
BIT Numerical Mathematics (2024) 64:4
https://doi.org/10.1007/s10543-023-01004-7

Incremental algorithms for truncated higher-order singular
value decompositions

Chao Zeng1 ·Michael K. Ng2 · Tai-Xiang Jiang3

Received: 11 March 2023 / Accepted: 3 December 2023
© The Author(s), under exclusive licence to Springer Nature B.V. 2024

Abstract
Wedevelop and study incremental algorithms for truncated higher-order singular value
decompositions. By combining the SVD updating and different truncated higher-order
singular value decompositions, two incremental algorithms are proposed. Not only the
factormatrices but also the core tensor are updated in an incremental style. The costs of
these algorithms are compared and the approximation errors are analyzed. Numerical
results demonstrate that the proposed incremental algorithmshave advantages in online
computation.

Keywords SVD updating · Incremental algorithm · Truncated higher-order singular
value decomposition

Communicated by Rosemary Anne Renaut.

Chao Zeng’s work was supported in part by the National Natural Science Foundation of China
(12201319) and the Fundamental Research Funds for the Central Universities, Nankai University
(63231142). Michael K. Ng’s research supported in part by the HKRGC GRF 17201020 and 17300021,
and CRF C7004-21GF, and Joint NSFC and RGC NHKU769/21. Tai-Xiang Jiang’s work was supported
in part by the National Natural Science Foundation of China (12001446), Natural Science Foundation of
Sichuan, China (2022NSFSC1798), the Fundamental Research Funds for the Central Universities, and the
Guanghua Talent Project.

B Tai-Xiang Jiang
taixiangjiang@gmail.com

Chao Zeng
zengchao@nankai.edu.cn

Michael K. Ng
michael-ng@hkbu.edu.hk

1 School of Mathematical Sciences and LPMC, Nankai University, Tianjin,
People’s Republic of China

2 Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong

3 School of Computing and Artificial Intelligence, Southwestern University of Finance and Economics,
Chengdu, Sichuan, People’s Republic of China

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10543-023-01004-7&domain=pdf
http://orcid.org/0000-0002-9099-4154

 4 Page 2 of 28 BIT Numerical Mathematics (2024) 64:4

Mathematics Subject Classification 15A69 · 15A72 · 65F99 · 65Y20

1 Introduction

Tensors aremultidimensional arrays andused to represent ubiquitous high-dimensional
data, such as color images, hyperspectral images, videos, and facial recognition
datasets. Like singular value decomposition (SVD) for matrix analysis, tensor decom-
positions are basic tools for high-dimensional data analysis. Applications include data
compression, feature extraction, knowledge discovery, and more. Various decom-
positions such as CANDECOMP/PARAFAC [4, 14], higher-order singular value
decomposition (HOSVD) [7, 34], hierarchical SVD [10, 13], T-SVD [16, 17], tensor-
train [24] have been developed in the literature. The interested reader can refer to [18]
for a thorough review.

One of the most widely used tensor decompositions is HOSVD. Although the
HOSVD is regarded as a convincing multilinear generalization of the SVD, there are
some differences between them. First, the right singular vectors of unfolding matrices
are not involved in the HOSVD, and the core tensor corresponding to the HOSVD
is computed by matrix-tensor products. Second, the best low-rank approximation of
a matrix is just the truncated SVD, while there is no closed-form optimal solution
for the low-multilinear-rank approximation of a tensor [18, 37], resulting in multiple
definitions of the truncated HOSVD. Two main types of the truncated HOSVD are T-
HOSVD and ST-HOSVD; see Sect. 2.3 for details. Recently, randomized algorithms
have been developed for the truncated HOSVD; see [21, 33]. These methods are
suitable for low-multilinear-rank tensors.

In many applications, we need to handle tensors with dynamic sizes. One situation
is that only partial data sets are known at first and the new data sets are arriving continu-
ously over time or are available later. Examples include live video streams, surveillance
videos, and driving recorder datasets. Such tensors are called tensor streams or incre-
mental tensors; see [31, 32] for instance. To tackle an incremental tensor, we usually
need to compute the decomposition once a new data set arrives. For example, in
online object tracking [15, 27], we need to give the tracking result once a new frame
arrives. Most algorithms [7, 18, 37] of tensor decompositions are designed for the
batch mode. Batch-mode algorithms, which need to compute the decomposition from
scratch when new data set arrives, are not suitable for online computation because of
their poor performance in terms of time and space cost for large-scale incremental ten-
sors. For incremental tensors, developing online algorithms to make use of the known
decomposition of the old tensor and reduce the computation cost becomes necessary.

For the matrix case, there are two main types of online algorithms for SVD: down-
dating and updating. Downdating [12] is to find the SVD of a matrix obtained by
deleting a column from the original matrix, while updating is to find the SVD of a
matrix obtained by adding a column to the original matrix. There are a lot of works
on the SVD updating, e.g., [2, 3, 11, 22, 26]. In this work, we will develop online
algorithms for incremental tensors, which can be regarded as extensions of the SVD
updating. Meanwhile, we focus on the incremental HOSVD, and incremental tensor

123

BIT Numerical Mathematics (2024) 64:4 Page 3 of 28 4

CANDECOMP/PARAFAC decompositions can be found in [19, 23, 25, 29, 36, 38,
39].

The incremental HOSVD has been widely studied in [5, 15, 20, 27, 30, 35].1

However, All existing works on incremental HOSVD do not study this problem sys-
tematically. In [5, 15, 27], only the update of factor matrices is discussed. In [20, 30,
35], the factor matrices are updated by incremental algorithms, but the core tensor
is updated simply by matrix-tensor products, which is a batch mode computation;
see Remark 2 for details. Thus the cost (space and time) can be very large and the
algorithms are not suitable for long time computation. All these works are aimed at
incremental algorithms for the T-HOSVD, while incremental algorithms for the ST-
HOSVD have not been studied in the literature. Moreover, the approximation errors
of the incremental HOSVD have not been discussed before.

In this paper, we discuss incremental algorithms for the truncated HOSVD. Here
we assume that the new data are coming in a specific mode (for example, we are
interested in the time dimension of video data) and the truncation rank is fixed in the
incremental process. In summary, the main contributions of this paper are listed as
follows:

1. We propose an incremental algorithm corresponding to the T-HOSVD. The factor
matrices and the core tensor are all updated by incremental methods.

2. We propose an incremental algorithm corresponding to the ST-HOSVD.
3. The costs of different methods are compared and the approximation errors are

analyzed.

This paper is organized as follows. Section 2 introduces basic definitions about
tensors. The incremental algorithms are proposed in Sect. 3. Bounds of the approxi-
mation errors are established in Sect. 4. Numerical experiments are provided in Sect.
5. This paper is ended with conclusions in Sect. 6.

2 Preliminaries

2.1 Notation and definitions

We use bold-face lowercase letters (a,b, . . .) to denote vectors, bold-face capitals
(A,B, . . .) to denotematrices and calligraphic letters (A,B, . . .) to denote tensors. The
notations I and 0 denote the identity matrix and the zeromatrix of suitable dimensions.
The Frobenius norm of A ∈ R

I1×I2×···×IN is given by

‖A‖ =

√
√
√
√
√

I1∑

i1=1

I2∑

i2=1

· · ·
IN∑

iN=1

a2i1i2···iN ,

where ai1i2···iN is the (i1, i2, . . . , iN)th entry of A.

1 Although the algorithm proposed in [33] is aimed at streaming tensors, it forms an approximation of the
tensor only after all the data have been observed and hence is not an incremental algorithm.

123

 4 Page 4 of 28 BIT Numerical Mathematics (2024) 64:4

Given A ∈ R
I1×···×IN−1×IN ,B ∈ R

I1×···×IN−1×JN , we denote by C := [

A B
]

an
I1 × · · · × IN−1 × (IN + JN) tensor satisfying

C(:, . . . , :, 1 : IN) = A, C(:, . . . , :, IN + 1 : IN + JN) = B.

The mode-n fibers of a tensor are the higher-order analogue of matrix column and
row vectors. A tensor can be vectorized into a vector with specific ordering. We adopt
the following simple ordering in Matlab:

vec(A) := A(:).

A tensor can also be unfolded into a matrix. The mode-n unfolding matrix of A is
denoted by A(n) and arranges the mode-n fibers to be the columns of the resulting
matrix. The specific ordering of the mode-n vectors within this unfolding is usually
not important, as long as it is consistent. We adopt the canonical ordering, as presented
in [18].

The n-mode product of a tensorA ∈ R
I1×···×IN by a matrixM, denoted byM ·n A,

is a tensor generated by multiplying each mode-n fiber of A by M. If n > N , A is
regarded as an nth-order tensor with size I1 × · · · × IN × 1× · · · × 1. Following [9],
we writeM1 ·1 · · ·Mn ·n Amore concisely as (M1, . . . ,Mn) ·A,2 which is the called
the multilinear multiplication of A by (M1, . . . ,Mn).

The n-rank of a tensor A, denoted by rn(A) is the dimension of the vector space
spanned by all mode-n fibers. The N -tuple (r1(A), . . . , rN (A)) is called the multilin-
ear rank of A.

2.2 Incremental SVD

Given a matrix A ∈ R
m×n , suppose its SVD is

A = UΣV�,

where U ∈ R
m×r ,Σ ∈ R

r×r ,V ∈ R
n×r . By appending a new row b� ∈ R

1×n , we

obtain a new matrix B =
[

A
b�

]

. We want to obtain the SVD of B based on the SVD

of A. The resulting decomposition is called the incremental SVD of B.
We have

B =
[

A
b�

]

=
[

UΣV�
b�

]

=
[

U
1

] [

Σ

1

] [

V�
b�

]

. (1)

Consider the Gram-Schmidt orthonormalization of b with respect to V:

x = V�b, y = b − Vx, ρ = ‖y‖, p = y
ρ

.

2 Some papers such as [7, 8] useA ×1 M1 · · · ×n Mn in place of (M1, . . . ,Mn) · A. Here we follow the
notation of [9, 37]. Refer to [9, Section 2.1] for more discussions.

123

BIT Numerical Mathematics (2024) 64:4 Page 5 of 28 4

Then, we have

[

V b
] = [

V p
]
[

I x
0 ρ

]

and

[

Σ

1

] [

V�
b�

]

=
[

Σ 0
x� ρ

] [

V�
p�

]

.

Define

D :=
[

Σ 0
x� ρ

]

∈ R
(r+1)×(r+1).

Suppose the SVD of D is D = GΛH�. Combining the SVD of D and (1) gives

B =
[

A
b�

]

=
([

U
1

]

G
)

Λ(
[

V p
]

H)�,

which is the SVD of B. The decomposition D = GΛH� is useful in the incremental
algorithms of the truncated HOSVD. We summarize the incremental SVD as Algo-
rithm 1. The cost of Algorithm 1 is O(nr + r3).

Algorithm 1: Incremental SVD (iSVD)

1 function [G,Λ,H] = iSVD (Σ,V,b)

2 x ← V�b
3 y ← b − Vx
4 ρ ← ‖y‖
5 p ← y/ρ

6 D ←
[

Σ 0
x� ρ

]

7 [G,Λ,H] = SVD(D) � Compute the SVD of D
8 end function

The incremental algorithm for appending a new column is similar. We omit it here.
In incremental algorithms of the truncated HOSVD, we will compute the incremental
SVD of an unfolding matrix, but the situation is somewhat different: several columns
are appended simultaneously, and only the left singular vectors are needed in the final
result. Therefore, the corresponding algorithm is different from the incremental SVD.
See Sect. 3 for details.

2.3 HOSVD, T-HOSVD and ST-HOSVD

The HOSVD is proposed in [7].

123

 4 Page 6 of 28 BIT Numerical Mathematics (2024) 64:4

Theorem 1 (HOSVD) Every tensor A ∈ R
I1×···×IN admits a higher-order singular

value decomposition:

A = (U1, . . . ,UN) · S,

where the factor matrix Un ∈ R
In×In is orthogonal, obtained from the SVD of the

mode-n unfolding of A:

A(n) = UnΣnV�
n ,

and the core tensor S ∈ R
I1×···×IN can be obtained by

S =
(

U�
1 , . . . ,U�

N

)

· A.

Truncating the HOSVD can be used for low-multilinear-rank approximation to a
tensor. Suppose that we want to approximate A by a rank-(R1, . . . , RN) tensor with
Rn ≤ In for all 1 ≤ n ≤ N . A simple choice of the factor matrix Ūn of the truncated
HOSVD (T-HOSVD) is obtained from a truncated SVD of the mode-n unfolding
matrix:

A(n) = UnΣnV�
n = [

Ūn Ū′
n

]
[
Σ̄n

Σ̄
′
n

] [

V̄�
n

V̄
′�
n

]

, (2)

where Ūn ∈ R
In×Rn consists of the Rn dominant left singular vectors. By [8, Theorem

4.1], the truncated core tensor is

(

Ū�
1 , . . . , Ū�

N

)

· A =: S̄ ∈ R
R1×···×RN .

Throughout this paper, T-HOSVD only refers to the truncated HOSVD defined by (2).
Another strategy for truncating the HOSVD is the sequentially truncated higher-

order singular value decomposition (ST-HOSVD) [37], which is cheaper still to
compute and often improves the approximation error with respect to the T-HOSVD.
The factor matrix Ūn of the ST-HOSVD is obtained from a truncated SVD of the
mode-n unfolding of a tensor generated by sequentially truncated the original tensor
A. Unlike the T-HOSVD, the ordering inwhich themodes are processed is relevant and
leads to different approximations and time cost.We use a sequenceπ = [π1, . . . , πN],
which is a permutation of [1, . . . , N], to denote the ordering in which modes are pro-
cessed. Then, the factor matrices of ST-HOSVD are defined in the following manner:
A0 = A, for n = 1, . . . , N ,

An−1
(πn)

= [

Ūπn Ū′
πn

]
[
Σ̄πn

Σ̄
′
πn

] [
V̄�

πn

V̄
′�
πn

]

, An = Ū�
πn

·πn An−1. (3)

For more details, see [37, Algorithm 1].

123

BIT Numerical Mathematics (2024) 64:4 Page 7 of 28 4

Remark 1 How to choose a good processing ordering π is an open problem. In [37],
the authors propose a heuristic choice of the processing ordering:

π = [π1, . . . , πN] such that Iπ1 ≤ . . . ≤ IπN

under the assumption that the time complexity of computing theSVDof anm×nmatrix
is O(mnmin(m, n)). However, the actual running time of computing the SVD is not
only determined by this simple time complexity. For simplicity, we setπ = [1, . . . , N]
in the experiments presented in Sect. 5, which has a good performance in time cost
among all processing orderings.

Property 1 ([37, Property 6.3]) LetA ∈ R
I1×···×IN be truncated to rank-(R1, . . . , RN)

by the ST-HOSVD with processing ordering [1, . . . , N] (respectively, T-HOSVD).
Assume the time complexity of computing the SVD of an m × n matrix is
O(mnmin(m, n)). Then, the ST-HOSVD and T-HOSVD requires

O

(

(I1 + R1 I2/I1 + R1)

N
∏

n=1

In

)

and

O

(
N

∑

n=1

I1 · · · IN min(In, I1 · · · In−1 In+1 · · · IN)

)

operations to compute the approximation, respectively.

2.4 Tensor norms with respect to multilinear multiplication

The n-mode product has the following relationship:

B = M ·n A ⇔ B(n) = MA(n).

IfMk has orthonormal columns for all k = 1, . . . , n, then

‖(M1, . . . ,Mn) · A‖ = ‖A‖. (4)

SupposeUn is a subspace ofRIn and the columns ofUn ∈ R
In×Rn form an orthonor-

mal basis ofUn . Then themultilinear orthogonal projection [37] from the tensor space
R

I1 × · · · × R
IN onto the subspace RI1 × · · · × R

In−1 × Un × R
In+1 × · · · × R

IN is
given by

Pn[Un]A :=
(

UnU�
n

)

·n A.

The orthogonal complement ofPn[Un] is

P⊥
n [Un]A := (1 − Pn[Un])A =

(

I − UnU�
n

)

·n A.

123

 4 Page 8 of 28 BIT Numerical Mathematics (2024) 64:4

Given Un ∈ R
In×Rn satisfying U�

n Un = I for n = 1, . . . , N , the solution of the
following problem

min
S∈RR1×···×RN

‖A − (U1, . . . ,UN) · S‖

is given by S = (U�
1 , . . . ,U�

N) · A, as proved in [8, Theorem 4.1]. This is just to say
that

‖A − P1[U1] · · ·PN [UN]A‖ = min
S∈RR1×···×RN

‖A − (U1, . . . ,UN) · S‖ . (5)

A special case of (5) is

∥
∥
∥P⊥

n [Un]A
∥
∥
∥ = min

S∈Vn
‖A − Un ·n S‖ ∀n = 1, . . . , N , (6)

where Vn = R
I1×···In−1×Rn×In+1×···×IN . It follows from [37, (5.1)] that

‖A − P1[U1] · · ·PN [UN]A‖ ≤
√
√
√
√

N
∑

n=1

∥
∥P⊥

n [Un]A
∥
∥
2 ≤

N
∑

n=1

∥
∥
∥P⊥

n [Un]A
∥
∥
∥ . (7)

3 Incremental algorithms

In practice, the incremental algorithm will be run many times as many slices will
be sequentially added. For ease of presentation, we introduce a tensor sequence
A0,A1, . . . ,At ,At+1, . . . satisfying

At+1 = [

At Bt
] ∈ R

I1×···×IN−1×(IN+t+1), (8)

where Bt ∈ R
I1×···×IN−1 is a slice. Denote J = ∏N−1

n=1 In . For n = 1, . . . , N − 1,

At+1
(n) ∈ R

In× J (IN+t+1)
In is a column permutation of

[
At

(n) Bt
(n)

]

. We can use
[
At

(n) Bt
(n)

]

, which is a matrix generated by appending J
In

new columns to At
(n),

to obtain the updated factor matrix. For n = N , At+1
(N) =

[
At

(N)

vec(Bt)�
]

∈ R
(IN+t+1)×J

is a matrix generated by appending a new row to At
(N).

The truncation rank is (R1, . . . , RN). Throughout this section, we denote the
HOSVD and truncated HOSVD of At by

At = (

Ut
1, . . . ,U

t
N

) · S t ≈ (

Ūt
1, . . . , Ū

t
N

) · S̄ t .

We assume that the truncated HOSVD of At is known and present two incremental
algorithms for computing the truncated HOSVD of At+1.

123

BIT Numerical Mathematics (2024) 64:4 Page 9 of 28 4

3.1 iT-HOSVD

We can compute the truncated factor matrix Ūt+1
n from the truncated factor matrix

Ūt
n , which is extended from the incremental SVD introduced in Sect. 2.2. We call this

method incremental truncated HOSVD (iT-HOSVD).
First, we introduce how to update truncated factor matrices.

1. The case n = 1, . . . , N − 1. We have

[
At

(n) Bt
(n)

] ≈
[

Ūt
nΣ̄

t
nV̄

t�
n Bt

(n)

]

=
[

Ūt
n Bt

(n)

]
[

Σ̄
t
n

I

] [

V̄t�
n

I

]

. (9)

Define

Xt
n := Ūt�

n Bt
(n), Yt

n := Bt
(n) − Ūt

nXn ∈ R
In× J

In . (10)

Let Pt
n be an orthonormal basis of the column space of Yt

n , which can be solved
by the QR decomposition. Now, we have

[

Ūt
n Bt

(n)

]

= [

Ūt
n Pt

n

]
[
I Xt

n

0 Pt�
n Yt

n

]

and

[

Ūt
n Bt

(n)

]
[

Σ̄
t
n 0
0 I

]

= [

Ūt
n Pt

n

]

[

Σ̄
t
n Xt

n

0 Pt�
n Yt

n

]

.

Define

Dt
n :=

[

Σ̄
t
n Xt

n

0 Pt�
n Yt

n

]

∈ R
In×(J

In
+Rn). (11)

Suppose the SVD of Dt
n is Dt

n = Gt
nΛ

t
nH

t�
n . Combining the SVD of Dt

n and (9)
gives

[
At

(n) Bt
(n)

] ≈ ([

Ūt
n Pt

n

]

Gt
n

)

Λt
n

([

Vt
n

I

]

Ht
n

)�
. (12)

Define Φ t
n := Gt

n(1 : Rn, 1 : Rn),Ψ
t
n := Gt

n(Rn + 1 : In, 1 : Rn). Then

Ūt+1
n = Ūt

nΦ
t
n + Pt

nΨ
t
n, Σ̄

t+1
n = Λt

n(1 : Rn, 1 : Rn). (13)

123

 4 Page 10 of 28 BIT Numerical Mathematics (2024) 64:4

2. The case n = N . This case is in the framework of Sect. 2.2. Here we write the
following formula (line 13 of Algorithm 2) for the convenience of later discussion:

Ūt+1
N =

[

Ūt
NΦ t

N

Ψ t
N

]

. (14)

Now we discuss how to update the truncated core tensor. Define

E1 :=
[

I
0

]

∈ R
(IN+t+1)×(IN+t), E2 :=

[

0
1

]

∈ R
(IN+t+1)×1.

We have

At+1 = [

At 0
] + [

0 Bt
] = E1 ·N At + E2 ·N Bt .

It follows from (14) that

Ūt+1�
N E1 =

[

Φ t�
N Ūt�

N Ψ t�
N

]
[

I
0

]

= Φ t�
N Ūt�

N , Ūt+1�
N E2 = Ψ t�

N .

Define T t := Ūt�
N ·N At . Then

T t+1 = Ūt+1�
N ·N At+1 = Ūt+1�

N ·N
(

E1 ·N At + E2 ·N Bt)

= Φ t�
N ·N

(

Ūt�
N ·N At

)

+ Ψ t�
N ·N Bt = Φ t�

N ·N T t + Ψ t�
N ·N Bt .

(15)

and

S̄ t+1 =
(

Ūt+1�
1 , . . . , Ūt+1�

N

)

· At+1 =
(

Ūt+1�
1 , . . . , Ūt+1�

N−1

)

· T t+1.

Therefore, the truncated core tensor can be updated with the help of the auxiliary
tensor T t ∈ R

I1×···×IN−1×RN , which can save both space cost and time cost.
The whole procedure of iT-HOSVD is presented in Algorithm 2.

Property 2 Assume the time complexity of computing the SVD of an m × n matrix is
O(mnmin(m, n)). Then the time complexity of iT-HOSVD is

O

(

R2
N t + RN (R1 + RN)J +

N−1
∑

n=1

(

In J + Rn I
2
n

)
)

.

Proof First, we consider the cost of updating the n(1 ≤ n ≤ N − 1)th mode. In line 2
of Algorithm 2, the cost of obtaining Xt

n is O(Rn J). The cost of line 3 for computing
Yt
n is O(Rn J). In line 4, the computation of the QR decomposition of Yt

n is O(In J).
The cost of obtaining Dt

n in line 5 is O(In J). The cost of computing the SVD of Dt
n

in line 6 is O(In J + Rn I 2n). The cost of line 8 for computing Ūt+1
n is O(Rn I 2n). So the

123

BIT Numerical Mathematics (2024) 64:4 Page 11 of 28 4

Algorithm 2: incremental truncated HOSVD (iT-HOSVD)

Input: Ūt
n and Σ̄

t
n for n = 1, . . . , N ; V̄t

N ; T
t ; Bt

Output: Ūt+1
n and Σ̄

t+1
n for n = 1, . . . , N ; V̄t+1

N ; T t+1; S̄ t+1

1 for n = 1, . . . , N − 1 do

2 Xt
n ← Ūt�

n Bt
(n)

3 Yt
n ← Bt

(n)
− Ūt

nX
t
n

4
[

Ptn ∼] = qr (Yt
n) � Compute the QR decomposition of Yt

n

5 Dt
n ←

[

Σ̄
t
n Xt

n

0 Pt
�
n Yt

n

]

6 [Gt
n , Λt

n ,Ht
n] = SVD(Dt

n) � Compute the SVD of Dt
n ∈ R

In×(J
In

+Rn)

7 Φt
n ← Gt

n(1 : Rn , 1 : Rn), Ψ t
n ← Gt

n(Rn + 1 : In , 1 : Rn)

8 Ūt+1
n ← Ūt

nΦt
n + PtnΨ t

n

9 Σ̄
t+1
n ← Λt

n(1 : Rn , 1 : Rn)

10 end

11 [Gt
N , Λt

N ,Ht
N] = iSVD(Σ̄

t
N , V̄t

N , vec(Bt))

12 Φt
N ← Gt

N (1 : RN , 1 : RN), Ψ t
N ← Gt

N (RN + 1, 1 : RN)

13 Ūt+1
N ←

[

Ūt
NΦt

N
Ψ t

N

]

14 Σ̄
t+1
N ← Λt

N (1 : RN , 1 : RN)

15 V̄t+1
N ← [

V̄t
N p

] · Ht
N (:, 1 : RN)

16 T t+1 ← Φt�
N ·N T t + Ψ t�

N ·N Bt

17 S̄ t+1 ←
(

Ūt+1�
1 , . . . , Ūt+1�

N−1

)

· T t+1

entire cost for updating the nth mode is O(In J + Rn I 2n) and overall cost for updating

the first N − 1 modes is O
(
∑N−1

n=1 In J + Rn I 2n
)

.

Second, we consider the cost of updating the N th mode. The cost of computing the
SVD of Dt

N in line 11 is O(RN J) (see Sect. 2.2). The cost of line 13 for computing
Ūt+1

N is O(R2
N (IN + t)). The cost of line 15 for computing V̄t+1

N is O(R2
N J). So the

entire cost for updating the N th mode is O(R2
N J + R2

N (IN + t)).
At last, the total cost of lines 16 and 17 is O(R2

N J + R1RN J).
Combining the three parts above yields the final time cost. ��

Remark 2 As mentioned in the Introduction, in previous works on the truncated
HOSVD, the factor matrices are updated by incremental methods, while the core
tensor is updated via a batch-mode computation. For example, i-HOSVD proposed in
[30] updates the factor matrices with the same methods as Algorithm 2, but updates
the core tensor simply by matrix-tensor products, i.e., lines 16 and 17 of Algorithm 2
are changed into

S̄ t+1 ←
(

Ūt+1�
1 , · · · , Ūt+1�

N

)

· At+1.

123

 4 Page 12 of 28 BIT Numerical Mathematics (2024) 64:4

Corresponding to Property 2, the time complexity of this algorithm is

O

(

RN (RN + J)t + RN (R1 + RN + IN)J +
N−1
∑

n=1

(

In J + Rn I
2
n

)
)

.

3.2 iST-HOSVD

For the ST-HOSVD, Ūt+1
πn

has relations with Ūt+1
π1

, . . . , Ūt+1
πn−1

, where π is the process-
ing ordering. To design an incremental algorithm to update all factor matrices of the
ST-HOSVD is difficult. By the ST-HOSVD procedure (3), we know that the dominant
step in time cost is the computation of Ūt+1

π1
. Updating the first factor matrix (in the

processing ordering) can still save a lot cost.
Suppose we choose the τ th mode in which the factor matrix is updated in the

incremental style. After obtaining Ūt+1
τ , we need to compute the rank-(R1, . . . , RN)

approximation of T t+1 := Ūt+1�
τ ·τ At+1 by the ST-HOSVD. Two crucial questions

are how to choose τ and how to update the τ th mode. Here we choose updating the
N th mode by the SVD updating for the following two reasons:

1. Using the SVD updating to update the N th mode is with a very cheap cost; see
Property 2.

2. T t+1 would have a fixed size of I1 × · · · × IN−1 × RN and can be updated with
the results from the last step.

Updating the N th mode is in the framework of Sect. 2.2. The tensor T t+1 can be
updated by (15). We call this method iST-HOSVD for short and the whole procedure
is presented in Algorithm 3.

Following Property 1 and Property 2, we have the following property.

Property 3 Assume the time complexity of computing the SVD of an m × n matrix
is O(mnmin(m, n)). The processing ordering of T t+1 for the first N − 1 modes is
[1, . . . , N − 1]. Then the time complexity of iST-HOSVD is

O
(

R2
N t + RN (R1 I2/I1 + RN + I1)J

)

.

3.3 Cost comparison

We compare the computational costs of the proposed algorithms against T-HOSVD,
ST-HOSVD, R-HOSVD [33], and i-HOSVD [30]. R-HOSVD is a randomized algo-
rithm, and as mentioned in the Introduction, it is a batch-mode algorithm. i-HOSVD
has been introduced in Remark 2.

In terms of space cost, T-HOSVD, ST-HOSVD, R-HOSVD and i-HOSVD need to
store the old dataset, the new dataset, and outputs, while iT-HOSVD and iST-HOSVD
only need to store the new dataset and outputs. The main time cost of R-HOSVD is
for the Tucker sketch ([33, Algorithm 4.1]). Suppose the sketch size parameter is

123

BIT Numerical Mathematics (2024) 64:4 Page 13 of 28 4

Algorithm 3: incremental ST-HOSVD based on SVD updating (iST-HOSVD)

Input: Ūt
N , Σ̄

t
N , V̄t

N ; T
t ; Bt

Output: Ūt+1
n for n = 1, . . . , N ; Σ̄ t+1

N , V̄t+1
N ; T t+1; S̄ t+1

1 [Gt
N , Λt

N ,Ht
N] = iSVD(Σ̄

t
N , V̄t

N , vec(Bt))

2 Φt
N ← Gt

N (1 : RN , 1 : RN), Ψ t
N ← Gt

N (RN + 1, 1 : RN)

3 Ūt+1
N ←

[

Ūt
NΦt

N
Ψ t

N

]

4 Σ̄
t+1
N ← Λt

N (1 : RN , 1 : RN)

5 V̄t+1
N ← [

V̄t
N p

] · Ht
N (:, 1 : RN)

6 T t+1 ← Φt�
N ·N T t + Ψ t�

N ·N Bt

7 π ← processing ordering for [1, . . . , N − 1]
8 T ← T t+1

9 for n = 1, . . . , N − 1 do

10 T(πn) = [

U1 U2
]
[

Σ1
Σ2

] [

V�
1

V�
2

]

, with U1 ∈ R
Iπn×Rπn

� Compute the SVD of T(πn)

11 Ūt+1
πn ← U1

12 T(πn) ← Σ1V�
1

13 end
14 S̄ t+1 ← T

(K1, . . . , KN). Then the cost of the Tucker sketch is

O

(
N

∑

n=1

Kn J (IN + t)

)

.

The requirement of the sketch size parameter is Kn ≥ Rn, n = 1, . . . , N . The time
costs of the other four algorithms have been discussed before. We summarize the costs
in Table 1. For simplicity, we suppose

In = I , Rn = R, Kn = K , n = 1, . . . , N .

The time costs of all algorithms would increase as t increases, and all time costs
increase linearly when t is sufficiently big. However, the increasing speeds differ
greatly for different algorithms. The terms related to t of the time costs of iT-HOSVD
and iST-HOSVD are the same: R2t , which is much smaller than the other algorithms.

4 Approximation error analysis

Weanalyze the approximation errors for the two incremental algorithms, andgive some
discussions on the obtained results. For convenience, we introduce some notations.
Let At

(n) be the mode-n unfolding matrix of At . We let

At
(n),Rn

be the best rank-Rn approximation of At
(n), n = 1, . . . , N . (16)

123

 4 Page 14 of 28 BIT Numerical Mathematics (2024) 64:4

Ta
bl
e
1

C
os
ts
co
m
pa
ri
so
n

A
lg
or
ith

m
Sp

ac
e

T
im

e

T-
H
O
SV

D
(I

N
−1

+
R
)t

+
IN

+
R
N

+
N
R
I

O
(

(

(N
−

1)
I

+
m
in

(I
+

t,
IN

−1
))

IN
−1

(I
+

t)
)

ST
-H

O
SV

D
(I

N
−1

+
R
)t

+
IN

+
R
N

+
N
R
I

O
(

(I
+

2
R
)I

N
−1

(I
+

t)
)

R
-H

O
SV

D
(I

N
−1

+
R
)t

+
IN

+
R
N

+
N
R
I

O
(

N
K
IN

−1
(I

+
t)

)

i-
H
O
SV

D
(I

N
−1

+
R
)t

+
IN

+
R
N

+
N
R
I

O
(

R
(
R

+
IN

−1
)t

+
R
(2
R

+
I)
IN

−1
+

(N
−

1)
(I

N
+

R
I2

))

iT
-H

O
SV

D
R
t
+

(2
R

+
1)
IN

−1
+

R
N

+
N
R
I

+
(N

−
1)
R

O
(

R
2
t
+

2
R
2
IN

−1
+

(N
−

1)
(I

N
+

R
I2

))

iS
T-
H
O
SV

D
R
t
+

(2
R

+
1)
IN

−1
+

R
N

+
N
R
I

+
(N

−
1)
R

O
(

R
2
t
+

R
(2
R

+
I)
IN

−1
)

T
he

in
iti
al
iz
at
io
n
da
ta
A
0
is
an

N
th
-o
rd
er

te
ns
or

of
si
ze

I
×

···
×

I,
th
e
tr
un

ca
tio

n
ra
nk

is
(
R
,
..

.,
R
),
an
d
th
e
sk
et
ch

si
ze

pa
ra
m
et
er

of
R
-H

O
SV

D
is

(K
,
..

.,
K

)

123

BIT Numerical Mathematics (2024) 64:4 Page 15 of 28 4

In Algorithm 2 and 3, the truncated SVD of

[

Ūt
N Σ̄

t
N V̄

t�
N

vec(Bt)�
]

of rank RN is

[

Ūt
N Σ̄

t
N V̄

t�
N

vec(Bt)�
]

≈ Ūt+1
N Σ̄

t+1
N V̄t+1�

N .

In Algorithm 2, we do not need to compute V̄t+1
n for n = 1, . . . , N −1. Actually, V̄t+1

n
can be obtained by (12) easily. By (9), (12) and (13), we assume that the truncated

SVD of
[

Ūt
nΣ̄

t
nV̄

t�
n Bt

(n)

]

of rank Rn is

[

Ūt
nΣ̄

t
nV̄

t�
n Bt

(n)

]

≈ Ūt+1
n Σ̄

t+1
n W̄t+1�

n . (17)

With the same column permutation from
[
At

(n) Bt
(n)

]

to At+1
(n) , we can get V̄t+1�

n

from W̄t+1�
n . We define

Āt
(n) := Ūt

nΣ̄
t
nV̄

t�
n , n = 1, . . . , N .

By definition,

Ā0
(n) = A0

(n),Rn
, n = 1, . . . , N . (18)

Before we discuss the approximation errors of the two incremental algorithms,
we review the existing results on approximation errors of the truncated HOSVD. R-
HOSVD is a randomized algorithm, and its approximation error is discussed in [33]. Its
approximation error depends on the distribution of the singular values of the unfolding
matrices. In practical applications, the approximation error of R-HOSVD is greater
than those of T-HOSVD and ST-HOSVD. The error bounds of T-HOSVD and ST-
HOSVD have been given in [37, Corollary 5.2 and Theorem 6.5]. Let Āt and Ât be
the rank-(R1, . . . , RN) T-HOSVD and ST-HOSVD of A, respectively. Then,

‖At − Āt‖ ≤
√
√
√
√

N
∑

n=1

∥
∥
∥At

(n) − At
(n),Rn

∥
∥
∥

2
,

‖At − Ât‖ ≤
√
√
√
√

N
∑

n=1

∥
∥
∥At

(n) − At
(n),Rn

∥
∥
∥

2
.

(19)

The following two theorems guarantee the performance of the proposed incremental
algorithms.

123

 4 Page 16 of 28 BIT Numerical Mathematics (2024) 64:4

Theorem 2 Suppose the result of iT-HOSVD for At is
(

Ūt
1, . . . , Ū

t
N

) · S̄ t . We have

∥
∥At − (

Ūt
1, . . . , Ū

t
N

) · S̄ t
∥
∥ ≤

N
∑

n=1

∥
∥
∥A0

(n) − A0
(n),Rn

∥
∥
∥

+
t−1
∑

k=0

N−1
∑

n=1

∥
∥
∥P⊥

n [Ūk
n]Bk

∥
∥
∥ +

t−1
∑

k=0

∥
∥
∥P⊥

1 [V̄k
N]vec(Bk)

∥
∥
∥ ,

(20)

where A0
(n),Rn

is defined in (16).

Theorem 3 Suppose the result of iST-HOSVD for At is
(

Ūt
1, . . . , Ū

t
N

) · S̄ t . We have

∥
∥At − (

Ūt
1, . . . , Ū

t
N

) · S̄ t
∥
∥ ≤

∥
∥
∥A0

(N) − A0
(N),RN

∥
∥
∥ +

t−1
∑

k=0

∥
∥
∥P⊥

1 [V̄k
N]vec(Bk)

∥
∥
∥

+
√
√
√
√

N−1
∑

n=1

∥
∥
∥At

(n) − At
(n),Rn

∥
∥
∥

2
,

(21)

where At
(n),Rn

is defined in (16).

Compared to the error bounds (19), the error bounds of the two incremental algo-
rithms are related to the approximation error of previous steps: the error bound (20)
of iT-HOSVD is related to

∥
∥
∥P⊥

n [Ūk
n]Bk

∥
∥
∥ and

∥
∥
∥P⊥

1 [V̄k
N]vec(Bk)

∥
∥
∥ , n = 1, . . . , N − 1, k = 0, 1, . . . , t − 1,

and the error bound (21) of iST-HOSVD is related to

∥
∥
∥P⊥

1 [V̄k
N]vec(Bk)

∥
∥
∥ , k = 0, 1, . . . , t − 1.

By noting (8),
∥
∥P⊥

n [Ūk
n]Bk

∥
∥ is the approximation error of Bk

(n) by the previous basis

Ūk
n , and

∥
∥P⊥

1 [V̄k
N]vec(Bk)

∥
∥ is the approximation error of vec(Bk) by the previous

basis V̄k
N . This makes sense for the computation in an incremental style. If there is

a great variation between the new slice Bk and the old data, this approximation error
would be great. The situation is similar for

∥
∥P⊥

1 [V̄k
N]vec(Bk)

∥
∥ in (21). Hence, the

approximation errors of iT-HOSVD and iST-HOSVD depend heavily on the character
of the variation of the data.

To prove Theorems 2 and 3, we first give a result related to unfolding matrices. In
fact, this result is the approximation error of the matrix incremental SVD of appending
several columns.

123

BIT Numerical Mathematics (2024) 64:4 Page 17 of 28 4

Lemma 1 For Algorithm 2, we have

∥
∥
∥At+1

(n) − Āt+1
(n)

∥
∥
∥ ≤

∥
∥
∥At

(n) − Āt
(n)

∥
∥
∥ +

∥
∥
∥P⊥

n [Ūt
n]Bt

∥
∥
∥ ∀n = 1, . . . , N − 1,

∥
∥
∥At+1

(N) − Āt+1
(N)

∥
∥
∥ ≤

∥
∥
∥At

(N) − Āt
(N)

∥
∥
∥ +

∥
∥
∥P⊥

1 [V̄t
N]vec(Bt)

∥
∥
∥ .

Proof For n = 1, . . . , N − 1, combining (9), (12) and (17) yields that

∥
∥
∥At+1

(n) − Āt+1
(n)

∥
∥
∥ =

∥
∥
∥

[
At

(n) Bt
(n)

] − Ūt+1
n Σ̄

t+1
n W̄t+1�

n

∥
∥
∥

≤
∥
∥
∥

[
At

(n) Bt
(n)

] −
[

Āt
(n) Bt

(n)

]∥
∥
∥ +

∥
∥
∥

[

Āt
(n) Bt

(n)

]

− Ūt+1
n Σ̄

t+1
n W̄t+1�

n

∥
∥
∥ .

We have
∥
∥
∥

[
At

(n) Bt
(n)

] −
[

Āt
(n) Bt

(n)

]∥
∥
∥ =

∥
∥
∥At

(n) − Āt
(n)

∥
∥
∥ ,

and
∥
∥
∥

[

Āt
(n) Bt

(n)

]

− Ūt+1
n Σ̄

t+1
n W̄t+1�

n

∥
∥
∥ is just the approximation error of the best

rank-Rn approximation of Dt
n defined in (11). Since

[

Σ̄
t
n Xt

n
0 0

]

is rank-Rn , the

approximation error of the best rank-Rn approximation of Dt
n is less than ‖Pt�

n Yt
n‖.

On the other hand, for (10), since Pt
n is an orthonormal basis of the column space of

Yt
n , we have

∥
∥
∥Pt�

n Yt
n

∥
∥
∥ = ‖Yt

n‖ =
∥
∥
∥Bt

(n) − Ūt
nŪ

t�
n Bt

(n)

∥
∥
∥ =

∥
∥
∥P⊥

n [Ūt
n]Bt

∥
∥
∥ ∀n = 1, . . . , N − 1.

Hence,

∥
∥
∥

[

Āt
(n) Bt

(n)

]

− Ūt+1
n Σ̄

t+1
n W̄t+1�

n

∥
∥
∥ ≤

∥
∥
∥Pt�

n Yt
n

∥
∥
∥ =

∥
∥
∥P⊥

n [Ūt
n]Bt

∥
∥
∥ .

This completes the proof.
The case n = N can be proved similarly. ��
The following result is an immediate consequence of the preceding lemma, where

(18) has been used.

Corollary 1 For Algorithm 2, we have

∥
∥
∥At+1

(n) − Āt+1
(n)

∥
∥
∥ ≤

∥
∥
∥A0

(n) − A0
(n),Rn

∥
∥
∥ +

t
∑

k=0

∥
∥
∥P⊥

n [Ūk
n]Bk

∥
∥
∥ ∀n = 1, . . . , N − 1,

∥
∥
∥At+1

(N) − Āt+1
(N)

∥
∥
∥ ≤

∥
∥
∥A0

(N) − A0
(N),RN

∥
∥
∥ +

t
∑

k=0

∥
∥
∥P⊥

1 [V̄k
N]vec(Bk)

∥
∥
∥ .

(22)

Now we can prove Theorems 2 and 3.

123

 4 Page 18 of 28 BIT Numerical Mathematics (2024) 64:4

Proof of Theorem 2 It follows from (7) that

∥
∥At − (

Ūt
1, . . . , Ū

t
N

) · S̄ t
∥
∥ ≤

N
∑

n=1

∥
∥
∥P⊥

n [Ūt
n]At

∥
∥
∥

(6)≤
N

∑

n=1

∥
∥
∥At

(n) − Āt
(n)

∥
∥
∥ .

Combining (22) with the above equation yields the result. ��
Proof of Theorem 3 First, by the algorithm and (7), we have

∥
∥At − Ūt

N ·N T t
∥
∥ ≤

∥
∥
∥P⊥

N [Ūt
N]At

∥
∥
∥

(6)≤
∥
∥
∥At

(N) − Āt
(N)

∥
∥
∥ .

Second, by the algorithm,
(

Ūt
1, . . . , Ū

t
N−1

) · S̄ t is the rank-(R1, . . . , RN) approxima-
tion of T t by the ST-HOSVD. By [37, Theorem 6.5], we have

∥
∥Ūt

N ·N
(

T t − (

Ūt
1, . . . , Ū

t
N−1

) · S̄ t)
∥
∥

(4)= ∥
∥T t − (

Ūt
1, . . . , Ū

t
N−1

) · S̄ t
∥
∥

≤
√
√
√
√

N−1
∑

n=1

∥
∥
∥At

(n) − At
(n),Rn

∥
∥
∥

2
.

Combining the above two equations yields that

∥
∥At − (

Ūt
1, . . . , Ū

t
N

) · S̄ t
∥
∥

≤ ∥
∥At − Ūt

N ·N T t
∥
∥ + ∥

∥Ūt
N ·N

(

T t − (

Ūt
1, . . . , Ū

t
N−1

) · S̄ t)
∥
∥

≤
∥
∥
∥At

(N) − Āt
(N)

∥
∥
∥ +

√
√
√
√

N−1
∑

n=1

∥
∥
∥At

(n) − At
(n),Rn

∥
∥
∥

2
. (23)

The update of the N th mode of iST-HOSVD is the same as that of iT-HOSVD.
Combining (22) and (23) yields the result. ��

5 Numerical experiments

In this section, we compare the proposed algorithms with three batch-mode algo-
rithms T-HOSVD, ST-HOSVD and R-HOSVD [33], and one incremental algorithm
i-HOSVD [30]. We use the relative error (RErr) to evaluate results. For the truncated
HOSVD Ā = (

Ū1, . . . , ŪN
) · S̄ of A, the RErr is defined as

RErr = ‖A − Ā‖
‖A‖ .

All experiments are performed onMATLABR2023a with tensor Toolbox, version 3.0
[1] on a work station (Intel Core i7-10875H @2.3Hz, 32G RAM).

123

BIT Numerical Mathematics (2024) 64:4 Page 19 of 28 4

Dudek

Brain WDC

Fig. 1 Two slices of each third-order tensor

Suppose the truncation rank is (R1, . . . , RN). For R-HOSVD, we use the suggested
sketch size parameter used in [33] for each test:

Kn = 2Rn + 1, n = 1, . . . , N .

5.1 Results on real-world datasets

As mentioned in Sect. 4, the approximation errors of iT-HOSVD and iST-HOSVD
depend heavily on the character of the variation of the data. We will test tensors
with different variation features. For third-order tensors, we test a video “Dudek”, a
hyperspectral image “WDC” and an MRI “Brain”.3 For fourth-order tensors, we test
three videos “Highway”, “Corridor”, and “Bridge”.4 In the direction of the last mode,
“Dudek” and “Highway” are rapidly changing, “MRI” and “Corridor” are moderately
changing, and “WDC” and “Bridge” are relatively stable. We show two slices of each
tensor in Figs. 1 and 2. The detailed information of each test tensorA ∈ R

I1×···×IN−1×L

is given in Table 2.
We choose the first 10% slices, i.e.,A0 = A

(:, . . . , :, 1 : ⌊ L
10

⌋)

, as the initialization
data. We compute the full HOSVD of A0 and use it to obtain the initializations of all
incremental algorithms. After initialization and setting, the remaining 90% data are
appended to the existing tensor one slice at a time. There are T := L − ⌊ L

10

⌋

slices
that will be appended. At the t-th step, we compute the truncated HOSVD of

At = A
(

:, . . . , :, 1 :
⌊
L

10

⌋

+ t

)

, t = 1, 2, . . . , T

3 “Dudek” is widely used for testing visual tracking algorithm [15, 27] and available on http://www.cs.
toronto.edu/~dross/ivt/. “WDC” is short for Washington DC Mall and available on https://engineering.
purdue.edu/~biehl/MultiSpec/hyperspectral.html. “Brain” is from BrainWeb [6] and available at http://
brainweb.bic.mni.mcgill.ca/brainweb/selection_normal.html.
4 “Highway” and “Bridge” are from the video trace library [28] and available on http://trace.eas.asu.edu/
yuv/. “Corridor” is used in [15] and available on https://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/.

123

http://www.cs.toronto.edu/~dross/ivt/
http://www.cs.toronto.edu/~dross/ivt/
https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
http://brainweb.bic.mni.mcgill.ca/brainweb/selection_normal.html
http://brainweb.bic.mni.mcgill.ca/brainweb/selection_normal.html
http://trace.eas.asu.edu/yuv/
http://trace.eas.asu.edu/yuv/
https://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/

 4 Page 20 of 28 BIT Numerical Mathematics (2024) 64:4

Highway Corridor Bridge

Fig. 2 Two slices of each fourth-order tensor

Table 2 Details of test tensors

Tensor I1 × · · · × IN−1 × L J = ∏N−1
n=1 In J/L

Dudek 480 × 720 × 573 345,600 603.1

Brain 181 × 217 × 181 39,277 181.0

WDC 500 × 300 × 191 150,000 785.3

Highway 176 × 144 × 3 × 2000 76,032 38.0

Corridor 288 × 384 × 3 × 2357 331,776 140.8

Bridge 176 × 144 × 3 × 2001 76,032 38.0

by different methods, where the incremental methods are computed based on the result
of the (t − 1)-st step, and the batch-mode methods are computed from scratch. After
processing the t-th step, we record the running time ct (in s) and compute the RErr et .
After all data are processed, we compute the mean RErr and the mean running time
of one step:

mean RErr =
∑T

t=1 et
T

, mean running time =
∑T

t=1 ct
T

.

The experiments are repeated ten times and we show the average results.
First, we focus on the RErr. In Table 3, we show the mean RErr of one step.

R-HOSVD performs the worst among all algorithms. Like [37], we can find that ST-
HOSVD performs better than T-HOSVD on all test tensors. The results of i-HOSVD
are the same as those of iT-HOSVD. iST-HOSVD outperforms iT-HOSVD on all
test tensors. The incremental algorithms show very promising results in accuracy: the
ratios between the ST-HOSVD RErr’s and the RErr’s of the incremental algorithms

123

BIT Numerical Mathematics (2024) 64:4 Page 21 of 28 4

Ta
bl
e
3

M
ea
n
R
E
rr
of

on
e
st
ep

Te
ns
or

T
ru
nc
at
io
n
ra
nk

T-
H
O
SV

D
ST

-H
O
SV

D
R
-H

O
SV

D
i-
H
O
SV

D
iT
-H

O
SV

D
iS
T-
H
O
SV

D

D
ud

ek
(5
,5
,5
)

3.
14

e−
01

3.
11

e−
01

3.
95

e−
01

3.
25

e−
01

(0
.9
6)

3.
25

e−
01

(0
.9
6)

3.
22

e−
01

(0
.9
7)

(1
0,
10

,1
0)

2.
64

e−
01

2.
61

e−
01

3.
26

e−
01

2.
73

e−
01

(0
.9
6)

2.
73

e−
01

(0
.9
6)

2.
70

e−
01

(0
.9
7)

(2
0,
20

,2
0)

2.
14

e−
01

2.
12

e−
01

2.
62

e−
01

2.
23

e−
01

(0
.9
5)

2.
23

e−
01

(0
.9
5)

2.
21

e−
01

(0
.9
6)

(3
0,
30

,3
0)

1.
85

e−
01

1.
84

e−
01

2.
26

e−
01

1.
92

e−
01

(0
.9
5)

1.
92

e−
01

(0
.9
5)

1.
91

e−
01

(0
.9
6)

B
ra
in

(5
,5
,5
)

3.
77

e−
01

3.
70

e−
01

4.
54

e−
01

3.
89

e−
01

(0
.9
5)

3.
89

e−
01

(0
.9
5)

3.
75

e−
01

(0
.9
9)

(1
0,
10

,1
0)

2.
79

e−
01

2.
77

e−
01

3.
41

e−
01

2.
88

e−
01

(0
.9
6)

2.
88

e−
01

(0
.9
6)

2.
83

e−
01

(0
.9
8)

(2
0,
20

,1
5)

2.
05

e−
01

2.
03

e−
01

2.
42

e−
01

2.
12

e−
01

(0
.9
6)

2.
12

e−
01

(0
.9
6)

2.
07

e−
01

(0
.9
8)

(3
0,
30

,1
5)

1.
69

e−
01

1.
69

e−
01

1.
96

e−
01

1.
78

e−
01

(0
.9
5)

1.
78

e−
01

(0
.9
5)

1.
73

e−
01

(0
.9
7)

W
D
C

(5
,5
,5
)

2.
69

e−
01

2.
68

e−
01

3.
43

e−
01

2.
71

e−
01

(0
.9
9)

2.
71

e−
01

(0
.9
9)

2.
69

e−
01

(1
.0
0)

(1
0,
10

,1
0)

2.
39

e−
01

2.
37

e−
01

2.
95

e−
01

2.
44

e−
01

(0
.9
7)

2.
44

e−
01

(0
.9
7)

2.
37

e−
01

(1
.0
0)

(2
0,
20

,1
5)

2.
01

e−
01

1.
99

e−
01

2.
48

e−
01

2.
06

e−
01

(0
.9
6)

2.
06

e−
01

(0
.9
6)

1.
99

e−
01

(1
.0
0)

(3
0,
30

,1
5)

1.
76

e−
01

1.
74

e−
01

2.
17

e−
01

1.
81

e−
01

(0
.9
6)

1.
81

e−
01

(0
.9
6)

1.
74

e−
01

(1
.0
0)

H
ih
gw

ay
(5
,5
,3
,5
)

9.
80

e−
02

9.
70

e−
02

1.
26

e−
01

1.
00

e−
01

(0
.9
7)

1.
00

e−
01

(0
.9
7)

9.
96

e−
02

(0
.9
7)

(1
0,
10

,3
,1
0)

8.
20

e−
02

8.
10

e−
02

1.
03

e−
01

8.
61

e−
02

(0
.9
4)

8.
61

e−
02

(0
.9
4)

8.
43

e−
02

(0
.9
6)

(2
0,
20

,3
,2
0)

6.
85

e−
02

6.
75

e−
02

8.
27

e−
02

7.
16

e−
02

(0
.9
4)

7.
16

e−
02

(0
.9
4)

7.
03

e−
02

(0
.9
6)

(3
0,
30

,3
,3
0)

5.
85

e−
02

5.
80

e−
02

7.
05

e−
02

6.
15

e −
02

(0
.9
4)

6.
15

e−
02

(0
.9
4)

6.
03

e−
02

(0
.9
6)

C
or
ri
do

r
(5
,5
,3
,5
)

1.
57

e−
01

1.
56

e−
01

2.
00

e−
01

1.
57

e−
01

(0
.9
9)

1.
57

e−
01

(0
.9
9)

1.
57

e−
01

(1
.0
0)

(1
0,
10

,3
,1
0)

1.
23

e−
01

1.
22

e−
01

1.
53

e−
01

1.
24

e−
01

(0
.9
8)

1.
24

e−
01

(0
.9
8)

1.
23

e−
01

(0
.9
9)

(2
0,
20

,3
,2
0)

9.
00

e−
02

8.
94

e−
02

1.
10

e−
01

9.
19

e−
02

(0
.9
7)

9.
19

e−
02

(0
.9
7)

9.
08

e−
02

(0
.9
8)

(3
0,
30

,3
,3
0)

7.
11

e−
02

7.
07

e−
02

8.
71

e−
02

7.
30

e−
02

(0
.9
7)

7.
30

e−
02

(0
.9
7)

7.
24

e−
02

(0
.9
8)

B
ri
dg

e
(5
,5
,3
,5
)

9.
16

e−
02

9.
15

e−
02

1.
24

e−
01

9.
16

e−
02

(1
.0
0)

9.
16

e−
02

(1
.0
0)

9.
15

e−
02

(1
.0
0)

(1
0,
10

,3
,1
0)

7.
41

e−
02

7.
33

e−
02

9.
71

e−
02

7.
42

e−
02

(0
.9
9)

7.
42

e−
02

(0
.9
9)

7.
34

e−
02

(1
.0
0)

(2
0,
20

,3
,2
0)

5.
89

e−
02

5.
84

e−
02

7.
47

e−
02

5.
90

e−
02

(0
.9
9)

5.
90

e−
02

(0
.9
9)

5.
81

e−
02

(1
.0
0)

(3
0,
30

,3
,3
0)

5.
07

e−
02

5.
00

e−
02

6.
22

e−
02

5.
08

e−
02

(0
.9
8)

5.
08

e−
02

(0
.9
8)

4.
99

e−
02

(1
.0
0)

Fo
r
th
e
th
re
e
in
cr
em

en
ta
la
lg
or
ith

m
s,
th
e
ra
tio

s
be
tw
ee
n
th
e
re
su
lt
of

ST
-H

O
SV

D
an
d
th
ei
rs
ar
e
sh
ow

n
in

pa
re
nt
he
si
s

123

 4 Page 22 of 28 BIT Numerical Mathematics (2024) 64:4

Fig. 3 The comparison results on the relative error for each step: third-order tensors

are greater than 0.94 in all cases, and iST-HOSVD even outperforms the batch-mode
algorithms in some cases (see the results for Bridge). The performance of the incre-
mental algorithms is related to the variation features of test tensors: the ratio between
the ST-HOSVD RErr and the iT-HOSVD RErr (iST-HOSVD RErr, respectively) is
the biggest on the stable tensors “WDC” and “Bridge”, while the ratio is relatively
small on the rapidly changing tensors “Dudek” and “Highway”. Some comparison
results on the relative error for each step are shown in Figs. 3 and 4. These results
are consistent with the results in Table 3. iST-HOSVD outperforms iT-HOSVD for

123

BIT Numerical Mathematics (2024) 64:4 Page 23 of 28 4

Fig. 4 The comparison results on the relative error for each step: fourth-order tensors

all cases. For the case Bridge with rank=(30,30,3,30), iST-HOSVD even outperforms
ST-HOSVD.

Now we focus on the running time. In Table 4, we show the mean running time of
one step. The running time of ST-HOSVD is much shorter than that of T-HOSVD,
and R-HOSVD is the fastest among the three batch-mode algorithms. We show the
ratios between the running time of R-HOSVD and those of the three incremental
algorithms. We can find that the incremental algorithms outperform the batch-mode
algorithms. As discussed in Sect. 3.3, the time complexities of iT-HOSVD and iST-

123

 4 Page 24 of 28 BIT Numerical Mathematics (2024) 64:4

Ta
bl
e
4

M
ea
n
ru
nn

in
g
tim

e
of

on
e
st
ep

Te
ns
or

T
ru
nc
at
io
n
ra
nk

T-
H
O
SV

D
ST

-H
O
SV

D
R
-H

O
SV

D
i-
H
O
SV

D
iT
-H

O
SV

D
iS
T-
H
O
SV

D

D
ud

ek
(5
,5
,5
)

1.
47

e+
01

4.
61

e+
00

4.
90

e−
01

3.
46

e−
01

(1
.4
2)

1.
24

e−
01

(3
.9
5)

1.
02

e−
01

(4
.8
0)

(1
0,
10

,1
0)

1.
48

e+
01

4.
70

e+
00

5.
83

e−
01

3.
82

e−
01

(1
.5
3)

1.
48

e−
01

(3
.9
4)

1.
90

e−
01

(3
.0
7)

(2
0,
20

,2
0)

1.
48

e+
01

4.
81

e+
00

8.
01

e−
01

4.
09

e−
01

(1
.9
6)

1.
94

e−
01

(4
.1
3)

3.
62

e−
01

(2
.2
1)

(3
0,
30

,3
0)

1.
48

e+
01

4.
94

e+
00

1.
06

e+
00

4.
58

e−
01

(2
.3
1)

2.
44

e−
01

(4
.3
4)

5.
78

e−
01

(1
.8
3)

B
ra
in

(5
,5
,5
)

2.
42

e−
01

8.
64

e−
02

2.
53

e−
02

2.
11

e−
02

(1
.2
0)

1.
67

e−
02

(1
.5
2)

1.
18

e−
02

(2
.1
4)

(1
0,
10

,1
0)

2.
43

e−
01

9.
08

e−
02

3.
45

e−
02

2.
26

e−
02

(1
.5
3)

1.
96

e−
02

(1
.7
6)

1.
99

e−
02

(1
.7
3)

(2
0,
20

,1
5)

2.
43

e−
01

9.
54

e−
02

4.
98

e−
02

2.
41

e−
02

(2
.0
7)

2.
23

e−
02

(2
.2
3)

3.
10

e−
02

(1
.6
1)

(3
0,
30

,1
5)

2.
47

e−
01

1.
03

e−
01

6.
31

e−
02

2.
42

e−
02

(2
.6
1)

2.
36

e−
02

(2
.6
7)

3.
17

e−
02

(1
.9
9)

W
D
C

(5
,5
,5
)

1.
40

e+
00

6.
11

e−
01

8.
19

e−
02

6.
90

e−
02

(1
.1
9)

5.
34

e−
02

(1
.5
3)

6.
06

e−
02

(1
.3
5)

(1
0,
10

,1
0)

1.
41

e+
00

6.
19

e−
01

1.
07

e−
01

7.
64

e−
02

(1
.4
0)

6.
50

e−
02

(1
.6
5)

1.
03

e−
01

(1
.0
4)

(2
0,
20

,1
5)

1.
41

e+
00

6.
24

e−
01

1.
45

e−
01

8.
61

e−
02

(1
.6
8)

7.
83

e−
02

(1
.8
5)

1.
43

e−
01

(1
.0
1)

(3
0,
30

,1
5)

1.
42

e+
00

6.
42

e−
01

1.
73

e−
01

8.
57

e−
02

(2
.0
2)

7.
78

e−
02

(2
.2
2)

1.
50

e−
01

(1
.1
5)

H
ih
gw

ay
(5
,5
,3
,5
)

8.
18

e+
00

1.
83

e+
00

4.
53

e−
01

2.
06

e−
01

(2
.2
0)

2.
60

e−
02

(1
7.
42

)
1.
82

e−
02

(2
4.
89

)

(1
0,
10

,3
,1
0)

8.
19

e+
00

1.
96

e+
00

6.
53

e−
01

2.
17

e−
01

(3
.0
1)

2.
91

e−
02

(2
2.
44

)
2.
71

e−
02

(2
4.
10

)

(2
0,
20

,3
,2
0)

8.
22

e+
00

2.
61

e+
00

9.
73

e−
01

2.
30

e−
01

(4
.2
3)

3.
72

e−
02

(2
6.
16

)
3.
91

e−
02

(2
4.
88

)

(3
0,
30

,3
,3
0)

8.
20

e+
00

2.
89

e+
00

1.
28

e+
00

2.
50

e−
01

(5
.1
2)

4.
98

e−
02

(2
5.
70

)
6.
66

e−
02

(1
9.
22

)

C
or
ri
do

r
(5
,5
,3
,5
)

8.
70

e+
01

1.
88

e+
01

2.
33

e+
00

3.
31

e−
01

(7
.0
4)

1.
29

e−
01

(1
8.
06

)
7.
55

e−
02

(3
0.
86

)

(1
0,
10

,3
,1
0)

8.
70

e+
01

1.
89

e+
01

2.
76

e+
00

4.
19

e−
01

(6
.5
9)

1.
67

e−
01

(1
6.
53

)
1.
57

e−
01

(1
7.
58

)

(2
0,
20

,3
,2
0)

8.
57

e+
01

1.
97

e+
01

3.
69

e+
00

6.
37

e−
01

(5
.7
9)

2.
24

e−
01

(1
6.
47

)
3.
19

e−
01

(1
1.
57

)

(3
0,
30

,3
,3
0)

8.
77

e+
01

2.
08

e+
01

7.
07

e+
00

8.
42

e−
01

(8
.4
0)

3.
77

e−
01

(1
8.
75

)
5.
54

e−
01

(1
2.
76

)

B
ri
dg

e
(5
,5
,3
,5
)

8.
12

e+
00

1.
81

e+
00

4.
64

e−
01

2.
12

e−
01

(2
.1
9)

2.
35

e−
02

(1
9.
74

)
1.
81

e−
02

(2
5.
64

)

(1
0,
10

,3
,1
0)

7.
86

e+
00

1.
82

e+
00

6.
20

e −
01

2.
18

e−
01

(2
.8
4)

2.
53

e−
02

(2
4.
51

)
2.
32

e−
02

(2
6.
72

)

(2
0,
20

,3
,2
0)

8.
09

e+
00

2.
16

e+
00

9.
98

e−
01

2.
30

e−
01

(4
.3
4)

3.
15

e−
02

(3
1.
68

)
4.
47

e−
02

(2
2.
33

)

(3
0,
30

,3
,3
0)

7.
98

e+
00

2.
30

e+
00

1.
32

e+
00

2.
50

e−
01

(5
.2
8)

3.
44

e−
02

(3
8.
37

)
6.
45

e−
02

(2
0.
47

)

Fo
r
th
e
th
re
e
in
cr
em

en
ta
la
lg
or
ith

m
s,
th
e
ra
tio

s
be
tw
ee
n
th
e
re
su
lt
of

R
-H

O
SV

D
an
d
th
ei
rs
ar
e
sh
ow

n
in

pa
re
nt
he
si
s

123

BIT Numerical Mathematics (2024) 64:4 Page 25 of 28 4

Fig. 5 Running time (in s) for processing the incremental tensor of size 100 × 100 × t

HOSVD increase much more slowly than the other algorithms. For the fourth-order
tensors, whose slices number is relatively big, compared to R-HOSVD, iT-HOSVD
and iST-HOSVD can obtain a speedup of more than 10×, and much faster than i-
HOSVD; while for the third-order tensors, whose slices number is relatively small,
iT-HOSVD and iST-HOSVD do not have so great advantage.

5.2 Time cost evaluation

In the preceding subsection, we only test tensors with L < J ; see Table 2. To evaluate
the time costs shown in Table 1, we generate a random third-order tensor with a large
number of slices:A ∈ R

100×100×(3×104). The truncation ranks are set to be (m,m, n),
wherem = 10, 30 and n = 5, 15, 45.We choose the first 100 slices as the initialization
data. After initialization and setting, we add one slice to a 100 × 100 × (t − 1)
tensor, where t = 101, 102, . . . , 3 × 104, and compute the truncated HOSVD of the
incremental tensor with the same methods as those of Sect. 5.1. We record the running
time of each method for t = 101, 102, . . . , 3 × 104, and show the results in Fig. 5.

As shown in Fig. 5, the running time of iT-HOSVD and iST-HOSVD increases
very slowly, and the running time of the other four algorithms increases much faster.
Although the incremental algorithm i-HOSVD shows much slower growth of time
than the three batch-mode algorithms, it is still not feasible for online computation.

123

 4 Page 26 of 28 BIT Numerical Mathematics (2024) 64:4

6 Conclusions and future work

By combining the SVD updating with T-HOSVD and ST-HOSVD, we propose two
incremental algorithms for truncating theHOSVD: iT-HOSVD, and iST-HOSVD. The
complexities and the approximation errors are discussed. As shown in the experiments,
the proposed algorithms demonstrate comparable effectiveness with the batch-mode
algorithms, while significantly outperform them in terms of efficiency.

The proposed algorithms can be extended to the general case where several slices
are appended simultaneously each time. In the future, we will consider the updating
and/or downdating algorithm [12] for finding the truncated HOSVD of a tensor by
adding and/or deleting a slice from the original tensor.

Declarations

Conflict of interest The authors declared that they have no conflicts of interest to this work.

References

1. Bader, B.W., Kolda, T.G., et al.: MATLAB Tensor Toolbox Version 3.0-dev (2017). https://www.
tensortoolbox.org

2. Brand,M.: Fast low-rankmodifications of the thin singular value decomposition. Linear Algebra Appl.
415(1), 20–30 (2006)

3. Bunch, J.R., Nielsen, C.P.: Updating the singular value decomposition. Numer. Math. 31(2), 111–129
(1978)

4. Carroll, J.D., Chang, J.J.: Analysis of individual differences in multidimensional scaling via an N-way
generalization of “Eckart-Young” decomposition. Psychometrika 35(3), 283–319 (1970)

5. Cheng, Y., Roemer, F., Khatib, O., Haardt, M.: Tensor subspace Tracking via Kronecker structured
projections (TeTraKron) for time-varying multidimensional harmonic retrieval. EURASIP J. Adv.
Signal Process. 2014(1), 1–14 (2014)

6. Cocosco, C.A., Kollokian, V., Kwan, R.K.S., Pike, G.B., Evans, A.C.: Brainweb: online interface to a
3D MRI simulated brain database. In: NeuroImage. Citeseer (1997)

7. De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J.
Matrix Anal. Appl. 21(4), 1253–1278 (2000)

8. De Lathauwer, L., DeMoor, B., Vandewalle, J.: On the best rank-1 and rank-(R1, R2, . . . , RN) approx-
imation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21(4), 1324–1342 (2000)

9. De Silva, V., Lim, L.H.: Tensor rank and the ill-posedness of the best low-rank approximation problem.
SIAM J. Matrix Anal. Appl. 30(3), 1084–1127 (2008)

10. Grasedyck, L.: Hierarchical singular value decomposition of tensors. SIAM J. Matrix Anal. Appl.
31(4), 2029–2054 (2010)

11. Gu, M., Eisenstat, S.C.: A stable and fast algorithm for updating the singular value decomposition.
Research Report YALEU/DCS/RR-966, Dept. of Computer Science, Yale University (1993)

12. Gu, M., Eisenstat, S.C.: Downdating the singular value decomposition. SIAM J. Matrix Anal. Appl.
16(3), 793–810 (1995)

13. Hackbusch, W., Kühn, S.: A new scheme for the tensor representation. J. Fourier Anal. Appl. 15(5),
706–722 (2009)

14. Harshman, R.A.: Foundations of the PARAFAC procedure: Models and conditions for an "explana-
tory" multimodal factor analysis. UCLA Working Papers in Phonetics, vol. 16, pp. 1–84. University
Microfilms, Ann Arbor, Michigan, No. 10,085 (1970).

15. Hu, W., Li, X., Zhang, X., Shi, X., Maybank, S., Zhang, Z.: Incremental tensor subspace learning and
its applications to foreground segmentation and tracking. Int. J. Comput. Vis. 91(3), 303–327 (2011)

123

https://www.tensortoolbox.org
https://www.tensortoolbox.org

BIT Numerical Mathematics (2024) 64:4 Page 27 of 28 4

16. Kilmer, M.E., Braman, K., Hao, N., Hoover, R.C.: Third-order tensors as operators on matrices: a
theoretical and computational framework with applications in imaging. SIAM J. Matrix Anal. Appl.
34(1), 148–172 (2013)

17. Kilmer, M.E., Martin, C.D.: Factorization strategies for third-order tensors. Linear Algebra Appl.
435(3), 641–658 (2011)

18. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAMRev. 51(3), 455–500 (2009)
19. Letourneau, P.D., Baskaran, M., Henretty, T., Ezick, J., Lethin, R.: Computationally efficient CP tensor

decomposition update framework for emerging component discovery in streaming data. In: 2018 IEEE
High Performance Extreme Computing Conference (HPEC), pp. 1–8. IEEE (2018)

20. Ma, X., Schonfeld, D., Khokhar, A.: Dynamic updating and downdating matrix SVD and tensor
HOSVD for adaptive indexing and retrieval of motion trajectories. In: 2009 IEEE International Con-
ference on Acoustics, Speech and Signal Processing, pp. 1129–1132. IEEE (2009)

21. Minster, R., Saibaba, A.K., Kilmer, M.E.: Randomized algorithms for low-rank tensor decompositions
in the Tucker format. SIAM J. Math. Data Sci. 2(1), 189–215 (2020)

22. Moonen, M., Van Dooren, P., Vandewalle, J.: A singular value decomposition updating algorithm for
subspace tracking. SIAM J. Matrix Anal. Appl. 13(4), 1015–1038 (1992)

23. Nion, D., Sidiropoulos, N.D.: Adaptive algorithms to track the PARAFAC decomposition of a third-
order tensor. IEEE Trans. Signal Process. 57(6), 2299–2310 (2009)

24. Oseledets, I.V.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011)
25. Pasricha, R., Gujral, E., Papalexakis, E.E.: Identifying and alleviating concept drift in streaming tensor

decomposition. In: Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, pp. 327–343. Springer (2018)

26. Rodriguez, P.,Wohlberg, B.: Incremental principal component pursuit for video backgroundmodeling.
J. Math. Imaging Vis. 55(1), 1–18 (2016)

27. Ross, D.A., Lim, J., Lin, R.S., Yang, M.H.: Incremental learning for robust visual tracking. Int. J.
Comput. Vis. 77(1–3), 125–141 (2008)

28. Seeling, P., Reisslein, M.: Video transport evaluation with H. 264 video traces. IEEE Commun. Surv.
Tutor. 14(4), 1142–1165 (2011)

29. Smith, S., Huang, K., Sidiropoulos, N.D., Karypis, G.: Streaming tensor factorization for infinite data
sources. In: Proceedings of the 2018 SIAM International Conference on Data Mining, pp. 81–89.
SIAM (2018)

30. Sobral, A., Baker, C.G., Bouwmans, T., Zahzah, E.: Incremental and multi-feature tensor subspace
learning applied for background modeling and subtraction. In: International Conference on Image
Analysis and Recognition, pp. 94–103 (2014)

31. Sun, J., Tao, D., Faloutsos, C.: Beyond streams and graphs: dynamic tensor analysis. In: Proceedings
of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
374–383. ACM (2006)

32. Sun, J., Tao, D., Papadimitriou, S., Yu, P.S., Faloutsos, C.: Incremental tensor analysis: theory and
applications. ACM Trans. Knowl. Discov. Data (TKDD) 2(3), 11 (2008)

33. Sun, Y., Guo, Y., Luo, C., Tropp, J., Udell, M.: Low-rank Tucker approximation of a tensor from
streaming data. SIAM J. Math. Data Sci. 2(4), 1123–1150 (2020)

34. Tucker, L.: Some mathematical notes on three-mode factor analysis. Psychometrika 31(3), 279–311
(1966)

35. Vandecappelle, M., De Lathauwer, L.: Low multilinear rank updating. In: 2019 53rd Asilomar Con-
ference on Signals, Systems, and Computers, pp. 437–441. IEEE (2019)

36. Vandecappelle, M., Vervliet, N., De Lathauwer, L.: Nonlinear least squares updating of the canonical
polyadic decomposition. In: 2017 25th European Signal Processing Conference (EUSIPCO), pp. 663–
667. IEEE (2017)

37. Vannieuwenhoven, N., Vandebril, R., Meerbergen, K.: A new truncation strategy for the higher-order
singular value decomposition. SIAM J. Sci. Comput. 34(2), A1027–A1052 (2012)

38. Zeng, C., Ng, M.K.: Incremental CP tensor decomposition by alternating minimization method. SIAM
J. Matrix Anal. Appl. 42(2), 832–858 (2021)

39. Zhou, S., Vinh, N.X., Bailey, J., Jia, Y., Davidson, I.: Accelerating online CP decompositions for higher
order tensors. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1375–1384. ACM (2016)

123

 4 Page 28 of 28 BIT Numerical Mathematics (2024) 64:4

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

	Incremental algorithms for truncated higher-order singular value decompositions
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notation and definitions
	2.2 Incremental SVD
	2.3 HOSVD, T-HOSVD and ST-HOSVD
	2.4 Tensor norms with respect to multilinear multiplication

	3 Incremental algorithms
	3.1 iT-HOSVD
	3.2 iST-HOSVD
	3.3 Cost comparison

	4 Approximation error analysis
	5 Numerical experiments
	5.1 Results on real-world datasets
	5.2 Time cost evaluation

	6 Conclusions and future work
	References

