIST Rock Tree Water - [Rock e Water
Handwritten Digits and USPS Handwritten Digits. E L~ w w w
e Yale-B 3 views ° (Yale-B3): This data set is constructed % i ’d “ “ “
via extracting three kinds of features , i.e., intensity, LBP  ° - = “ “
[81], and Gabor [82], from 165 facial images (15 individuals) cormrEm
of the Yale B facial image data set. I = i free A
The statistics of above data sets are summaries in % g\
Table 12. E - B

Our TAP is designed for the approximation of single-
view matrices and it is interesting to extend our method for
multi-view clustering. It would be our future research direc-
tion. As we can see in Section 4.3, here our method could be
helpful when it serves as a preprocessing step. That is, we
apply our nonnegative low rank matrix approximation
method first on data matrices with different views, the per-
formance of the subsequent multi-view clustering method
could be improved. In order to validate this preprocessing
procedure, we compare multi-view clustering methods
with and without the preprocessing by our method on T e e e

&
g
)
=
v

% 10 1 0 s 10 1 0 s 100 150

'[Rock "[Tree T Water|
08 08 !

above data sets. Selected multi-view clustering methods are [Rock ™ 7] e T e
the multiview concept clustering (denoted as “MVCC”) [48]
3. http://mlg.ucd.ie/datasets /3sources.html e om o w wow oW w
4. http:/ /mlg.ucd.ie/datasets/segment.html
5. https://cs.nyu.edu/roweis/data.html Fig. 11. Left: Abundance maps of Rock, Tree, and Water; Right: Reflec-
6. https://github.com/hdzhao/DMF_MVC/blob/master/data/ tance of Rock, Tree, and Water. From top to bottom: groundtruth, DTPP-
yale_mtv.mat ONMF, SM-ONMF, AR, TARP.
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TABLE 13
The Quantitative Metrics (Mean Values and Standard Deviations) of Multi-View Clustering Results
Method Metrics Data sets Method Metrics Data sets Method Metrics Data set
3sources BBC HW2sources 3sources BBC HW2sources Yale-B2
MVCC Accuracy 74.55%(0.018) 74.16% (0.051) 58.72% (0.055) CMC Accuracy 69.23% 69.34%  99.40% DME Accuracy 71.715% (0.007)
NMI 0.707 (0.015) 0.606 % (0.038) 0.618 (0.035) NMI 0.6216  0.562 0.985 NMI 0.709 (0.002)
MVCC  Accuracy 75.50% (0.026) 77.32% (0.038) 68.83% (0.045) ~GMC Accuracy 75.14% 87.88% 99.60% DMF  Accuracy 78.769% (0.005)
+TAP NMI 0.688 (0.008)  0.595 (0.035)  0.699 (0.042) +TAP NMI 0.6495  0.740 0.989 +TAP NMI 0.757 (0.003)

The best values are highlighted by bolder fonts. For results by MVCC and DMF, we report the mean values and the standard deviations.

method, which is based on the matrix concept factorization
with the local manifold regularization, the graph-based
multi-view clustering (denoted as “GMC”) method [83], and
a deep matrix factorization (DMF) [52] method. In Table 13,
we report quantitative metrics, i.e., the accuracy and the NMI,
of all results on four data sets. As the results of DMF and
MVCC would vary with different initializations, we run DMF
and MVCC 10 trails and report the mean value and the stan-
dard deviation. We can see that, compared with GMC,
MVCC is more suitable for the data sets 3sources and BBC.
With the help of our TAP, all the methods obtain better
results. Some improvements brought in by our method are
significant, e.g., the MVCC on HW2sources, GMC on 3sources
and BBC, and DMF on Yale-B2. Meanwhile, when the data
matrices are preprocessed by our method, the standard devia-
tions also become smaller in many cases.

5 CONCLUSION

In this article, we have proposed a new alternating projec-
tion method to compute nonnegative low rank matrix
approximation for nonnegative matrices. Our main idea is
to use the tangent space of the point in the fixed-rank matrix
manifold to approximate the projection onto the manifold in
order to reduce the computational cost. Numerical exam-
ples in data clustering, pattern recognition and hyperspec-
tral data analysis have shown that the proposed alternating
projection method is better than that of nonnegative matrix
factorization methods in terms of accuracy, and the compu-
tational time required by the proposed alternating projec-
tion method is less than that required by the original
alternating projection method.

Moreover, we have shown that the sequence generated
by the alternating projections onto the tangent spaces of the
fixed rank matrices manifold and the nonnegative matrix
manifold, converge linearly to a point in the intersection of
the two manifolds where the convergent point is sufficiently
close to optimal solutions. Our theoretical convergence
results are new and are not studied in the literatures. We
remark that Andersson and Carlsson [70] assumed that the
exact projection onto each manifold and then obtained the
convergence result of the alternating projection method.
Because of our proposed inexact projection onto each mani-
fold, our proof can be extended to show the sequence gener-
ated by alternating projections on one or two nontangential
manifolds based on tangent spaces, converges linearly to a
point in the intersection of the two manifolds.

As a future research work, it is interesting to study (i) the
convergence results when inexact projections on several
manifolds are employed, and (ii) applications where the

other norms (such as /; norm) in data fitting instead of the
Frobenius norm. It is necessary to develop the related algo-
rithms for such manifold optimization problems. Mean-
while, it will also be interesting to extend our method for
the case where multiple data matrices need to be processed.

REFERENCES

[1] K. Chen, Matrix Preconditioning Techniques and Applications, vol. 19,
Cambridge, U.K.: Cambridge Univ. Press, 2005.

[2] M. Chen, W.-S. Chen, B. Chen, and B. Pan, “Non-negative sparse
representation based on block NMF for face recognition,” in Proc.
Chin. Conf. Biometric Recognit., 2013, pp. 26-33.

[3] C.Ding, X. He, and H. D. Simon, “On the equivalence of nonnega-
tive matrix factorization and spectral clustering,” in Proc. SIAM
Int. Conf. Data Mining, 2005, pp. 606-610.

[4] C. Ding, T. Li, W. Peng, and H. Park, “Orthogonal nonnegative
matrix t-factorizations for clustering,” in Proc. 12th ACM SIGKDD
Int. Conf. Knowl. Discov. Data Mining, 2006, pp. 126-135.

[5] D. Guillamet and J. Vitria, “Non-negative matrix factorization for
face recognition,” in Proc. Catalonian Conf. Artif. Intell., 2002,
pp. 336-344.

[6] D. Guillamet, J. Vitria, and B. Schiele, “Introducing a weighted
non-negative matrix factorization for image classification,” Pattern
Recognit. Lett., vol. 24, no. 14, pp. 2447-2454, 2003.

[7] L.Jing, J. Yu, T. Zeng, and Y. Zhu, “Semi-supervised clustering
via constrained symmetric non-negative matrix factorization,” in
Proc. Int. Conf. Brain Inform., 2012, pp. 309-319.

[8] D. D. Lee and H. S. Seung, “Learning the parts of objects by
non-negative matrix factorization,” Nature, vol. 401, no. 6755,
pp- 788-791, 1999.

[9]1 ]. Liu, Z. Wu, Z. Wei, L. Xiao, and L. Sun, “A novel sparsity
constrained nonnegative matrix factorization for hyperspectral
unmixing,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2012,
pp. 1389-1392.

[10] Y. Liu, X.-Z. Pan, R.-J. Shi, Y.-L. Li, C.-K. Wang, and Z.-T. Li,
“Predicting soil salt content over partially vegetated surfaces
using non-negative matrix factorization,” IEEE ]. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 8, no. 11, pp. 5305-5316, Nov. 2015.

[11] Y. Wang, Y. Jia, C. Hu, and M. Turk, “Non-negative matrix factori-
zation framework for face recognition,” Int. |. Pattern Recognit.
Artif. Intell., vol. 19, no. 04, pp. 495-511, 2005.

[12] D. Zhang, S. Chen, and Z.-H. Zhou, “Two-dimensional non-neg-
ative matrix factorization for face representation and recog-
nition,” in Proc. Int. Workshop Anal. Model. Faces Gestures, 2005,
pp. 350-363.

[13] M. W. Berry and ]. Kogan, Text Mining: Applications and Theory,
Hoboken, NJ, USA: Wiley, 2010.

[14] T.Liand C. Ding, “The relationships among various nonnegative
matrix factorization methods for clustering,” in Proc. 6th Int. Conf.
Data Mining, 2006, pp. 362-371.

[15] V. P. Pauca, F. Shahnaz, M. W. Berry, and R. J. Plemmons, “Text
mining using non-negative matrix factorizations,” in Proc. SIAM
Int. Conf. Data Mining, 2004, pp. 452-456.

[16] W. Xu, X. Liu, and Y. Gong, “Document clustering based on non-
negative matrix factorization,” in Proc. 26th Annu. Int. ACM SIGIR
Conf. Res. Develop. Inf. Retrieval, 2003, pp. 267-273.

[17] A. Cichocki, R. Zdunek, A. H. Phan, and S.-I. Amari, Nonnegative
Matrix and Tensor Factorizations: Applications to Exploratory Multi-
Way Data Analysis and Blind Source Separation, Hoboken, NJ, USA:
Wiley, 2009.

Authorized licensed use limited to: Tsinghua University. Downloaded on November 16,2023 at 03:32:43 UTC from IEEE Xplore. Restrictions apply.



SONG ETAL.: TANGENT SPACE BASED ALTERNATING PROJECTIONS FOR NONNEGATIVE LOW RANK MATRIX APPROXIMATION

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

P. M. Kim and B. Tidor, “Subsystem identification through
dimensionality reduction of large-scale gene expression data,”
Genome Res., vol. 13, no. 7, pp. 17061718, 2003.

H. Kim and H. Park, “Sparse non-negative matrix factorizations
via alternating non-negativity-constrained least squares for micro-
array data analysis,” Bioinformatics, vol. 23, no. 12, pp. 1495-1502,
2007.

A. Pascual-Montano, J. M. Carazo, K. Kochi, D. Lehmann, and R.
D. Pascual-Marqui, “Nonsmooth nonnegative matrix factorization
(nsNMF),” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 3,
pp- 403-415, Mar. 2006.

G. Wang, A. V. Kossenkov, and M. F. Ochs, “LS-NMF: A modified
non-negative matrix factorization algorithm utilizing uncertainty
estimates,” BMC Bioinf., vol. 7, no. 1, 2006, Art. no. 175.

P. Paatero and U. Tapper, “Positive matrix factorization: A non-
negative factor model with optimal utilization of error estimates
of data values,” Environmetrics, vol. 5, no. 2, pp. 111-126, 1994.

A. Cichocki, R. Zdunek, and S.-I. Amari, “Hierarchical ALS algo-
rithms for nonnegative matrix and 3D tensor factorization,” in
Proc. Int. Conf. Independent Compon. Anal. Signal Separation, 2007,
pp- 169-176.

N. Gillis and F. Glineur, “Accelerated multiplicative updates and hier-
archical ALS algorithms for nonnegative matrix factorization,” Neural
Comput., vol. 24, no. 4, pp. 1085-1105, 2012.

C.-J. Lin, “Projected gradient methods for nonnegative matrix
factorization,” Neural Comput., vol. 19, no. 10, pp. 27562779, 2007.
N. Guan, D. Tao, Z. Luo, and B. Yuan, “NeNMF: An optimal gra-
dient method for nonnegative matrix factorization,” IEEE Trans.
Signal Process., vol. 60, no. 6, pp. 2882-2898, Jun. 2012.

H. Kim and H. Park, “Nonnegative matrix factorization based on
alternating nonnegativity constrained least squares and active set
method,” SIAM |. Matrix Anal. Appl., vol. 30, no. 2, pp. 713-730, 2008.
J. Kim and H. Park, “Toward faster nonnegative matrix factoriza-
tion: A new algorithm and comparisons,” in Proc. IEEE 8th Int.
Conf. Data Mining, 2008, pp. 353-362.

S. Wild, J. Curry, and A. Dougherty, “Improving non-negative
matrix factorizations through structured initialization,” Pattern
Recognit., vol. 37, no. 11, pp. 2217-2232, 2004.

Z.Liu and V. Y. Tan, “Rank-one NMF-based initialization for NMF
and relative error bounds under a geometric assumption,” IEEE
Trans. Signal Process., vol. 65, no. 18, pp. 4717-4731, Sep. 2017.

S. M. Atif, S. Qazi, and N. Gillis, “Improved SVD-based initialization
for nonnegative matrix factorization using low-rank correction,”
Pattern Recognit. Lett., vol. 122, pp. 53-59, 2019.

Y. Gao and G. Church, “Improving molecular cancer class discov-
ery through sparse non-negative matrix factorization,” Bioinfor-
matics, vol. 21, no. 21, pp. 3970-3975, 2005.

N. Gillis and F. Glineur, “Using underapproximations for sparse
nonnegative matrix factorization,” Pattern Recognit., vol. 43, no. 4,
pp- 1676-1687, 2010.

B. Du, S. Wang, N. Wang, L. Zhang, D. Tao, and L. Zhang,
“Hyperspectral signal unmixing based on constrained non-nega-
tive matrix factorization approach,” Neurocomputing, vol. 204,
pp. 153-161, 2016.

S. Choi, “Algorithms for orthogonal nonnegative matrix
factorization,” in Proc. IEEE Int. Joint Vonference Neural Netw.
(IEEE World Congr. Comput. Intell.), 2008, pp. 1828-1832.

D. Toli¢, N. Antulov-Fantulin, and 1. Kopriva, “A nonlinear
orthogonal non-negative matrix factorization approach to sub-
space clustering,” Pattern Recognit., vol. 82, pp. 40-55, 2018.

D. Kuang, C. Ding, and H. Park, “Symmetric nonnegative matrix
factorization for graph clustering,” in Proc. SIAM Int. Conf. Data
Mining, 2012, pp. 106-117.

A. Vandaele, N. Gillis, Q. Lei, K. Zhong, and I. Dhillon,
“Coordinate descent methods for symmetric nonnegative matrix
factorization,” 2015, arXiv:1509.01404.

X. Luo, Z. Liu, M. Shang, J. Lou, and M. Zhou, “Highly-accurate
community detection via pointwise mutual information-incorpo-
rated symmetric non-negative matrix factorization,” IEEE Trans.
Netw. Sci. Eng., vol. 8, no. 1, pp. 463—476, First Quarter 2020.

N. Gillis and S. A. Vavasis, “Fast and robust recursive algori-
thms for separable nonnegative matrix factorization,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 36, no. 4, pp. 698-714, Apr. 2014.

M. C. U. Aragjo, T. C. B. Saldanha, R. K. H. Galvao, T. Yoneyama,
H. C. Chame, and V. Visani, “The successive projections algo-
rithm for variable selection in spectroscopic multicomponent ana-
lysis,” Chemometrics Intell. Lab. Syst., vol. 57, no. 2, pp. 65-73, 2001.

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]
[63]

[64]

[65]

11933

J. Pan and N. Gillis, “Generalized separable nonnegative matrix
factorization,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 5,
pp- 1546-1561, May 2021.

S. Zafeiriou, A. Tefas, I. Buciu, and I. Pitas, “Exploiting discrimi-
nant information in nonnegative matrix factorization with appli-
cation to frontal face verification,” IEEE Trans. Neural Netw.,
vol. 17, no. 3, pp. 683-695, May 2006.

M. Das Gupta and J. Xiao, “Non-negative matrix factorization as a
feature selection tool for maximum margin classifiers,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2011, pp. 2841-2848.

J. Ma, Y. Zhang, and L. Zhang, “Discriminative subspace matrix
factorization for multiview data clustering,” Pattern Recognit.,
vol. 111, 2021, Art. no. 107676.

D. Cai, X. He, and J. Han, “Document clustering using locality
preserving indexing,” IEEE Trans. Knowl. Data Eng., vol. 17,
no. 12, pp. 1624-1637, Dec. 2005.

L. Zong, X. Zhang, L. Zhao, H. Yu, and Q. Zhao, “Multi-view cluster-
ing via multi-manifold regularized non-negative matrix factorization,”
Neural Netw., vol. 88, pp. 74-89,2017.

H. Wang, Y. Yang, and T. Li, “Multi-view clustering via concept
factorization with local manifold regularization,” in Proc. IEEE
16th Int. Conf. Data Mining, 2016, pp. 1245-1250.

T.-X. Jiang, L. Zhuang, T.-Z. Huang, X.-L. Zhao, and J. M. Bioucas-
Dias, “Adaptive hyperspectral mixed noise removal,” IEEE Trans.
Geosci. Remote Sens., vol. 60, pp. 1-13, 2022.

Y. Zhang and D.-Y. Yeung, “Overlapping community detection
via bounded nonnegative matrix tri-factorization,” in Proc. 18th
ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2012,
pp. 606-614.

Y. Chen et al., “Parallel non-negative matrix tri-factorization for
text data co-clustering,” IEEE Trans. Knowl. Data Eng., early access,
Jan. 31, 2022, doi: 10.1109/TKDE.2022.3145489.

H. Zhao, Z. Ding, and Y. Fu, “Multi-view clustering via deep
matrix factorization,” in Proc. AAAI Conf. Artif. Intell., 2017,
pp- 2921-2927.

F. Ye, C. Chen, and Z. Zheng, “Deep autoencoder-like nonnega-
tive matrix factorization for community detection,” in Proc. 27th
ACM Int. Conf. Inf. Knowl. Manage., 2018, pp. 1393-1402.

Y. Zhao, H. Wang, and J. Pei, “Deep non-negative matrix factoriza-
tion architecture based on underlying basis images learning,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 43, no. 6, pp. 1897-1913,
Jun. 2021.

A. Man Shun Ang, J. E. Cohen, N. Gillis, and L. Thi Khanh Hien,
“Accelerating block coordinate descent for nonnegative tensor
factorization,” Numer. Linear Algebra Appl., vol. 28, no. 5, 2021,
Art. no. e2373.

L. Zhang, L. Song, B. Du, and Y. Zhang, “Nonlocal low-rank ten-
sor completion for visual data,” IEEE Trans. Cybern., vol. 51, no. 2,
pp. 673-685, Feb. 2021.

T.-X. Jiang, X.-L. Zhao, H. Zhang, and M. K. Ng, “Dictionary
learning with low-rank coding coefficients for tensor completion,”
IEEE Trans. Neural Netw. Learn. Syst., early access, Aug. 31, 2021,
doi: 10.1109/TNNLS.2021.3104837.

Y.-C. Miao, X.-L. Zhao, X. Fu, J.-L. Wang, and Y.-B. Zheng,
“Hyperspectral denoising using unsupervised disentangled spa-
tiospectral deep priors,” IEEE Trans. Geosci. Remote Sens., vol. 60,
pp. 1-16,2022.

T. He, Y. Liu, T. H. Ko, K. C. Chan, and Y.-S. Ong, “Contextual
correlation preserving multiview featured graph clustering,”
IEEE Trans. Cybern., vol. 50, no. 10, pp. 43184331, Oct. 2020.

C.-H. Lin and ]J. M. Bioucas-Dias, “Nonnegative blind source sepa-
ration for ill-conditioned mixtures via john ellipsoid,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 32, no. 5, pp. 2209-2223, May 2021.
C. Kervazo, N. Gillis, and N. Dobigeon, “Provably robust blind
source separation of linear-quadratic near-separable mixtures,”
SIAM |. Imag. Sci., vol. 14, no. 4, pp. 1848-1889, 2021.

G. R. Naik, Non-Negative Matrix Factorization Techniques, Berlin,
Germany: Springer, 2016.

N. Gillis, Nonnegative Matrix Factorization, Philadelphia, PA, USA:
SIAM, 2020.

Y.-X. Wang and Y.-]. Zhang, “Nonnegative matrix factorization: A
comprehensive review,” IEEE Trans. Knowl. Data Eng., vol. 25,
no. 6, pp. 1336-1353, Jun. 2013.

X. Fu, K. Huang, N. D. Sidiropoulos, and W.-K. Ma, “Nonnegative
matrix factorization for signal and data analytics: Identifiability,
algorithms, and applications,” IEEE Signal Process. Mag., vol. 36,
no. 2, pp. 59-80, Mar. 2019.

Authorized licensed use limited to: Tsinghua University. Downloaded on November 16,2023 at 03:32:43 UTC from IEEE Xplore. Restrictions apply.


https://doi.org/10.1109/TKDE.2022.3145489
https://doi.org/10.1109/TNNLS.2021.3104837

11934

[66]

[67]
[68]
[69]

[70]

(711
[72]

[73]

[74]

[75]

[76]

[771]

[78]

[791

[80]

[81]

[82]

G. Song and M. K. Ng, “Nonnegative low rank matrix approxima-
tion for nonnegative matrices,” Appl. Math. Lett., vol. 105, 2020,
Art. no. 106300.

J. Ye, “Generalized low rank approximations of matrices,” Mach.
Learn., vol. 61, no. 1, pp. 167-191, 2005.

B. Vandereycken, “Low-rank matrix completion by riemannian
optimization,” SIAM J. Optim., vol. 23, no. 2, pp. 1214-1236, 2013.
G. H. Golub and C. F. Van Loan, Matrix Computations. Baltimore,
MD, USA: The Johns Hopkins Univ. Press, 2012.

F. Andersson and M. Carlsson, “Alternating projections on non-
tangential manifolds,” Constructive Approximation, vol. 38, no. 3,
pp. 489-525, 2013.

D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix
factorization,” in Proc. Adv. Neural Inf. Process. Syst., 2001, pp. 556-562.
L. Zelnik-Manor and P. Perona, “Self-tuning spectral clustering,”
in Proc. Adv. Neural Inf. Process. Syst., 2005, pp. 1601-1608.

F. Zhu, Y. Wang, B. Fan, S. Xiang, G. Meng, and C. Pan, “Spectral
unmixing via data-guided sparsity,” IEEE Trans. Image Process.,
vol. 23, no. 12, pp. 5412-5427, 2014.

J. Pan, M. K. Ng, Y. Liu, X. Zhang, and H. Yan, “Orthogonal non-
negative tucker decomposition,” SIAM J. Sci. Comput., vol. 43, no. 1,
pp- B55-B81, 2021.

W. W. Zachary, “An information flow model for conflict and fis-
sion in small groups,” ]. Anthropological Res., vol. 33, no. 4,
pp. 452-473,1977.

D. Lusseau and M. E. Newman, “Identifying the role that animals
play in their social networks,” Proc. Roy. Soc. London, vol. 271,
no. suppl_6, pp. 5477-5481, 2004.

J. Xie, S. Kelley, and B. K. Szymanski, “Overlapping community
detection in networks: The state-of-the-art and comparative
study,” ACM Comput. Surv., vol. 45, no. 4, pp. 1-35, 2013.

M. Girvan and M. E. Newman, “Community structure in social
and biological networks,” Proc. Nat. Acad. Sci., vol. 99, no. 12,
pp- 7821-7826, 2002.

M. E. Newman, “Fast algorithm for detecting community struc-
ture in networks,” Phys. Rev. E, vol. 69, no. 6, 2004, Art. no. 066133.
L. Yang, X. Cao, D. He, C. Wang, X. Wang, and W. Zhang,
“Modularity based community detection with deep learning,” in
Proc. 25th Int. Joint Conf. Artif. Intell., 2016, pp. 2252-2258.

T. Ahonen, A. Hadid, and M. Pietikainen, “Face description with
local binary patterns: Application to face recognition,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 28, no. 12, pp. 2037-2041, Dec. 2006.
H. G. Feichtinger and T. Strohmer, Gabor Analysis and Algorithms:
Theory and Applications, Berlin, Germany: Springer Science & Busi-
ness Media, 2012.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 11, NOVEMBER 2023

[83] H. Wang, Y. Yang, and B. Liu, “GMC: Graph-based multi-

view clustering,” IEEE Trans. Knowl. Data Eng., vol. 32, no. 6,
pp- 1116-1129, Jun. 2020.

Guangjing Song received the PhD degree in
mathematics from Shanghai University, Shang-
hai, China, in 2010. He is currently a professor
with the School of Mathematics and Information
Sciences, Weifang University. His research inter-
ests include numerical linear algebra, sparse and
low-rank modeling, tensor decomposition and
multi-dimensional image processing.

Michael K. Ng is the director of Research Divi-
sion for mathematical and statistical science, and
chair professor of Department of Mathematics,
the University of Hong Kong, and Chairman of
HKU-TCL Joint Research Center for Al. His
research areas are data science, scientific com-
puting, and numerical linear algebra.

Tai-Xiang Jiang received the BS and PhD
degrees in mathematics and applied mathematics
from the University of Electronic Science and Tech-
nology of China (UESTC), Chengdu, China, in
2013 and 2019, respectively. He is currently a pro-
fessor with the School of Computing and Artificial
Intelligence, Southwestern University of Finance
and Economics. His research interests include
sparse and low-rank modeling, tensor decomposi-
tion and multi-dimensional image processing.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: Tsinghua University. Downloaded on November 16,2023 at 03:32:43 UTC from IEEE Xplore. Restrictions apply.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


