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Dictionary Learning With Low-Rank Coding
Coefficients for Tensor Completion

Tai-Xiang Jiang , Xi-Le Zhao , Hao Zhang, and Michael K. Ng

Abstract— In this article, we propose a novel tensor learning
and coding model for third-order data completion. The aim of
our model is to learn a data-adaptive dictionary from given
observations and determine the coding coefficients of third-order
tensor tubes. In the completion process, we minimize the low-
rankness of each tensor slice containing the coding coefficients.
By comparison with the traditional predefined transform basis,
the advantages of the proposed model are that: 1) the dictionary
can be learned based on the given data observations so that
the basis can be more adaptively and accurately constructed
and 2) the low-rankness of the coding coefficients can allow
the linear combination of dictionary features more effectively.
Also we develop a multiblock proximal alternating minimization
algorithm for solving such tensor learning and coding model and
show that the sequence generated by the algorithm can globally
converge to a critical point. Extensive experimental results for
real datasets such as videos, hyperspectral images, and traffic
data are reported to demonstrate these advantages and show
that the performance of the proposed tensor learning and coding
method is significantly better than the other tensor completion
methods in terms of several evaluation metrics.

Index Terms— Dictionary learning, low-rank coding, tensor
completion, tensor singular value decomposition (t-SVD).

I. INTRODUCTION

TENSOR completion is a problem of filling the missing or
unobserved entries of incomplete observed data, playing

an important role in a wide range of real-world applications,
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Fig. 1. Illustration of the TNN-based LRTC and the DTNN-based LRTC.
SR denotes the sampling rate.

such as color image inpainting [1]–[5], high-speed compres-
sive video [6], magnetic resonance imaging (MRI) data recov-
ery [7], and hyperspectral data inpainting [8]. Generally, many
real-world tensors are inner correlated, for example, the spec-
tral redundancy [9]–[11] of the hyperspectral images (HSIs).
Therefore, it is effective to use the global low-dimensional
structure to characterize the relationship between the missing
entries and the observed ones.

Generally, like the matrix case, the low-rank tensor com-
pletion (LRTC) can be formulated as

min rank(X ) s.t. X� = O� (1)

where X is the underlying tensor, O is the observed incom-
plete tensor as shown in the top left of Fig. 1, � is the index set
corresponding to the observed entries, and X� = O� enforces
the entries of X in � equal to the observation O. However,
unlike the matrix cases, the definition of the tensor rank is
still not unique and has received considerable attentions in
recent researches. Generally, different definitions of the tensor
rank are respectively based on different tensor decomposition
schemes. For instance, the CANDECOMP/PARAFAC (CP)
rank, based on the CP decomposition, is defined as the minimal
rank-one tensors to express the original data [12]. Although
determinating the CP rank of a given tensor is NP-hard [13],
CP decomposition has been successfully applied for tensor
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recovery problem [14]–[16]. The Tucker rank, corresponding
to the Tucker decomposition [17], is defined as a vector
constituted of the ranks of the unfolding matrices along all
modes. Liu et al. [4] propose a convex surrogate of the Tucker
rank and minimize it for the LRTC problem, while Zhang [18]
resort to using a family of nonconvex functions onto the
singular values. Another newly emerged one is the tensor
train (TT) rank derived from TT decomposition [19]. In this
framework, the tensor is decomposed in a chain manner with
nodes being third-order tensors. Bengua et al. [20] minimize
a nuclear norm based on the TT rank for color image and
video recovery. TT rank has also been applied for HSI super-
resolution [21] and tensor-on-tensor regression [22]. When
factors are cyclically connected, they become tensor ring (TR)
decomposition [23]. Yuan et al. [24] exploit the low-rank
structure of the TR latent space and regularize the latent TR
factors with the nuclear norm. Yu et al. [25] introduce tensor
circular unfolding for TR decomposition and perform parallel
low-rank matrix factorizations to all circularly unfolded matri-
ces for tensor completion. Please refer to [26] and [27] for a
comprehensive overview of the LRTC problem.

This work fixes attentions on novel notions of the tensor
rank, i.e., the tensor tubal rank and multirank, which are
derived from the tensor singular value decomposition (t-SVD)
framework [28]–[30]. The t-SVD framework is constructed
based on a fundamental tensor-tensor product (t-prod) opera-
tion (see Definition 2), which is closed on the set of third-order
tensors and allows tensor factorizations which are analogs
of matrix factorizations such as SVD. Meanwhile, it further
allows new extensions of familiar matrix analysis to the mul-
tilinear setting while avoiding the loss of information inherent
in matricization or flattening of the third-order tensor [31].
For a third-order tensor X ∈ R

n1×n2×n3 , its t-SVD is given as
X = U ∗S ∗VH, where U ∈ Rn1×n1×n3 and V ∈ Rn2×n2×n3 are
the orthogonal tensors, S ∈ Rn1×n2×n3 is an f-diagonal tensor
(see Definition. 4), and ∗ denotes the t-prod (see Definition 2).
The tensor tubal rank of X is defined as the number of
nonzero singular tubes of S. Because the LRTC problem
associated with the tensor tubal rank (or multirank) is NP-hard,
Zhang et al. [32] turn to minimize the tensor nuclear norm
(TNN) (see Definition 8), which is a convex envelope of the
�1 norm of the tensor multirank, and they establish theoretical
guarantee in [33]. Jiang and Ng [34] and Wang et al. [35]
tackle the robust tensor completion task, in which incomplete
observations are corrupted by sparse outliers, via minimizing
TNN. The TNN-based LRTC model is given as

min �X�TNN s.t. X� = O�. (2)

As the t-prod is based on a convolution-like opera-
tion, the computation of t-prod and TNN could be imple-
mented with discrete Fourier transform (DFT) or fast Fourier
transform (FFT).

Kernfeld et al. [36] further note that a more general
t-product could be defined with any invertible linear
transforms. Also, the TNN in (2) can be alternatively con-
structed using other transform, e.g., the discrete cosine trans-
form (DCT) adopted by Lu et al. [37] and Xu et al. [38], and
the Haar wavelet transform exploited in [39]. Furthermore,

Jiang et al. [40] introduce the framelet transform, which is
semi-invertible, and break through the restriction of invertibil-
ity. Within these transform-based TNN methods, the typical
pipeline is applying one selected transform along the third
dimension and minimizing the low-rankness of slices of the
transformed data for completion. Once the tubes of the original
tensor are highly correlated, the frontal slices of the trans-
formed data would be low-rank [39], [40].

An unavoidable issue is that the correlations along the third
mode are different for various types of data. For example,
the redundancy of HSIs along the third mode is much higher
than videos with changing scenes. Thus, predefined transforms
usually lack flexibility and are not suitable for all kinds of
data. Therefore, to address this issue, we construct a dictio-
nary, which can be adaptively inferred form the data, instead
of inverse transforms mentioned above. As mentioned by
Lu et al. and Song et al., it is interesting to learn the transform
for implementing t-SVD from the data in different tasks. Our
approach can be viewed as learning the inverse transform
from this perspective and indeed enriches the research on
this topic. The methods, which use DFT, DCT, and Framelet,
can be viewed as specific instances of our method with fixed
dictionaries, i.e., the inverse discrete transformation matrices.
From the view of dictionary learning, our method can also
be interpreted as learning a dictionary with low-rank coding.
We enforce the low-rankness of the coding coefficients in
a tensor manner, and this allows the linear combination of
features, namely, the atoms of the dictionary.

The main contributions of this article mainly consist of three
aspects.

1) We propose novel tensor learning and coding model,
which is to adaptively learn a dictionary from the obser-
vations and determine the low-rank coding coefficients,
for the third-order tensor completion.

2) A multiblock proximal alternating minimization algo-
rithm is designed to solve the proposed nonconvex
model. We theoretically prove its global convergence to
a critical point.

3) Extensive experiments are conducted on various types of
real-world third-order tensor data. The results illustrate
that our method outperforms compared with LRTC
methods.

This article is organized as follows. Section II introduces
related works and basic preliminaries. Our method is given in
Section III. We report the experimental results in Section IV.
Finally, Section V draws some conclusions.

II. PRELIMINARIES

Throughout this article, lowercase letters, e.g., x , boldface
lowercase letters, e.g., x, boldface upper case letters, e.g.,
X, and boldface calligraphic letters, e.g., X , are used to
denote scalars, vectors, matrices, and tensors, respectively.
Given a third-order tensor X ∈ Rn1×n2×n3 , we use Xi jk

to denote its (i, j, k)th element. The kth frontal slice of
X is denoted as X (k) (or X (:, :, k), Xk), and the mode-3
unfolding matrix of X is denoted as X(3) ∈ Rn3×n1n2 . We use
fold3 and unfold3 to denote the folding and unfolding
operations along the third dimension, respectively, and we have
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X = fold3(unfold3(X )) = fold3(X(3)). The mode-3
tensor-matrix product is denoted as ×3, and we have X ×3

A ⇔ Aunfold3(X ). The DFT matrix and inverse DFT
matrix for a vector of the length n are, respectively, denoted
as Fn and F−1

n . For the tensor X ∈ Rn1×n2×n3 , its Fourier-
transformed (along the third mode) tensor Z ∈ Cn1×n2×n3 can
be obtained by Z = X ×3 Fn3 , and we have X = Z ×3 F−1

n3
.

The tensor Frobenius norm of a third-order tensor X is defined
as �X�F := (�X ,X �)1/2 = (

�
i jk X 2

i jk)
1/2. For a matrix

X ∈ Cn1×n2 , its matrix nuclear norm is denoted as �X�∗ =�min{n1,n2}
i=1 σi (X), where σi (X) is the i th largest singular value

of X.
Definition 1 (Tensor Conjugate Transpose [31]): The con-

jugate transpose of a tensor A ∈ Cn1×n2×n3 is tensor
AH ∈ Cn2×n1×n3 obtained by conjugate transposing each of
the frontal slice and then reversing the order of transposed
frontal slices 2 through n3, i.e., (AH)(1) = (A(1))H and
(AH)(i) = (A(n3+2−i))H for i = 2, . . . , n3.

Definition 2 (t-Prod [31]): The t-prod C = A ∗ B of
A ∈ Rn1×n2×n3 and B ∈ Rn2×n4×n3 is a tensor of size
n1 × n4 × n3, where the (i, j)th tube ci j : is given by

ci j : = C(i, j, :) =
n2�

k=1

A(i, k, :) � B(k, j, :) (3)

where � denotes the circular convolution between two tubes
of same size.

Equivalently, for C = A ∗ B, we have⎛
⎜⎜⎜⎝
C(1)

C(2)

...
C(n3)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
A(1) A(n3) · · · A(2)

A(2) A(1) · · · A(3)

...
...

. . .
...

A(n3) A(n3−1) · · · A(1)

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝
B(1)

B(2)

...
B(n3)

⎞
⎟⎟⎟⎠

where the first item in the right part of the equation is also
called the block circulant unfolding of A.

Definition 3 (Facewise Product [36]): For two third-order
tensors A ∈ Rn1×n2×n3 and B ∈ Rn2×n4×n3 , their facewise
product A�B ∈ Rn1×n4×n3 is defined according to

(A�B)(i) = A(i)B(i), for i = 1, 2, . . . , n3.

As the convolution operation could be converted into ele-
mentwise product via Fourier transform, we have

C = A ∗ B = 

A ×3 Fn3

��
B ×3 Fn3

��×3 F−1
n3

. (4)

Equation (4) indicates that we can compute t-prod between
two tensors using the DFT matrix or FFT for acceleration.

Definition 4 (Special Tensors [31]): The identity tensor
I ∈ Rn1×n1×n3 is the tensor whose first frontal slice is the
n1 × n1 identity matrix, and whose other frontal slices are all
zeros. A tensor Q ∈ Cn1×n1×n3 is orthogonal if it satisfies

QH ∗ Q = Q ∗ QH = I. (5)

A tensor A is called f-diagonal if each frontal slice A(i) is
a diagonal matrix.

Theorem 1 (t-SVD [29], [31]): For A ∈ R
n1×n2×n3 , the

t-SVD of A is given by

A = U ∗ S ∗ VH (6)

where U ∈ R
n1×n1×n3 and V ∈ Rn2×n2×n3 are the orthogonal

tensors, and S ∈ Rn1×n2×n3 is an f-diagonal tensor.
Definition 5 (Tensor Tubal Rank [32]): The tensor tubal

rank of a tensor A ∈ Rn1×n2×n3 , denoted as rankt (A),
is defined as the number of nonzero singular tubes in S, where
S is from the t-SVD of A: A = U ∗S ∗VH. Formally, we can
write

rankt(A) = #{i,S(i, i, :) 	= 0}.
An alternative definition of the tensor tubal rank is that it is

the largest rank of all the frontal slices of A×3 Fn3 in Fourier
domain.

Suppose the tensor A ∈ Rn1×n2×n3 has tensor tubal rank r ,
then the reduced t-SVD of A is given by A = U∗S∗VH, where
U ∈ R

n1×r×n3 and V ∈ R
r×n2×n3 are the orthogonal tensors,

and S ∈ Rr×r×n3 is an f-diagonal tensor. An important prop-
erty of t-SVD is that the truncated t-SVD of a tensor provides
the optimal approximation measured by the Frobenius norm
with the tubal rank at most r [31].

Definition 6 (Tensor Multirank [32]): Let A ∈ Rn1×n2×n3

be a third-order tensor, the tensor multirank, denoted as
rankm(A) ∈ Rn3 , is a vector whose i th element is the rank
of the i th frontal slice of B = A ×3 Fn3 . We can write

rankm(A) = �rank

B(1)

�
, rank


B(2)
�
, . . . , rank


B(n3)
�

. (7)

Given a third-order tensor A ∈ Rn1×n2×n3 , we can
find that its tensor tubal rank rankt (A) equals to the �∞
norm (or say the biggest value) of the tensor multirank
rankm(A). As �rankm(X )�1 ≥ �rankm(X )�∞ = rankt (X ) ≥
(1/n3)�rankm(X )�1, the tensor tubal rank is bounded by the
�1 norm of the tensor multirank.

Definition 7 (Block Diagonal Operation [32]): The block
diagonal operation of A ∈ Cn1×n2×n3 is given by

bdiag(A) �

⎡
⎢⎢⎢⎣
A(1)

A(2)

. . .

A(n3)

⎤
⎥⎥⎥⎦ (8)

where bdiag(A) ∈ Cn1n3×n2n3 .
Definition 8 (TNN [32]): The TNN of a tensor A ∈

Rn1×n2×n3 , denoted as �A�TNN, is defined as

�A�TNN �

������������

⎛
⎜⎜⎜⎜⎜⎜⎝

A(1) A(n3) · · · A(2)

A(2) A(1) · · · A(3)

...
...

. . .
...

A(n3) A(n3−1) · · · A(1)

⎞
⎟⎟⎟⎟⎟⎟⎠

������������
∗

. (9)

The TNN can be computed via the summation of the
matrix nuclear norm of (A × Fn3)’s frontal slices. That is,
�A�TNN =�n3

i=1 �(A × Fn3)
(i)�∗.

Denoting the Fourier-transformed tensor of X as
Z = X × Fn3 , we have X = Z ×3 F−1

n3
and the the

equivalent form of the TNN-based LRTC model in (2) as

min
Z

�bdiag(Z)�∗ s.t.

Z ×3 F−1

n3

�
�

= O�. (10)
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III. MAIN RESULTS

A. Proposed Model

As (10) can be interpreted as to find a slice-wisely low-
rank coding of X with a predefined dictionary F−1

n3
, to promote

flexibility, we replace F−1
n3

with a data-adaptive dictionary and
our tensor learning and coding model is formulated as

min
Z,D

�bdiag(Z)�∗

s.t. (Z ×3 D)� = O�

�D(:, i)�2 = 1 for i = 1, 2, . . . , d, (11)

where D ∈ Rn3×d and Z ∈ Rn1×n2×d are the respective
dictionary and low-rank coding coefficients. As our LRTC
model is very similar to the TNN-based model in (10), we term
it as dictionary-based TNN (DTNN).

On the one hand, if the dictionary D ∈ Rn3×d is pre-
fixed and there is a matrix D∗ ∈ Rd×n3 which satisfies
DD∗ = In3 , the structure of t-prod (and t-SVD) still holds
when replacing Fn3 and F−1

n3
in (4) with D∗ and D, respectively.

The circular convolution operation between tubes, which is
used to define the original t-prod, will change according to
how D and D∗ are constructed. Thus, a novel-type t-prod and
t-SVD could be defined with better data flexibility and the
performance would be promising. Meanwhile, if d = n3 and
DD∗ = DD∗ = In3 , the exact recovery of the underlying tensor
from random samplings is theoretical guaranteed under certain
conditions [37].

On the other hand, although the objective function of (11) is
in the same form of (10), it could not be derived to a normative
definition of a norm as Definition 8 if finding D∗ is difficult.
Given a tensor X and a certain dictionary D, the coefficients in
Z here could not be directly obtained with satisfying (Z ×3

D) = X . It is needed to optimize (11) simultaneously with
respect to the dictionary and coefficients (with � indexing all
the entries). By the way, our DTNN can also be generalized
for higher order tensors via the techniques proposed in [41]
and [42], or for other applications, such as the tensor robust
principal component analysis [43] and remote sensing images
recovery [44], [45].

While resembling (10) in form, our model in (11) is distinct
from the TNN-based LRTC model. The main difference is that
our model is more flexible for different kinds of data because
of the data-adaptive dictionary term. The bottom-right part
in Fig. 1 shows the coefficients and the dictionaries obtained
by our method. We can see that the dictionary learned for the
HSI completion is smoother than that for the MRI data. With
the adaptively learned dictionary and the corresponding low-
rank coding, the performance of our method is significantly
better than the TNN-based LRTC method. The dictionary used
in (11) can be viewed as inverse transform. This is also
different from previous works tailoring the linear or unitary
transform [37], [39].

Traditional dictionary learning techniques use overcom-
plete dictionaries, the amount of whose atoms is always
much more than the dimension of the signal, and find the
sparse representations [46]. In (11), although d is much
bigger than n3, D is still not big enough to overcompletely

represent X , which is of a big volume, with sparse coef-
ficients. Therefore, we need specific low-rank structure of
the coefficients, which allows the linear combination of
features, together with the learned dictionary, to accurately
complete X . Thus, our method is distinct from previous
tensor dictionary learning methods, which enforce the spar-
sity or tubal sparsity of coefficients [47], [48]. Please see
Section IV-E1 for detailed comparisons of sparsity and
low-rankness.

B. Proposed Algorithm

To optimize the specific structured problem in the proposed
model, we tailored a multiblock proximal alternating mini-
mization algorithm. Let

�(X ) =
�

0, X� = O�

∞, otherwise

and

�(D) =
�

0, �D(:, i)�2 = 1 for i = 1, 2, . . . , d

∞, otherwise.

Thus, the problem in (11) can be rewritten as the following
unconstraint problem:

min
Z,D

�(Z ×3 D) +
d�

i=1

��Z (i)
��∗ + �(D). (12)

As the minimization problem in (12) is difficult to be
directly optimized, therefore, we resort to the half quadratic
splitting (HQS) technique [49], [50] and turn to solve the
following problem:

min
Z,D,X

β

2
�X − Z ×3 D�2

F + �(X ) +
d�

i=1

��Z (i)
��∗ + �(D).

(13)

We denote the objective function in (13) as L(Z, D,X ).
The optimization problem in (13) is nonconvex and has more
than two blocks. Thus, it prevents us from directly using some
classical algorithms designed for convex optimizations, such as
the alternating direction method of multipliers (ADMM) [51]
used in [33], with theoretical convergence guarantees. We use
the proximal alternating minimization framework [52] for
this nonconvex problem with guaranteed convergence. In our
algorithm, each variable is alternatively updated as

Zk+1 ∈ arg min
Z

�
L(Z, Dk,Xk) + ρz

k

2
�Z − Zk�2

F

�

Dk+1 ∈ arg min
D

�
L(Zk+1, D,Xk) + ρd

k

2
�D − Dk�2

F

�

Xk+1 ∈ arg min
X

�
L(Zk+1, Dk+1,X ) + ρx

k

2
�X − Xk�2

F

�
(14)

where (ρz
k )k∈N, (ρd

k )k∈N, and (ρx
k )k∈N are three positive

sequences and Zk , Dk , and Zk , respectively, denote the val-
ues of Z , D, and Z at the kth iteration. Thus, for exam-
ple, L(Z, Dk,Xk) is a function of Z , which comes from
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L(Z, D,X ) by fixing other two variables X and D as Xk

and Dk , respectively.
1) Updating Z and D: Following the updating strategy

in [53], the coefficient Z (or equivalently denoted as Z(3) for
simplification) and the dictionary D at the kth iteration can
be, respectively, decomposed as follows:

Zk (3) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1
k
�

...

zi
k
�

...

zd
k
�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vec


Z1

k

��
...

vec


Zi

k

��
...

vec


Zd

k

��

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vec(Zk(:, :, 1))�

...

vec(Zk(:, :, i))�

...

vec(Zk(:, :, d))�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(15)

and

Dk = �d1
k, . . . , di

k, . . . , dd
k


(16)

where Zi
k = Zk(:, :, i) indicates the i th frontal slice of the

coefficients’ tensor Z at the kth iteration, zi
k = vec(Zi

k)
vec(·) denotes the vectorization operation, and di

k = Dk(:
, i) is the i th atom of Dk . In our algorithm, the frontal
slices of Z are frequently reshaped into vectors and vice
versa. Therefore, we use vec(·) to denote the vectoriza-
tion from the frontal slices of Z to a column vector by
stacking the columns of Z , and vec(·)−1 to denote inverse
operation.

Thus, the Z subproblem and the D subproblem can be,
respectively, split into d problems. Then, we update the pair
of Zi

k+1 and di
k+1 from i = 1 to d . This updating scheme is

the same as the well-known KSVD technique [54]. From the
decompositions in (15) and (16), at the beginning of the kth
iteartion, we can rewrite the first term in the objective function
as (β/2)�Xk − Zk ×3 Dk�2

F = (β/2)�Xk (3) − DkZk (3)�2
F =

(β/2)�Xk (3) −�d
i=1 di

kzi
k
��2

F . Thus, for simplicity, we intro-
duce an intermediate variable as

Ri
k = Xk (3) −

i−1�
j=1

d j
k+1

�
z j

k+1

�� −
d�

j=i+1

d j
k

�
z j

k

��
. (17)

Then, we solve following problems:

Zi
k+1 = arg min

Z

β

2

��Ri
k − di

kvec(Z)�
��2

F
+ �Z�∗

+ ρz
k

2

��Z − Zi
k

��2
F

(18)

and

di
k+1 = arg min

d

β

2

��Ri
k − d



zi

k

����2
F

+ �(d)

+ ρd
k

2

��d − di
k

��2
F
. (19)

After denoting z = vec(Z), two quadratic terms in (18)
can be combined as
β

2

��Ri
k − di

kz���2
F

+ ρz
k

2

��Z − Zi
k

��2
F

= β

2


�
Ri

k, Ri
k

�− 2
�
Ri

k, di
kz��+ �di

kz�, di
kz���

+ ρz
k

2


�Z, Z� − 2
�
Z, Zi

k

�+ �Zi
k, Zi

k

��

= β

2

��
Ri

k, Ri
k

�− 2
�
vec−1

�

Ri

k

��
di

k

�
, z
�
+ �z, z�

�

+ ρz
k

2


�Z, Z� − 2
�
Z, Zi

k

�+ �Zi
k, Zi

k

��

= β + ρz
k

2

������Z −
ρz

k Zi
k + βvec−1

�

Ri

k

��
di

k

�
β + ρz

k

������
2

F

+ ρz
k

2

��Zi
k

��2
F

− 1

2


β + ρz

k

����ρz
k Zi

k + βvec−1
�


Ri
k

��
di

k

����2

F
+ β

2

��Ri
k

��2
F
.

Therefore, leaving terms independent of Z and adding
the nuclear norm term, the minimization problem in (18) is
equivalent to

Zi
k+1 ∈ arg min

Z
�Z�∗ + β + ρz

k

2

��Z − Mi
k

��2
F

(20)

where Mi
k = (ρz

k Zi
k + βvec−1((Ri

k)
�

di
k))/(β + ρz

k ). Then,
we can directly derive the closed-form solution of (20) with
the singular value thresholding (SVT) operator [55] as

Zi
k+1 = SVT 1

β+ρz
k



Mi

k

�
� U

�
S − 1

β + ρz
k

�
+

V� (21)

where (U, S, V) comes from the SVD of Mi
k , S is a diagonal

matrix with Mk,i ’s singular values, and (·)+ means keeping
the positive values and setting the negative values as 0.

Similarly, we can obtain the closed-form solution of (19)
as follows:

di
k+1 = βRi

kvec


Zi

k

�+ ρd
k dk

i��βRi
kvec



Zi

k

�+ ρd
k dk

i

��
2

. (22)

Afterward, we obtain Zk+1 with its i th frontal slice
equaling to Zi

k+1 and Dk+1 = [d1
k+1, . . . , di

k+1, . . . , dd
k+1].

2) Updating X : We update X via solving the following
minimization problem:

min
X

β

2
�X − Zk+1 ×3 Dk+1�2

F + �(X ) + ρx
k

2
�X − Xk�2

F .

Xk+1 is updated via the following steps:⎧⎪⎨
⎪⎩
Xk+ 1

2
= βfold3



Dk+1Zk+1(3)

�+ ρx
k Xk

β + ρx
k

Xk+1 =
�
Xk+ 1

2

�
�C

+ O�

(23)

where �C denotes the complementary set of the �. Finally,
the pseudocode is summarized in Algorithm 1. The com-
putation complexity of our algorithm at each iteration is
O(dn1n2(dn3 + min(n1, n2) + n3), given an input with size
n1 × n2 × n3.
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Algorithm 1 Proximal Alternating Minimization Algorithm
for Solving (13)

Input: The observed tensor O ∈ Rn1×n2×n3 ; the set of
observed entries �.

Initialization: X (0), D0, and Z0;
1: while not converged do
2: for i = 1 to d do
3: Update Zk+1(:, :, i) via Eq. (20);
4: Update Dk+1(:, i) via (22);
5: end for
6: Update X k (23).
7: end while

Output: The reconstructed tensor X .

C. Convergency Analysis

In this section, we establish the theoretical guarantee of
convergence on our algorithm. For convenience, we first
define the following formularies:

F(Z) =
d�

k=1

��Z (k)
��∗ = �bdiag(Z)�∗

δX (X ) = �(X )

δD(D) = �(D)

Q(Z, D,X ) = β

2
�X − Z ×3 D�2

F

L(Z, D,X ) = F(Z) + δX (X ) + δD(D) + Q(Z, D,X )

and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Zk+1 = arg min
Z

�
M1(Z|Zk) := F(Z)

+ Q(Z, Dk,Xk) + ρz
k

2
�Z − Zk�2

F

�

Dk+1 = arg min
D

�
M2(D|Dk) := δX (X )

+ Q(Zk+1, D,Xk) + ρd
k

2
�D − Dk�2

F

�

Xk+1 = arg min
X

�
M3(X |Xk) := δD(D)

+ Q(Zk+1, Dk+1,X ) + ρx
k

2
�X − Xk�2

F

�
.

(24)

Next, we give the theorem of global convergency of the
sequence generated by (24) as follows.

Theorem 2: The sequence generated by (24) is bounded,
and it converges to a critical point of L(Z, D,X ).

As the process of updating in (24) is factually a special
instance of Algorithm 4 described in [56], the proof of
Theorem 2 confirms to [56, Th. 6.2] if satisfying the following
conditions:⎧⎪⎨
⎪⎩

1) the K-Ł property of L at each point

2) the sufficient decrease condition ((64) in [56])

3) the relative error condition ((65) and (66) in [56]).

The road map of the proof also follows this line. Before
verifying these conditions, we first give some basic definitions

from variational analysis [57], [58]. If f : R
n → R ∪ {+∞}

is a real-extended-valued function, its domain is given by
dom f := {x ∈ Rn : f (x) < +∞}. For each x ∈ dom f ,
the Fréchet subdifferential of f at x , written ∂̂ f (x), is the set
of vectors x∗ ∈ Rn which satisfy

lim inf
y 	=x,y→x

1

�x − y�
�

f (y) − f (x) − �x∗, y − x� ≥ 0.

When x /∈ dom f , we set ∂̂ f (x) = ∅. Then, the subdifferen-
tial (limiting subdifferential [57]) of f at x ∈ dom f , written
∂ f (x), is a set defined as$

x∗ ∈ R
n : ∃xn → x, f (xn) → f (x), x∗

n ∈ ∂̂ f (xn) → x∗%.
The (limiting) subdifferential is more stable than the Fréchet

subdifferential in an algorithmic context which involves lim-
iting processes. A necessary (but not sufficient) condition for
x ∈ Rn to be a minimizer of f is ∂ f (x) � 0. A point that
satisfies ∂ f (x) � 0 is called limiting critical or simply critical.
If K is a subset of Rn and x is any point in Rn , we set

dist(x, K ) = inf{�x − z� : z ∈ K }.
If K is empty, we have dist(x, K ) = +∞ for all x ∈ R

n .
For any real-extended-valued function f on Rn, we have
dist(0, ∂ f (x)) = inf{�x∗� : x∗ ∈ ∂ f (x)} [59]. Let f : Rn →
R ∪ {+∞} be a proper lower semicontinuous function. For
−∞ < η1 < η2 ≤ +∞, we set

[η1 < f < η2] = $x ∈ R
n : η1 < f (x) < η2

%
.

Then, we can define K-Ł functions and semialgebraic func-
tions.

Definition 9 (Kurdyka-Łojasiewicz Property [56]): A
proper lower semicontinuous function f : R

n → R ∪ {+∞}
is said to have the K-Ł property at x̄ ∈ dom(∂ f ) if there
exist η ∈ (0,+∞], a neighborhood U of x̄ and a continuous
concave function φ : [0, η) → [0,+∞], which satisfies
φ(0) = 0, φ is C1 on (0, η), and φ(s) > 0,∀s ∈ (0, η))
such that for each x ∈ U ∩ [ f (x̄) < f < f (x̄) + η] the
K-Ł inequality holds

φ�( f (x) − f (x̄))dist(0, ∂ f (x)) ≥ 1. (25)

If f satisfies the K-Ł property at each point of dom∂ f , then
f is called a K-Ł function.

Definition 10 (Semialgebraic Sets and Functions [56]): A
subset S of R is called semialgebraic set if there exists a
finite number of real polynomial functions gi j, hi j such that
S = &

j

'
i{x ∈ Rn : gi j(x) = 0, hi j (x) < 0}. A function f

is called semialgebraic function if its graph {(x, t) ∈ R
n × R,

t = f (x)} is a semialgebraic set.
Next, we verify the K-Ł property of L and then show the

descent Lemma for L(Z, Dk,Xk). Afterward, the relative error
Lemma would be given. Finally, we establish the proof of
Theorem 2.

Lemma 1 (K-Ł Property Lemma): The function L satisfies
the K-Ł property at each point.

Proof of Lemma 1: It is easy to verify that Q is C1 function
with locally Lipschitz continuous gradient and F , δD, and δX
are proper and lower semicontinuous. Thus, L is a proper
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lower semicontinuous function. The nuclear norm and Frobe-
nius norm are semialgebraic [52]. Additionally, the indicator
function with semialgebraic sets is semialgebraic [52]. As a
semialgebraic real-valued function f is a K-Ł function, i.e., f
satisfies K-Ł property at each x ∈ dom( f ) [60], the function
L satisfies the K-Ł property at each point.

Lemma 2 (Descent Lemma): Assume that L(Z, D,X ) is a
C1 function with locally Lipschitz continuous gradient and
ρz

k , ρ
d
k , ρx

k > 0. Let {Zk, Dk,Xk}k∈N be generated by (24).
Then

F(Zk+1) + Q(Zk+1, Dk,Xk) + ρz
k

2
�Zk+1 − Zk�2

F

≤ F(Zk) + Q(Zk, Dk,Xk)

δD(Dk+1) + Q(Zk+1, Dk+1,Xk) + ρd
k

2
�Dk+1 − Dk�2

F

≤ δD(Dk) + Q(Zk+1, Dk,Xk)

δX (Xk+1) + Q(Zk+1, Dk+1,Xk+1) + ρx
k

2
�Xk+1 − Xk�2

F

≤ δX (Xk) + Q(Zk+1, Dk+1,Xk).

Proof of Lemma 2: When Dk+1 and Xk+1 are optimal
solutions of M2 and M3, δD = 0 and δX = 0. By the
definitions of M1–M3, we clearly have that

F(Zk+1) + Q(Zk+1, Dk,Xk) + ρz
k

2
�Zk+1 − Zk�2

F

= M1(Zk+1|Zk) ≤ M1(Zk |Zk)

= F(Zk) + Q(Zk, Dk,Xk)

δD(Dk+1) + Q(Zk+1, Dk+1,Xk) + ρd
k

2
�Dk+1 − Dk�2

F

= M2(Dk+1|Dk) ≤ M2(Dk |Dk)

= δD(Dk) + Q(Zk+1, Dk,Xk)

δX (Xk+1) + Q(Zk+1, Dk+1,Xk+1) + ρx
k

2
�Xk+1 − Xk�2

F

= M3(Xk+1|Xk) ≤ M3(Xk |Xk)

= δX (Xk) + Q(Zk+1, Dk+1,Xk).

The descent lemma has been proven.
Lemma 3 (Relative Error Lemma): {Zk, Dk,Xk}k∈N is gen-

erated by (24) and ρz
k , ρ

d
k , ρx

k > 0. Then there exists
V1,k+1, V2,k+1, V3,k+1, which satisfy the following formularies:��V 1

k+1 + ∇Z Q(Zk+1, Dk,Xk)
��

F
≤ ρz

k�Zk+1 − Zk�F��V 2
k+1 + ∇D Q(Zk+1, Dk+1,Xk)

��
F

≤ ρd
k �Dk+1 − Dk�F��V 3

k+1 + ∇X Q(Zk+1, Dk+1,Xk+1)
��

F
≤ ρx

k �Xk+1 − Xk�F

where V 1
k+1 ∈ ∂ F(Zk+1), V 2

k+1 ∈ ∂δD(Dk+1), V 3
k+1 ∈

∂δX (Xk+1), and ∇ indicates the (partial) gradient.
Proof of Lemma 3: By the definition of M1–M3, we have

0 ∈ ∂ F(Zk+1) + ∇Z Q(Zk+1, Dk,Xk) + ρz
k (Zk+1 − Zk)

0 ∈ ∂δD(Dk+1) + ∇D Q(Zk+1, Dk+1,Xk) + ρd
k (Dk+1 − Dk)

0 ∈ ∂δX (Xk+1) + ∇X Q(Zk+1, Dk+1,Xk+1) + ρx
k (Xk+1 − Xk).

Let⎧⎪⎨
⎪⎩

V 1
k+1 := −∇Z Q(Zk+1, Dk,Xk) − ρz

k (Zk+1 − Zk)

V 2
k+1 := −∇Z Q(Zk+1, Dk+1,Xk) − ρd

k (Dk+1 − Dk)

V 3
k+1 := −∇Z Q(Zk+1, Dk+1,Xk) − ρx

k (Xk+1 − Xk).

It is clear that V 1
k+1 ∈ ∂ F(Zk+1), V 2

k+1 ∈ ∂δD(Dk+1), and
V 3

k+1 ∈ ∂δX (Xk+1). Thus, we have⎧⎪⎨
⎪⎩
��V 1

k+1 + ∇Z Q(Zk+1, Dk,Xk)
��

F
= ρz

k�Zk+1 − Zk�F��V 2
k+1 + ∇D Q(Zk+1, Dk+1,Xk)

��
F = ρd

k �Dk+1 − Dk�F��V 3
k+1 + ∇X Q(Zk+1, Dk+1,Xk+1)

��
F

= ρx
k �Xk+1 − Xk�F .

The proof of relative error Lemma has been finished.
Now, we begin to establish our proof of Theorem 2.

Proof of Theorem 2: From Lemma 2, we have that
the objective function value monotonically decreases. First,
we can see that the indicator function δD(D) = �(D) should
be 0 from its definition. Thus,

�D�2
F =

�
i

�D(:, i)�2
2 = d

which means {Dk}k∈N is bounded. Meanwhile, from the
monotonic decreasing, the nonnegative terms F(Z) =�d

k=1 �Z (k)�∗ and Q(Z, D,X ) = (β/2)�X − Z ×3 D�2
F are

bounded. Then

�Z�2
F =

d�
k=1

��Z (k)
��2

F
≤

d�
k=1

��
Z (k)
���2

∗.

That is, {Zk}k∈N is bounded. Next, from the triangle inequal-
ity, we have

�X�F −�Z�F�D�F ≤�X�F −�Z ×3 D�F ≤ �X −Z ×3 D�F .

Therefore, {Xk}k∈N is bounded.
By Lemma 1, the sequence {Zk, Dk,Xk}k∈N is a bounded

sequence with the K-Ł property at each point. Combining
Lemmas 2 and 3 with the above property of L, the process
of updating in (24) is factually a special instance of Algo-
rithm 4 described in [56]. Lemmas 2 and 3 correspond to [56,
Eqs. (64)–(66)]. Under these conditions, this proof conforms
to [56, Th. 6.2]. Thus, the bounded sequence {Zk, Dk,Xk}k∈N

converges to a critical point of L(Z, D,X ).
Algorithm 1 is a direct multiblock generalization of (24).

The proof of its convergence accords with the proof of
Theorem 2 and can be easily obtained. Meanwhile, the above
convergence analysis is more similar to the analysis in [56],
being convenient for the verification of readers. Therefore,
we establish the proof of Theorem 2 here.

IV. NUMERICAL EXPERIMENTS

In this section, we compare our method with other
state-of-the-art methods. The compared methods consist of:
one baseline Tucker-rank-based method HaLRTC1 [4], a
Bayesian CP-factorization-based method (BCPF2) [14], a TR-
decomposition-based method (TRLRF3) [24], a t-SVD-based
method (TNN4) [33], a DCT-induced TNN minimization
method (DCTNN5) [37], and a framelet-represented TNN

1https://www.cs.rochester.edu/jliu/code/TensorCompletion.zip
2https://github.com/qbzhao/BCPF
3https://github.com/yuanlonghao/TRLRF
4https://github.com/jamiezeminzhang/Tensor_Completion_and_Tensor

_RPCA
5Implemented by ourselves based on the code of TNN.
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TABLE I

PSNR, SSIM, AND UIQI OF RESULTS BY DIFFERENT METHODS WITH DIFFERENT SRS ON THE VIDEO DATA. THE BEST, THE SECOND BEST,
AND THE THIRD BEST VALUES ARE, RESPECTIVELY, HIGHLIGHTED BY RED, BLUE, AND GREEN COLORS

minimization method (FTNN6) [40]. We select four types of
tensor data, including videos, HSIs, traffic data, and MRI data,
to show that our method is adaptive to different types of data.

Since the algorithm of our method is a nonconvex approach,
the initialization of our algorithm is important. We use a
simple linear interpolation strategy, which is used in [61]
and convenient to implement with low cost, to fill in the
missing pixels and obtaining X0 for our method. As the
index of the observed entries � is known, we first sort n1n2

tubes of X0 ∈ Rn1×n2×n3 based on the number of observed
entries in each tube. Then, we select the first d tubes, which
contain the observed entries as much as possible to construct
D ∈ Rd×n3 . Finally, the columns of D are normalized to satisfy
�D(:, i)�2 = 1 for i = 1, . . . , d . This strategy comes from
many traditionary dictionary learning techniques, such as [44].
Then, we fix X = X0 and run ten iterations of our method to
initialize Z0 with random inputs.

Throughout all the experiments in this article, the parame-
ters of the proposed method are set as: d = 5n3, β = 10,
ρz = 20, ρd = 1, and ρx = 1. In the framework of the HQS
algorithm, the penalty parameter β is required to reach infinite
when iteration goes on. Therefore, we enlarge β at the 15th,
20th, and 25th iterations by multiplying the factor 1.5 and
enlarge β by multiplying the factor 1.2 at each iteration from
the 30th iteration until satisfying the condition of convergence.
ρz , ρd , and ρx are selected by grid search from the candidate
set {0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100}, while d and ρ are
manually tuned.

6https://github.com/TaiXiangJiang/Framelet-TNN

As for the compared methods, their parameters are manually
tuned for best performances. Specifically, as the models of
TNN and DCTNN are optimized by ADMM, we set the
parameter β, which is introduced when building the argument
Lagrangian function, as 10−2 at the beginning and enlarge it
with a factor 1.2 at each iteration. For other methods, we set:
1) α = [1, 1, 5] and ρ = 10−2 (as referred to [4, eq. (42)]) for
HaLRTC; 2) removing unnecessary components automatically,
random initializations, and the initial rank 200 for BCPF;
3) TR-rank = 12, μ = 1, and λ = 10 (as referred to [21,
eq. (15)]) for TRLRF; and 4) using the default setting in [36]
for FTNN.

A. Video Data

In this section, we test our method for video data com-
pletion and select four videos7 named “foreman” “carphone”
“highway” and “container” of size 144 × 176 × 50 (height ×
width × frame) to conduct comparisons. The SR varies from
10% to 50%. We compute the peak signal-to-noise ratio
(PSNR), the structural similarity (SSIM) index [62], and the
universal image quality index (UIQI) [63] of the results by
different methods. Higher values of these three quality metrics
indicate better completion performances.

In Table I, we report the quantitative metrics of the results
obtained by different methods and the average running time on
the video data. From Table I, it can be found that the results by
TRLRF are promising when the SR is low. The performance

7Videos available at http://trace.eas.asu.edu/yuv/.
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Fig. 2. One frame of the results on the video data. From top to bottom: the 22th frame of “foreman” (SR = 50%), the fifth frame of “carphone”
(SR = 50%), the 39th frame of “container” (SR = 10%), and the 48th frame of “highway” (SR = 50%).

TABLE II

PSNR, SSIM, AND SAM OF RESULTS BY DIFFERENT METHODS WITH DIFFERENT SRS ON THE HSI DATA. THE BEST, THE SECOND BEST,
AND THE THIRD BEST VALUES ARE, RESPECTIVELY, HIGHLIGHTED BY RED, BLUE, AND GREEN COLORS

of FTNN is better than TNN and DCTNN for the video “fore-
man,” while DCTNN exceeds FTNN and TNN for the video
“container.” This reveals that the predefined transformations
lack flexibility. Meanwhile, with minor exceptions, our DTNN
achieves the best performance for different SRs, illustrating the
superiority of the data-adaptive dictionary.

Fig. 2 exhibits one frame of the results by different methods
on the video data. From the enlarged area, it can be found that
our DTNN well restores edges in “foreman” and “highway,”
the hair in “carphone,” and the ship’s outline in “container.”
The homogeneous areas are also protected by our method.
We can conclude that the visual effect of our method is the
best.

B. HSIs

In this section, two HSIs, i.e., a subimage of Pavia City
Center dataset8 of the size 200 × 200 × 80 (height × width ×
band), and a subimage of Washington DC Mall dataset9 of
the size 256 × 256 × 160, are adopted as the testing data.
Since the redundancy between HSIs’ slices is so high that

8http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_
Sensing_Scenes

9https://engineering.purdue.edu/b̃iehl/MultiSpec/hyperspectral.html

all the methods perform very well with SR = 50%, we add
the case with SR = 5%. Thus, the SRs vary from 5% to
50%. Three numerical metrics, consisting of PSNR, SSIM, and
the mean spectral angle mapper (SAM) [64], are selected to
quantitatively measure the reconstructed results. Lower values
of SAM indicate better reconstructions.

In Table II, we show the quantitative comparisons of dif-
ferent methods on HSIs. FTNN and TRLRF perform well for
low SR. We can also see that DCTNN and FTNN alternatively
achieve the second best place in many cases, showing that
DCT and framelet transformation fit the HSI data better than
DFT. For different metrics, our DTNN obtains the best values
in all cases. As SRs arise, the superiority of our method
over the compared methods is more evident. For example,
when dealing with Pavia City Center, the margins are at least
7.95 and 14.19 dB for PSNR when SR is 40% and 50%,
respectively. We attribute this to the fact that the dictionary
could be learned with better ability to express the data when
the SR is high.

We display the pseudocolor images (using three bands
to compose the RGB channels) of the reconstructed HSIs
in Fig. 3. The similarity of the color reflects the fidelity
along the spectral direction, which is of vital importance in
applications of HSIs. It can be found that color distortion
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Fig. 3. Pseudocolor images and the corresponding enlarged areas of the results by different methods. Top: Pavia City Center (R-4 G-12 B-68) with
SR = 5%. Bottom: Washington DC Mall (R-1 G-113 B-116) with SR = 10%.

TABLE III

RMSE AND MAPE OF RESULTS BY DIFFERENT METHODS WITH DIFFERENT SRS ON THE TRAFFIC DATA. THE BEST, THE SECOND BEST, AND

THE THIRD BEST VALUES ARE, RESPECTIVELY, HIGHLIGHTED BY RED, BLUE, AND GREEN COLORS

occurs in the results by TNN. From the enlarged orange and
red boxes, we can see that DTNN outperforms the compared
methods considering the spatial structures and details.

C. Traffic Data

In this section, we test all the methods on the traf-
fic data,10 which is provided by Grenoble Traffic Lab
(GTL). A set of traffic speed data of 207 days (April 1,
2015–October 24, 2015), 1440 time windows,11 and
21 detection points are downloaded and constitute a third-
order tensor of size 1440 × 207 × 21. To reduce the time
consumption, a subset of the data with size 400 × 200 × 21
corresponding to the first continuous 400 time windows in
a day and the first 200 days is manually clipped as the
ground-truth complete testing data. We select the root mean
square error (RMSE)12 and the mean absolute percentage
error (MAPE)13 to quantitatively measure the quality of the
results. Lower values of RMSE and MAPE indicate better
reconstructions. After random sampling the elements with
SR ∈ {5%, 10%, 15%, . . . , 30%}, 3 adjacent frontal slices in
a random location are set as unobserved. This is to simulate
the situations in which some detectors are broken. The 200th
lateral slice of the observation is shown in the top left of Fig. 4,
the missing slices corresponding to the blue columns.

10https://gtl.inrialpes.fr/data_download
11The sampling period is 1 min, so there are 60×24 = 1440 time windows

for each day.
12RMSE = ((

�
i jk (XRec

i jk − XGT
i jk )2)/n1 n2 n3)

1/2.
13MAPE = 1/(n1n2n3)

�
i jk (|XRec

i jk − XGT
i jk |/XGT

i jk ) × 100%. This index is
a measure of prediction accuracy, usually expressing accuracy as percentage.

Table III gives the quantitative metrics of the results
by different methods with different SRs. We can find that
the capabilities of HaLRTC, BCPF, and TRLRF are lim-
ited and this phenomenon accords with the visual results
shown in Fig. 4. The effectiveness of these three methods is
severely affected due to the missing frontal slices. TNN and
DCTNN get better metrics while their performance is also
not well considering the location of missing slices. FTNN
and DTNN recover the rough structure of the missing slices
and the metrics of their results also achieve the best and
the second best places. The reconstruction of our DTNN
in the area of missing slices is closer to the original data
than FTNN.

D. MRI Data

In this section, all the methods are conducted on the MRI
data14 of size 142 × 178 × 121. These MRI data provide a 3-D
view of the brain part of a human being. That is, all the modes
of these MRI data are corresponding to spatial information.
The SRs are set from 10% to 50%. Similar to the video data,
we compute the mean values of PSNR, SSIM, and UIQI of
each frontal slice and report them in Table IV. From Table IV,
we can find that DTNN outperforms the compared methods
while DCTNN and FTNN alternatively obtain the second best
values. Fig. 5 presents the 61st frontal slice of the results by
different methods. For the enlarged white manner area, which
is smooth, the results by our DTNN are the cleanest compared
with the results by other methods.

14https://brainweb.bic.mni.mcgill.ca/brainweb/selection_normal.html
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Fig. 4. 88th lateral slice of the reconstructions by different methods on the traffic data (SR = 30%).

TABLE IV

PSNR, SSIM, AND UIQI OF RESULTS BY DIFFERENT METHODS WITH DIFFERENT SRS ON THE MRI DATA. THE BEST, THE SECOND BEST,
AND THE THIRD BEST VALUES ARE, RESPECTIVELY, HIGHLIGHTED BY RED, BLUE, AND GREEN COLORS

Fig. 5. 61st frontal slice of the results on the MRI data by different methods (SR = 30%).

E. Discussions

1) Comparisons With Traditional Dictionary Learning and
Sparse Coding Approaches: In this section, we compare our
method with traditional dictionary methods. First, the data
O ∈ R

n1×n2×n3 and the coefficient Z ∈ R
n1×n2×d in the

tensor format are reshaped into the matrix form via the
unfold3 operation, i.e., O(3) ∈ Rn3×n1n2 = unfold3(O)
and Z(3) ∈ Rd×n1n2 = unfold3(Z). The representation
formulary also turns from O ≈ Z ×3 D to O(3) ≈ DZ(3).
The tubes of Z constitute the columns of Z(3), and the i th
row of Z(3) is reshaped from the i th frontal slice of Z .
Then, for the coding coefficient matrix Z(3) (also denoted
as Z for convenience), we regularize it with the common
�Z�1 = �

i j |Z(3)|, which is usually used to enhance the
sparsity, and �Z�1,2 = �

j (
�

i Z 2
i j)

1/2, which could exploit
the group sparsity of the columns. The �1,2 norm of Z(3) is also
mathematically equivalent to the tubal sparsity regularization,

defined as �Z�1,1,2 = �
i, j �Z(i, j, :)�F , in [48]. For a

fair comparison, the algorithm with theoretical guaranteed
convergency in [53] is adopted to optimize these two models.
The video “foreman” is selected with SRs varying from 10% to
50% for testing. We exhibit the PSNR and SSIM values of the
results in Table V. These two traditional dictionary learning
methods are, respectively, denoted as �1 and �1,2. We can
see from Table V that the �1,2 constraint is also effective
when the SR is bigger than 30% (see the SSIM values).
However, when the SR is low, the margin between �1,2 and our
DTNN becomes much larger. Therefore, we can deduce that
using the combination of dictionary’s atoms (the low-rank con-
straint) would be helpful to eliminate the deviation caused by
inaccurate estimation of the dictionary from incomplete data.
This also supports our statement at the end of Section III-A
that we need both the learned dictionary and the specific low-
rank structure of the coefficients for accurate completion of
the data.
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Fig. 6. Running time in seconds and SSIM values with different numbers of dictionary atoms (d), and PSNR and SSIM values of the result by our method
with different ρz , ρd , and ρx , on the video “foreman” (SR = 50%).

TABLE V

PSNR AND SSIM VALUES OF RESULTS BY DTNN AND TRADITIONAL

SPARSE REGULARIZERS WITH DIFFERENT SRS ON THE

VIDEO DATA “Foreman”

2) Parameters: In our experiments, we find that four para-
meters mainly affect the performance of our method, i.e., the
number of the dictionary atoms d and the proximal parameters
ρz , ρd , and ρx . Although ρz , ρd , and ρx can be finely specified
for each iteration, we respectively fix their values across our
algorithm to reduce the parameter tuning burden. To test the
effects from different values of them, we conduct experiments
on the video “foreman” with setting the SR as 50%.

3) Comparisons With a Tensor Dictionary Learning
Method: In this section, we compare our method with the ten-
sor dictionary learning method (denoted as K-TSVD) in [48].
We implement our method and K-TSVD15 on the video
“basketball.16”. The experimental setting for K-TSVD is the
same as that in [48, Sec. 4.1]. That is, the first 30 frames
are taken for training and the last ten frames for testing.
We plot the reconstruction error (RE), which is defined as
RE = (�XGT − XRec�2

F/N)1/2 in [48], with respect to the
percentage of missing pixels in Fig. 7. Lower RE values
indicate better reconstructions. We can see that the results by
our method are always better than those by K-TSVD. It is
noteworthy that K-TSVD takes the first 30 frames as training
data while our method does not have any extra training data
and directly estimates the complete tensor from incomplete
observations.

When testing one parameter, other three are fixed as default
values. As for d , we vary its value from 40 (0.8n3) to
800 (16n3) with a step size 5. ρz and ρd are tested with
candidates {10−2, 10−1.5, . . . , 104} while ρx varies from 104

to 102. We illustrate the running time and SSIM values with
respect to different values of d and the PSNR and SSIM values
with respect to different values of ρz , ρd , and ρx in Fig. 6.
From Fig. 6, we can see that as d increases, the performance
of our method becomes better while the running time also
grows. Our default setting (d = 5n3 = 250) is a compromise

15The code for K-TSVD is modified from a public available implementation
at https://github.com/takshingchan/ktsvd. The parameters of K-TSVD are
manually selected for the best performance.

16https://sites.google.com/site/jamiezeminzhang/publications

Fig. 7. RE values of results by K-TSVD and DTNN on the video “basketball”
with respect to different percentages of missing pixels (from 10% to 80%).

TABLE VI

PSNR, SSIM, AND UIQI VALUES OF RESULTS BY OUR METHOD

WITH DIFFERENT INITIALIZATIONS ON THE VIDEO DATA Foreman
(SR = 50%). THE Best AND THE SECOND BEST VALUES ARE,

RESPECTIVELY, HIGHLIGHTED BY Boldface AND UNDERLINE

between effectiveness and efficiency. Meanwhile, we can see
the performance of our method is more sensitive to ρz and our
method could obtain satisfactory results with a wide range of
ρd and ρx .

4) Initializations: In this section, we test different initializa-
tion strategies. Other than default setting, we use the random
tensor, whose values are uniformly distributed in the interval
[0, 1], and the results from HaLRTC and DCTNN, which are
fast, as initial guesses of X0. Meanwhile, we also initialize the
dictionary using random values following a standard normal
distribution. Also, we take the video “foreman” with SR 50%
as an example. The results are shown in Table VI.

From Table VI, we can see that when X0 is randomly
initialized, the performance of our method is poor. When
implementing our method with X0s using the results from
HaLRTC and DCTNN, the performances are better than
default setting. This shows that our method indeed relies on
initialization as many nonconvex optimization methods. As for
D0, our method performs well when using tubes of X0, as it
would contribute to flexibility of D.
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Fig. 8. Learned dictionaries (left) and the tubes of original data (right). Top:
video “foreman” of size 144 × 176 × 50 with SR = 50%. Bottom: the HSI
Washinton DC Mall of size 256 × 256 × 160 with SR = 40%.

Fig. 9. Estimation error (Err) of the dictionary with respect to iterations for
synthetic data.

Fig. 10. Relative changes in the variables. Left: MRI data with SR = 30%.
Right: video data “foreman” with SR = 50%.

5) Learned Dictionaries: In Fig. 8, we exhibit the first
100 columns of the learned dictionaries together with the
plotting of three tubes of the original data. From the red
boxes with dashed line, we can see that when the tubes,
i.e., the vectors along the third dimension, of the original
data fluctuate, the corresponding areas of the dictionaries’
atoms (columns) tend not to be smooth. This reflects that the
dictionaries learned by our method are flexible and adaptive
to different types of data.

Meanwhile, we simulate a tensor X ∈ R50×50×50 = Z×3 D,
where frontal slices of Z ∈ R

50×50×250 are obtained via
multiplication between randomly generated matrices of sizes
50 × 5 and 5 × 50, and D ∈ R50×250 is randomly generated
and normalized with the norm of its columns equaling to 1.
Thus, we have the ground truth of the dictionary and we
adopt the estimation error (Err),17 of the dictionary [65] as
a quantitative metric to measure the accuracy of the estimated

17The estimation error is defined as Err = (1/d)
�d

i=1(1 − |(di
Est)

�di0
GT|)

where di
Est is the ith atom (column) of the estimated dictionary,

di0
GT is the i0th atom of the ground-truth dictionary, and i0 =

arg max j∈N+,1≤ j≤d, j 	=i |(di
Est)

�d j
GT|.

TABLE VII

COMPUTATIONAL COMPLEXITY OF EACH METHOD TO DEAL WITH A
TENSOR WITH SIZE n1 × n2 × n3 , AND THE AVERAGED ITERATIONS

NEEDED FOR DIFFERENT TYPES OF DATA

dictionary. We plot the estimation errors with respect to
iteration numbers in Fig. 9. Although the initial Err values
are different owing to the initilization stage, we can see that
Err is becoming smaller as iteration goes on. This shows that
our method could enforce the estimated dictionary being close
to the ground truth under different SRs.

6) Convergency Behaviors: When the largest
relative change in the variables, i.e., max{(�Zk −
Zk−1�F )/(�Zk−1�F ), (�Dk − Dk−1�F )/(�Dk−1�F ), (�Xk −
Xk−1�F )/(�Xk−1�F )}, is smaller than 10−3, we consider that
our algorithm converges and stop the iterations. In Fig. 10,
we present the relative changes with respect to the iterations
in our experiments on the HSI data Pavia City Center and
the video data “foreman.” Three obvious fluctuations in each
curve are in accord with our parameter setting of enlarging ρ
at the 15th, 20th, and 25th iterations. The overall downward
trend of the curves in Fig. 10 illustrates that our method
converges quickly.

Moreover, we list the computational complexity of the
compared methods and the iterations needed for different
types of data in Table VII. The CP rank used in BCPF is R
and the TR rank used in TRLRF is [R, R, R]. For FTNN,
ω corresponds to the construction of the framelet system.
Although our method generally needs fewer iterations than
other TNN-induced methods (TNN, DCTNN, and FTNN),
it costs more running time. The main reason is that the
computation complexity of our method is high as d is much
bigger than n3.

V. CONCLUSION

In this article, we have introduced the data-adaptive dictio-
nary and low-rank coding for third-order tensor completion.
In the completion model, we have proposed to minimize
the low-rankness of each tensor slice containing the coding
coefficients. To optimize this model, we design a multiblock
proximal alternating minimization algorithm, the sequence
generated by which would globally converge to a critical point.
Numerical experiments conducted on various types of real-
world data show the superiority of the proposed method.

As a future research work, we will consider how to use the
proposed model and idea for a wider range of applications,
such as tensor robust principal component analysis [43], [66],
tensor-based representation learning for multiview cluster-
ing [67], [68], and other challenging image/video restoration
tasks [45], [69], [70].
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