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Abstract— Denoising of hyperspectral image (HSI) is challeng-
ing, especially when dealing with large-scale data. Model-based
methods show promise in HSI denoising due to their good
generalization, but they suffer from computational complexity
due to complex priors [like nonlocal self-similarity (NSS)] and
iterations, resulting in low efficiency for large-scale HSI process-
ing. To address these challenges, we propose a fast large-scale
HSI denoising (FallHyDe) method based on noniterative low-rank
(LR) subspace representation to enjoy high denoising efficiency,
effectiveness, and flexibility simultaneously. By leveraging the
global spectral property of HSI, FallHyDe efficiently estimates
spectral subspace and spatial representation coefficients (SRCs)
from the observed noisy HSI, reducing computation complexity
caused by the high spectral dimension during processing. In addi-
tion, we innovatively explore the presence of high signal-to-noise
ratio bands (HSNRBs) in real HSI, enabling fast SRC estimation
through a least squares problem without relying on complex
priors and iterations. FallHyDe requires neither iteration nor
parameter tuning, enabling our method to process large-scale
HSI denoising quickly and flexibly. Experimental results on both
simulated and real HSI datasets demonstrate that our proposed
method not only achieves competitive results in quality but also
speeds up the restoration by more than ten times than the
representative fast HSI denoising methods. The code is available
at https://chenyong1993.github.io/yongchen.github.io/.

Index  Terms—TFast denoising, hyperspectral image
(HSI) denoising, large-scale HSI, low-rank (LR) subspace
representation.
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I. INTRODUCTION

YPERSPECTRAL image (HSI) is a 3-D data cube with

two spatial dimensions and one spectral dimension. It is
collected by a high spectral resolution sensor and has hundreds
or thousands of spectral channels. HSI provides abundant
spatial and spectral information, making it valuable for var-
ious applications, such as recognition [1], unmixing [2], and
classification [3]. However, the physical mechanism, sensor
sensitivity, and imaging conditions often introduce Gaussian
noise, degrading the HSI’s quality and limiting its usability
in downstream applications [4]. Therefore, HSI denoising is a
crucial preprocessing step to improve image quality and enable
more effective use in various applications [5].

To date, numerous methods have been proposed for HSI
denoising, which can be roughly divided into two cat-
egories: deep learning-based approaches and model-based
approaches [6]. Deep learning methods, including supervised
and unsupervised learning, leverage the powerful learning
ability of deep neural networks (DNNs) for HSI denois-
ing. Supervised learning methods learn a nonlinear mapping
between noisy and clean HSIs using abundant training data [7],
[81, [9], [10], [11], [12], [13], [14], [15], [16], [17], [18],
[19]. Classical supervised approaches use deep convolutional
neural networks (DCNNs) [20]. For example, Chang et al. [7]
introduced a DCNN with 2-D convolutions and residual
learning to learn the spatial and spectral features of HSI.
Yuan et al. [8] developed a combined 2-D spatial and 3-D
spatial-spectral CNN to exploit the high correlation of adja-
cent bands. Following that, a modified 3-D U-net to handle
3-D filtering by decomposing it into 2-D spatial and 1-D spec-
tral filtering [10], [21]. To address long-range dependencies,
attention mechanisms and transformer networks have been
applied to HSI denoising [13], [14], [15], [22]. Chen et al. [13]
incorporated multihead global spectral attention and locally
enhanced cross-spatial attention into a 3-D transformer archi-
tecture. Although these methods provide effective denoising,
they lack interpretability. Model-guided network approaches
aim to enhance interpretability. Bodrito et al. [16] designed
a spatial-spectral network by unraveling an iterative sparse
coding model. Xiong et al. [17] introduced a model-guided
interpretable network by unfolding a subspace-based sparse
model, capturing spectral-spatial correlation and spatial spar-
sity priors.

Supervised learning methods require a large amount of
paired training data, which is often limited and leads to
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poor generalization for different types of noise. On the con-
trary, unsupervised learning methods offer the advantage of
not needing training data while still leveraging the power
of DNNs [23], [24], [25], [26], [27], [28]. Sidorov and
Hardeberg [23] extended the unsupervised deep image prior
(DIP) to HSI denoising, and Miao et al. [24] proposed an
unsupervised denoising method based on low-rank (LR) matrix
decomposition of HSI within the DIP framework. These
approaches improve generalization but still suffer from limited
interpretability. Moreover, unsupervised methods require many
iterations for optimizing network parameters, leading to slow
processing efficiency.

Model-based methods treat HSI denoising as an ill-posed
problem and utilize prior information to regularize the solution
space. Common priors include local smoothness (LS), LR, and
nonlocal self-similarity (NSS). The LS prior exploits the high
consistency of local areas and adjacent bands in HSI, resulting
in similar pixel values. Total variation (TV) is a popular regu-
larization method that captures prior LS in spatial and spectral
dimensions [29], [30]. However, it ignores the strong spectral
correlation in HSI, which is based on the low-dimensional
subspace property of spectral signatures [31], [32], [33],
[34]. To address this, model-based methods incorporate LR
prior using techniques such as LR matrix approximation
(LRMA) [35], [36], LR matrix factorization (LRMF) [37],
[38], [39], and LR tensor factorization (LRTF) [40], [41],
[42], [43]. Zhang et al. [35] first proposed an LR matrix
recovery (LRMR) method, which reshapes the original 3-D
HSI into a 2-D matrix and employs the matrix nuclear norm
to capture the spectral correlation of HSI. Chen et al. [37]
integrated the mixture of Gaussian noise assumption strategy
into the LRMF. To capture the spatial-spectra correlation,
Zheng et al. [42] introduced three-directional LRTF to handle
different correlations along different modes of HSI. Using LR
prior alone may ignore local features, leading to suboptimal
denoising results. Combining LS and LR priors effec-
tively preserves global spatial-spectral correlations and local
spatial-spectral smoothness, resulting in improved denoising
performance.

Combining LS and LR priors effectively preserves global
spatial-spectral correlations and local spatial-spectral smooth-
ness, resulting in improved denoising performance. He et al.
[44] first incorporated band-by-band TV into the LRMA to
improve the denoising results. Subsequently, various meth-
ods have been introduced by integrating TV regularization
into LR prior, such as LRTDTV [45], LLRSSTV [46],
SLRTFLO-TV [47], RCTV [48], and WNLRATV [49].
To address the staircase effect caused by TV regularization,
enhanced TV methods were proposed to characterize the LS
prior and embed it into the LR prior [50]. In addition, the
NSS prior captures similarities among full-band patches in
nonlocal regions, utilizing complementary information effec-
tively [51], [52]. The LR+NSS framework, which applies
the LR penalty to each aggregated nonlocal patch group,
is widely used for HSI denoising and achieves state-of-the-art
results [53]. Peng et al. [54] introduced the nonlocal tensor
dictionary learning (TDL) method that captures NSS and
spectral correlation. Similarly, NSS prior embedded in LRTF
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has been proposed for HSI denoising, with representative
methods KBR [55], LLRT [56], and WLRTR [57]. Despite
their promising results, these methods may still suffer
from time-consuming computations because of the large
spatial-spectral dimensions of the image.

A. Bottleneck of Large-Scale HSI Denoising

In summary, numerous HSI denoising methods have been
proposed as mentioned above, but most face a bottleneck:
difficulty in handling the computational burden of large-scale
HSI denoising while ensuring efficiency, effectiveness, and
flexibility. Therefore, the challenge of large-scale HSI denois-
ing is how to meet all three criteria.

Efficiency: Supervised learning methods provide instanta-
neous results through end-to-end HSI denoising after training.
However, achieving the desired performance of deep net-
works requires sufficient training data, leading to long training
times. Moreover, supervised learning is heavily dependent on
high-performance GPUs and their memory. On the other hand,
unsupervised learning methods save training costs, but require
thousands of iterations for parameter optimization, resulting
in time-consuming processes. For example, we evaluated the
QRNN3D! [9] and DS2DP? [24] methods on the Washington
dc Mall data in Table 1.> We can observe that QRNN3D per-
forms efficiently on small-scale data, but becomes impractical
for large-scale data. Similarly, DS2DP’s efficiency decreases
gradually as data dimensions increase. Model-based methods
employ LS, LR, and NSS priors for HSI denoising, utilizing
iterative optimization algorithms. However, the efficiency of
these priors at each iteration is highly dependent on the
dimensions of the HSI. The computational complexity of these
priors increases with dimensions and iterations. Thus, model-
based methods face low denoising efficiency, especially for
large-scale HSI.

Effectiveness: Deep learning-based approaches can lead to
satisfactory denoising results, given sufficient training data,
time, suitable test data, and high-performance GPU. However,
meeting all these requirements simultaneously in real scenes
is challenging, leading to limited denoising performance.
Model-based approaches explore the priors of the original
HSI, but the effectiveness of different prior combinations
varies significantly. Adding more priors may boost denoising
accuracy but also increase model complexity and reduce
efficiency.

Flexibility: Deep learning-based approaches are often spe-
cialized for specific data and noise conditions. They may
struggle to effectively denoise test data and noise scenarios that
were not present in the training data. Model-based methods
combine multiple priors under a unified framework, resulting
in many regularization parameters that need adjustment. The
optimal parameter selection for different datasets and noise
intensities is inconsistent, limiting flexibility in the denoising
process across various scenes.

Uhttps://github.com/Vandermode/QRNN3D

2The code is available from the authors.

3The experiments are run on a platform with Inter i9-12900K and NVIDIA
GeForce RTX 3090.
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TABLE I

TIME COST (S) OF A STATE-OF-THE-ART SUPERVISED LEARNING METHOD QRNN3D AND UNSUPERVISED LEARNING METHOD DS2DP
ON THE WDC WITH DIFFERENT DIMENSIONS. N/A: OUT OF MEMORY

Dimension (x x 307 x 191) 100 300 500 700 900 1100 1280
QRNN3D 1.80 2.52 3.70 5.33 N/A N/A N/A
DS2DP 499.82  1363.81 2115.77 293434 3796.06 4804.88  5094.02

B. Related Works

Recently, integrating LRMF and NSS prior has shown
remarkable capabilities in HSI denoising. This type of method
utilizes LRMF to capture global spectral correlation and
reduce the spectral dimension of HSI, followed by applying
NSS prior to denoise the reduced-dimensionality spatial repre-
sentation coefficients (SRCs). The LRMF significantly reduces
the computational burden caused by high spectral dimensions,
while NSS ensures denoising accuracy. Zhuang and Bioucas-
Dias [58] used LRMF to represent HSI as the product of
spectral basis and SRCs, where the spectral basis is learned
from the noisy HSI, and SRCs are denoised using BM3D [59].
To explore the nonlocal LR prior to SRCs, Zhuang et al. [60]
further employed LRTF to regularize nonlocal similar 3-D
patches. He et al. [61] developed a framework called “non-
local meets global” for HSI denoising, combining spectral
LR and spatial NSS prior. Despite their balanced efficiency,
effectiveness, and flexibility, these methods are mainly suitable
for small-scale HSI processing. The computational complexity
of NSS increases exponentially with the image spatial dimen-
sion, making them unsuitable for large-scale HSI processing.
In addition, the impressive results rely on the precision of the
similarity block matching step.

C. Contributions

The goal of this work is to develop an efficient method for
fast large-scale HSI denoising (FallHyDe) that meets these
three criteria of high efficiency, effectiveness, and flexibility.
The method is inspired by the fact that HSI can be well approx-
imated by low-dimensional subspace representation, which is
captured by LRMEF, effectively exploring the strong spectral
correlation and reducing computational costs. Specifically,
the spectral basis is learned from the observed noisy HSI
using singular value decomposition (SVD). Previous methods
mainly relied on the observed noisy HSI for the fidelity
term, but they overlooked the presence of high signal-to-
noise ratio bands (HSNRBs) in the observed HSI (see Fig. 1)
[62], leading to underutilization of data. This observation
prompted us to investigate whether we could use the HSNRBs
to guide fast and accurate restoration of SRCs. To achieve
instantaneous restoration of SRCs, we propose to discard prior
regularization that involves iterative solutions and has high
computational complexity due to the high spatial dimension.
Instead, we restore the SRCs directly from the HSNRBs. The
denoised HSI is obtained through the composition of spectral
basis estimation and SRCs without the need for iteration. The
framework of the proposed FallHyDe is illustrated in Fig. 2.
The main contributions of the proposed method compared to
previous approaches are as follows.

Band 52 Band 92 Band 132

Fig. 1. Illustration of some HSNRBs in real Terrain HSI dataset.

1) Efficiency: Our proposed method efficiently addresses
the computational complexity challenges posed by the
high spatial and spectral dimensions of HSI. By fully
exploiting the strong spectral correlation through LR
subspace representation, we learn the spectral basis
from the observed noisy HSI and quickly restore the
SRCs from the HSNRBs using a noniterative least
squares approach. As a result, HSI denoising can
be implemented within seconds. Experimental results
demonstrate that the restoration process takes less than
1 s for small-scale datasets (e.g., 200 x 200 x 80)
and less than 10 s for large-scale datasets (e.g., 1280 x
307 x 191).

Effectiveness: Experimental results on simulated and
real datasets confirm the effectiveness of the proposed
method compared to other state-of-the-art HSI denoising
methods.

Flexibility: The proposed method exhibits remarkable
flexibility, as it does not require training data and does
not rely on fine-tuning of regularization parameters.
In addition, we provide theoretical proof of the method’s
feasibility. Consequently, it is highly flexible and can be
effectively applied to large-scale HSI denoising.

2)

3)

The remainder of this article is organized as follows.
Section II presents the problem of HSI denoising. Section III
introduces the proposed FallHyDe method step by step.
Section IV shows the experimental results and a discussion
of the model. Section V concludes this article.

Notation: In this article, we represent scalars as lowercase
letters or capital letters (e.g., b or B), vectors as lowercase
bold letters (e.g., X), matrices as capitalized boldface letters
(e.g., X), and tensors as capitalized calligraphic letters (e.g.,
X). The mode-n unfolding of N-order tensor X' € R/ >*%xIy
is represented by X, € RIwNihiher-Iv " and the inverse
operator of mode-n unfolding is defined as Fold, (X)) = X.
The Frobenius norm of X e RI*L+*Iv i calculated by
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Noise estimation and
noise transformation

1) Noise level of each band
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2) Spectral covariance matrlx
C = diag(0?,03, -
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Spectral subspace

Inverse noise

transformation

Fig. 2. Framework of the proposed FallHyDe method.

12X e = i Do+ 2oiy X ieiy)?. The mode-n product
of a tensor X € RI*ExxIv and a matrix A € R is

defined as X x, A, where (X x, A) e RIrxbx=xJh and
(X Xn A)i,-,... Z

sin—ts Jnsing1sensin in

II. FORMULATION AND LOW-RANK SUBSPACE
REPRESENTATION OF HSI

In this section, we first present the HSI degradation model.
Then, we introduce the LR subspace representation framework
for HSI denoising.

A. Problem Formulation

Let Y € RM*NxB represent observed noisy HSI with M x
N pixels and B bands. The observed HSI can be described
using an additive degradation model

V=X+N (1)

where X € RY*¥xB and A" € RM*N*B represents the under-
lying clean HSI and additive Gaussian noise, respectively. The
objective of HSI denoising is to restore the underlying clean
HSI X from the observed HSI ).

B. Low-Rank Subspace Representation of HSI

The restoration of large-scale HSI faces challenges due
to their high spatial and spectral dimensions, leading to
extensive computational complexity to directly restore clean
HSI X. To address this, a linear spectral mixing model is
used, representing each spectral signature (that is, the tube
of X) as a linear combination of several end-member basis,
capturing the high spectral correlation in HSI [31]. Thus,

=

learmng via SVD

Subspace
extraction

Fast estimation of SRCs via
least squares problem

the LR subspace representation of spectral vectors can be
employed to approximate the HST X

X=Zx3E )

where E € REX" (r « B) represents the spectral subspace
with an orthogonal constraint and Z € RM*N*" represents
the SRCs.

The LR subspace representation of HSI has several advan-
tages: 1) it effectively preserves the strong spectral correlation
in HSI, which is essential for subsequent HSI applications;
2) the computation complexity is significantly reduced since
the representation works in a lower dimensional space com-
pared to the original space of &, resulting in faster denoising
processing; and 3) the restoration results tend to be more
accurate than when performed directly in the original HSI.
This is because the number of unknown variables to be solved
is significantly reduced [63]. As a result, the restoration of
the clean HSI X can be achieved by estimating the spectral
subspace E and SRCs Z. The estimation of these components
can be formulated as follows:

rgizrgélly — Zx3E|% 4+ AR(2), st.ETE=1 (3)
where R(Z) represents the regularization term incorporating
prior information about the SRCs, and A is a parameter that
controls the tradeoff between data fidelity and regularization.

Numerous HSI denoising methods, such as FastHyDe [58],
GLF [60], NGmeet [61], and RCTV [48], are based on LR
subspace representation. However, these methods still lack
efficiency when applied to large-scale HSI. They typically
utilize LS and NSS priors to regularize SRCs Z. The com-
putational complexity of these priors depends mainly on the
spatial dimension of Z. As the spatial dimension increases, the
denoising efficiency, particularly for NSS prior, is hindered.
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In addition, the iterative solver of these algorithms further
reduces efficiency. Consequently, existing methods are not
suitable for large-scale HSI denoising.

III. PROPOSED FAST LARGE-SCALE HSI
DENOISING METHOD

Large-scale HSI denoising faces the challenge of efficiently
estimating two components from the observed HSI using LR
subspace representation. The denoising efficiency bottleneck
arises from the algorithm’s iteration due to prior regular-
ization and the excessive spatial dimension. In this section,
we propose an FallHyDe method designed to overcome these
obstacles. FallHyDe consists of five steps: 1) noise trans-
formation; 2) spectral subspace learning; 3) extraction of
HSNRBs; 4) fast estimation of SRCs; and 5) inverse noise
transformation.

A. Noise Transformation

Since the ground-truth clean HSI & is unknown, it is a
challenge to directly learn the spectral subspace E from it.
However, when the observed HSI ) is degraded by additive
independent and identically distributed (i.i.d.) Gaussian noise,
the spectral subspace of ) is consistent with that of the clean
HSI X. Therefore, we can learn the spectral subspace E from
the observed HSI ). In real HSI scenes, the Gaussian noise
intensity in each band is typically inconsistent, resulting in
non-i.i.d. noise. To transform the non-i.i.d. noise scenario
into an i.i.d. noise case, Zhuang and Bioucas-Dias [58] and
Zhuang et al. [60] introduced a Gaussian noise-whitening
transformation strategy.

The spectral covariance matrix C of the Gaussian noise
is assumed to be positive definite, and the noise-whitening
transformation is given by

V=Y x;3/C! 4

where Y, (C™')"/2, and C~' are the noise-whitened image,
the square root of C~!, and the inverse of C, respectively.
The spectral covariance matrix C is defined as follows:

C=E(nn/) (5)

where n; is the vectorization of the ith frontal slice of \.

By combining the degradation model in (1) and the noise-
whitening in (4), we can rewrite the degradation model for the
noise-whitened image ) as

V=X x3VC T+ N x3/C1=X+N (6)

where X = X x3(C™")"/2 and N = N x5 (C~")/2. The noise
degradation in the whitened image is standard i.i.d. Gaussian
noise. To achieve the denoisAed HSI X, we first restore X from
the noise-whitened image )/, and then the final clean HSI X
is obtained using

X =X x3+/C. (7

After noise-whitening, the spectral vectors of X still lie
in a low-dimensional subspace. Therefore, the LR subspace
representation in (2) can still be applied to X" as

X=Z2x;E (8)
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where E € RB*" and Z € RM*N>" are the orthogonal spectral
subspace and SRCs of X, respectively.

B. Spectral Subspace Learning

The spectral subspace of both X and )> is consistent and
can be represented by the orthogonal subspace spanned by the
columns of E. Therefore, we can learn the spectral subspace E
from the noise-whitened image Y using the SVD as follows:

Y3 =UsV! )

where U and V are column-orthogonal matrices, and diagonal
matrix ¥ holds the singular values ordered by nonincreasing
magnitude. When the rank of 2? is r in the spectral dimension,
the learned spectral subspace E is given by

E=U(C,1:7r). (10)

C. Extraction of HSNRBs

The goal of the denoising process is to estimate the spectral
subspace E and SRCs Z. With the spectral subspace E known,
the denoising task transforms into estimating the SRCs Z
from the noisy HSI ). Assuming that the observed HSI is of
high quality ()> ~ X ), the SRCs Z can be instantly obtained
by solving a least square problem. However, this assumption
is not realistic. Despite the varying degrees of noise in the
observed HSI, a noteworthy observation is the presence of
numerous HSNRBs in the data (see Fig. 1), and it expects to
retain these HSNRBs in the denoised result. By extracting
these bands from the noisy HSI, we can obtain valuable
information about part of the denoising result. To fully utilize
these HSNRBs, we can employ these bands to guide the fast
and accurate restoration of SRCs. In the following, we explain
how to extract these HSNRBs and use them effectively.

The HSNRBs refer to bands in the observed HSI with
small or close to zero noise intensity. To extract these bands,
we estimate the noise intensity of each band in ). The
HSNRBs of the observed HSI remain consistent before and
after noise-whitening, meaning we only need to determine
the noise intensity of each band in ). Bioucas-Dias and
Nascimento [31] proposed an efficient noise estimation proce-
dure using multiple regression theory. This method leverages
the high spectral correlation and assumes that each band
is approximately represented as a linear combination of the
remaining B — 1 bands

Ri(Y() = Ra (Y()z +m; (11)

where R;(Y(3)) extracts the ith column from Y{;, Ry (Y(3)
represents the matrix in Y(T3) excluding the ith column, z; €
RE-1 is the regression vector, and n; € RM" is the modeling
error.

For each i € 1,2,..., B, the regression vector z; can be

yielded by solving a least squares problem as follows:
z; = arg n;m IR; (Y(T3)) — Ry, (Y(T3))z,- ||%. (12)

To solve this least squares problem, we take the derivative
with respect to the variable z; and set the derivative to zero.
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Then, optimizing (12) can be treated as solving the following
linear system:

(R, (Y5) Ra, (Y5)) )2 = (Ro, (Y5)) " Ri (YE)-

Since R (Y(;)) generally has the full-row rank due to the
presence of noise, the above problem permits the following
closed-form solution:

z; = ((Rai (Y(Ts)» R (Y (%))) (Ro, (Y (3))) Ri(Y().

With the estimate z;, the associated noise n; in the ith band
can be directly estimated as follows:

f; = R; (Y (3>) Rf’( <3>>zi~

We then estimate the standard deviation of Gaussian noise in
the ith band as follows:

13)

o; = std(f;) (14)

where std(-) denotes the standard deviation of all elements of
the vector. In addition, by combining (5) and (13), we can
obtain the spectral covariance matrix C. Finally, we extract
the HSNRBs whose noise standard deviation is less than a
given threshold value, and the corresponding band numbers
are denoted as h = {iy, iy, cos ix}. Similarly, the AHSNRBs
in the noise-whitened image ) are represented as );,, which
includes all bands in the set /& extracted from )>

D. Fast Estimation of SRCs

In this section, we present how to fast restore the SRCs
from the HSNRBs Y, without introducing complex prior
regularizations. By combining (6) and (8), the degradation
model can be formulated as follows:

j) =z X3 E + N .
Due to the presence of noise perturbation, we cannot directly
estimate the SRCs Z from noisy HSI Yin (15). To address this

challenge and distinguish the HSNRBs, we have reformulated
the degradation model as follows:

jzah — Z: X3 ]:;9/1 + j([?’/,
Y Z x3Ey Ny,

where )Afah represents the remaining band in Y excluding the
HSNRBs, and hU9, = 1,2, ..., B with N3, = @. Using the

MATLAB command, we can obtain yah = y( 55 0n), yh =
VCh) Ny, = NG, 2 dp), and Ny = NG, , h). Similarly,
we d1V1de the spectral subspace E into two parts: Eah = E(a,,, :
) and Eh = E(h ;). As the noise standard deviation of the
HSNRBs is small or close to zero, we approximate the noise
Ny, as O.

To eliminate the noise disturbance, we restore the SRCs Z
from the HSNRBs. The restored SRCs Z satisfy the following
equation:

(15)

(16)

V=2 x3 B, + Ny (17)

The SRCs Z can be restored by solving the following least
squares problem:

Z =argmin || Yy — 2 x3 Bl (18)
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Algorithm 1 FallHyDe: Fast Large-Scale HSI Denoising
Method
Require: Noisy HSI Y and subspace dimension r.
1: Noise and spectral covariance matrix estimations: o; and
C.
2: Noise
and \)A)h.
3: Spectral subspace E learning via Eq. (10).
4: Fast restoration of SRCs Z via Eq. (19).
5. Inverse noise transformation via Eq. (20).
Ensure: Denoised HSI X.

A~

and HSNRBs Yy

transformation extraction:

which is equivalent to the following problem:

. N PO
Z3) = arg min 1Yr,3) — EnZyll -
3)

We take the derivative with respect to the variable Z(g) and set
the derivative to zero. Then, optimizing (18) can be treated as
solving the following linear system:

(Ei{]::h)zﬁ) = E/f?hﬁ)'
In particular, when Eh is full-column rank, the above problem
can be efficiently solved using simple matrix multiplication

2 = Folds ((I?:,{I?:h)“ (E;i{h,(_g))). (19)

E. Inverse Noise Transformation

With the transformed spectral subspace E and SRCs Z
known, the final denoised HSI X is restored as follows:

(ZX3 )X3\/_

To summarize the above steps, the proposed FallHyDe
is presented in Algorithm 1. To show the efficiency of the
proposed FallHyDe, we give the computational complexity
of Algorithm 1. The computational complexity of noise esti-
mation and spectral covariance matrix estimation in line 1 is
O(MN B?) and O(M N B), respectively. The noise transforma-
tion in line 2 and its inverse transformation in line 5 involve
tensor-matrix multiplication, each with a computational com-
plexity of O(MNB?). The spectral subspace learning in
line 4 and the restoration of the SRCs in line 5 require an
SVD operator and a small-scale matrix multiplication, with
computational complexities of O(MN B?) and O(MN B,r),
respectively, where B;, (B;<B) is the number of bands in the
HSNRBs. In summary, the computational complexity of our
FallHyDe is approximately O(M N B*). Notably, our method
does not rely on iterative solutions, making it efficient for pro-
cessing large-scale HSIs without requiring high-performance
computing support. In addition, the proposed method does
not involve the selection of regularization parameters, and
the subspace dimension r can be estimated by HySime [31],
providing flexibility in HSI denoising tasks.

X = (20)

F. Theoretical Analysis

The feasibility of the proposed method is guaranteed by the
following theorem.
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Theorem 1: Suppose that the HSNRBs in the observed HSI
need to be approximatively retained in the denoising results,
e, YV, ~ A, jih ~ 2?;,, and J\A/;, ~ O, and the band number of
HSNRBs is greater than the subspace dimension, i.e., B;, > r.
Then, the solution of Z in (19) is also the desired solution
of (8).

Proof: Matrix E is a column orthogonal matrix, thus the
desired solution Z of (8) is unique and can be expressed as

Z=Xx;E". Q1

Since (17) is a subequation extracted from (8), the desired

solution Z in (21) also satisfies (17). Therefore, we can

conclude that (17) has a solution with respect to the variable Z.

From the linear mixing model, r is the numbgr of endmem-
ber signatures, and it is equal to the rank of X(3). Since the
equation X = Z x3 E holds, we can deduce that E and Z,
are full-column rank and full-row rank, respectively. As SA(;,,@)
is approximatively retained in the whole HSI X(3), the number
of endmember and rank of ?/1,(3) are approximately equal to
r. According to the rank relation of the matrix multiplication
operation: rank(Y;, )) < min(rank(E,), rank(Z3)), we have
that the rank of Eh is r.

In summary, equation )A)h =z X3 I:Zh in (17) with respect
to the variable Z satisfies two conditions: 1) the equation has
a solution and 2) coefficient matrix Eh is full-column rank.
Therefore, we can conclude that (17) has a unique solution.
Since both (19) and (21) satisfy (17), they can be approximated
as the same solution. Thus, (19) is also the solution of (8). This
completes the proof. ]

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we conduct simulated and real experi-
ments to validate the superiority of the proposed method
in HSI denoising. For comparison, we select ten state-of-
the-art HSI denoising methods: BM3D [59], LRMR [35],
NMoG [37], KBR [55], LLRT [56], WLRTR [57], NGmeet*
[61], RCTV [48], FastHyDe [58], and FastHyMix [64].
Among these methods, BM3D, NGmeet, RCTV, FastHyDe,
and FastHyMix are considered representative fast HSI denois-
ing approaches, with FastHyMix being based on deep learning.
To ensure a fair comparison, we downloaded the running codes
of the comparison methods from the authors’ homepages and
set their parameters as suggested in their respective articles or
used the default values provided in their code. All experiments
are performed in MATLAB R2020b using a desktop with
32-GB RAM, with an Intel Core 19-10850K CPU at 3.60 GHz.

A. Experiments on HSI With Synthetic Noise

1) Experimental Setting: To compare the denoising perfor-
mance with state-of-the-art nonlocal methods KBR, LLRT,
and WLRTR, which have high computational complexity due
to their NSS prior to the original HSI data, we select a
small-scale dataset for testing. The Pavia City Center image

4It is worth noting that according to the framework of NGmeet method,
we have rewritten its running code, which can greatly improve the accuracy
and efficiency of HSI denoising.
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(PaC?) is chosen as the small-scale simulated data, and a
subimage of size 200 x 200 x 80 is selected as the reference.
To demonstrate the efficiency of our method on large-scale
HSI denoising, we utilize the entire Washington DC Mall
dataset (WDC), acquired by the hyperspectral digital imagery
collection experiment (HYDICE) sensor. The WDC dataset
contains 1208 x 307 pixels and 191 spectral bands, which can
relatively be considered a large-scale HSI dataset. Following
the settings in the previous works [56], [57], [61], we add
additive Gaussian noise with noise standard deviations o =
10, 30, 50, 80, 100 to the clean HSI. In addition, we introduce
additive Gaussian noise, where the noise standard deviations
o are randomly chosen from uniform distributions U[10, 100]
and U[30, 80]. In addition, mixed Gaussian and stripe noises
are introduced to demonstrate the robustness of the proposed
method. The standard deviations of the Gaussian noise are
randomly selected from the range U[10, 100], and stripes
are added to 20% of the bands, with the number of stripes
ranging from 5 to 12. To simulate the existence of HSNRBs
in real HSI noise scenarios, we randomly select some bands
without adding noise. Specifically, for data with low noise
intensity, more HSNRBs are exited, while for scenes with
high noise intensity, fewer HSNRBs are included. Therefore,
we randomly select 5/10, 4/10, 3/10, 2/10, 1/10, 3/10, and
3/10 bands as the HSNRBs for noise cases with o =
10, 30, 50, 80, 100, U[10, 100], and U[30, 80], respectively.

2) Quantitative Indices: We quantitatively evaluate the
denoising results of different methods using three common
HSI restoration indices: peak signal-to-noise ratio (PSNR),
structural similarity (SSIM), and spectral angle mapper
(SAM). PSNR and SSIM are spatial information-based eval-
uation indices, while SAM is employed to evaluate spectral
information. Higher PSNR and SSIM values and lower SAM
values indicate better denoising performance. In addition,
we record the running time (in seconds) to assess the denoising
efficiency of all methods.

3) Experimental Results on Small-Scale PaC Dataset:
Table II presents the quantitative results of various methods
on the PaC dataset, with the best values highlighted in bold.
FastHyDe consistently outperforms other methods in most
cases. Although our FallHyDe does not achieve the absolute
best results in all quantitative indices, the differences in denois-
ing accuracy between our method and the best-performing
methods are negligible across various noise levels. However,
in terms of denoising efficiency, the proposed method can
complete denoising in only 0.2 s, more than 19, 23, 34,
and 10 times faster than that of related fast HSI denoising
methods RCTYV, FastHyDe, NGmeet, and FastHyMix, respec-
tively. Thus, the proposed method significantly enhances the
efficiency of HSI denoising on small-scale datasets without
compromising denoising accuracy. Moreover, compared with
the NSS prior to image method WLRTR, our proposed method
is 4500 times faster.

Fig. 3 shows the false-color image of the denoised PaC
dataset with o = 100, and an enlarged region is provided

Shttp://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_
Scenes
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TABLE I

QUANTITATIVE COMPARISON OF DIFFERENT COMPARISON METHODS UNDER DIFFERENT NOISE INTENSITIES ON SMALL-SCALE PAC DATASET. THE
BEST RESULT IS HIGHLIGHTED IN BOLD

Case Index Noisy BM3D LRMR NMoG KBR LLRT WLRTR RCTV  FastHyDe NGmeet FastHyMix FallHyDe

PSNR 28.12 36.33 4591 52.99 4049  40.51 42.01 41.83 53.27 53.73 50.98 54.25

SSIM 0.809 0.952 0.996 0.999 0.985 0.977 0.990 0.989 0.999 0.999 0.999 0.999

10 SAM 15785  6.042 2.274 1.384 3.431 5.210 0.047 3.449 1.233 1.225 1.237 1.210
Time (s) 26.5 11.1 54.5 781.6 514.0 956.8 4.2 10.0 8.7 3.2 0.2

PSNR 18.59 32.32 40.05 48.59 34.45 35.02 36.23 34.90 51.51 51.18 49.29 51.53

SSIM 0.376 0.853 0.987 0.995 0944 0.943 0.966 0.950 0.998 0.997 0.998 0.998

30 SAM 34.288  9.881 4.006 2.269 6284  7.253 6.078 6.128 1.550 1.853 1.648 1.703
Time (s) 30.6 10.6 54.5 759.2 508.4 970.2 35 79 8.7 2.5 0.2

PSNR 14.15 29.44 35.15 44.68 32.47 33.82 33.21 31.73 49.07 49.06 47.24 48.86

SSIM 0.190 0.742 0.965 0.993 0920  0.944 0.937 0.904 0.998 0.998 0.997 0.997

50 SAM 46.627 12.175  5.933 2.579 6.129 5.520 5.103 7.773 1.799 1.812 1.978 1.961
Time (s) 34.8 12.7 54.3 831.0  496.7 969.0 42 4.1 7.4 2.1 0.2

PSNR 10.07 26.54 29.94 39.12 29.88 30.09 30.71 29.09 47.07 46.79 45.24 46.92

SSIM 0.084 0.606 0.890 0.981 0.868  0.878 0.893 0.844 0.997 0.997 0.995 0.996

80 SAM 58311  14.031 11.122 3.958 6.236 6.333 6.131 7.198 2.033 2.037 2.297 2.163
Time (s) 37.6 12.7 39.1 1097.8  486.2 979.7 4.1 3.0 6.2 1.8 0.2

PSNR 8.13 24.11 26.49 39.89 28.36 28.37 29.29 28.48 43.57 42.98 42.73 43.73

SSIM 0.055 0.503 0.781 0.988 0.820  0.826 0.857 0.820 0.994 0.992 0.993 0.993

100 SAM 63.216 14550 15.186  3.406 6.802 6.801 6.152 8.253 2.821 2.915 2.837 2.970
Time (s) 39.9 12.7 36.2 1099.6 4749 979.5 33 1.8 43 1.3 0.2

PSNR 15.02 29.88 33.85 43.39 28.98 31.33 28.91 30.36 48.48 48.47 47.36 48.66

SSIM 0.258 0.750 0.945 0.961 0.803 0.890 0.795 0.874 0.997 0.997 0.997 0.997

[10, 100] SAM 50.398 13.004  7.879  21.652 15.651  9.466 9.487 12.586 1.861 1.840 1.900 2.044
Time (s) 335 12.6 36.1 829.7 501.6 989.3 3.6 3.1 6.2 1.4 0.2

PSNR 14.17 29.48 33.80 42.70 30.86 33.17 30.72 31.05 48.90 48.90 47.24 49.05

SSIM 0.198 0.741 0.951 0.977 0.877  0.934 0.864 0.882 0.998 0.998 0.997 0.997

[30, 80] SAM 48.113 12595  7.343 11.503  10.101  6.282 6.280 10.893 1.781 1.758 1.979 1.902
Time (s) 34.0 12.7 36.2 830.3 498.4 986.9 35 3.1 6.8 1.8 0.2

PSNR 14.33 29.34 33.12 46.38 28.48 31.31 27.71 29.88 47.99 43.30 46.83 48.22

] SSIM 0.247 0.729 0.935 0.985 0.789  0.893 0.755 0.854 0.997 0.992 0.997 0.997
Mixed SAM 52.840 14.118  8.984 10985 16.367  8.867 0.497 12.530 1.974 2.393 2.008 2.081
Time (s) 335 15.1 38.5 17723 545.1 1172.2 34 32 6.0 1.5 0.2

PSNR 15.32 29.68 34.79 44.72 31.75 32.95 32.35 32.17 48.73 48.05 47.11 48.90

SSIM 0.277 0.735 0.931 0.985 0.876 0911 0.882 0.890 0.997 0.996 0.997 0.997

Average SAM 46.197  12.050  7.841 7.217 8.875 6.967 4.972 8.601 1.882 1.979 1.986 2.004
Time (s) 33.8 12.5 437 10002 503.2 1000.5 3.7 4.5 6.8 2.0 0.2

0 0.02 0.04

Fig. 3.

0.06 0.08 0.1

Denoised results of small-scale PaC dataset under noise cases o = 100. The first row is the visual results, and the second row is the corresponding

absolute error maps between the ground truth and the denoising results. The false-color image is composed of bands (R: 49, G: 37, and B: 4). (a) Original.
(b) Noisy. (c) BM3D. (d) LRMR. (e) NMoG. (f) KBR. (g) LLRT. (h) WLRTR. (i) RCTV. (j) FastHyDe. (k) NGmeet. (1) FastHyMix. (m) FallHyDe.

to visualize the differences among the denoising results. The
absolute error map between the ground truth and denoised
images is also presented for comparison. It is evident that
all methods effectively reduce the noise in the image. How-
ever, BM3D, LRMR, NMoG, KBR, LLRT, WLRTR, and
RCTV exhibit spectral distortion, leading to changes in the
contrast of spatial information (circled in the green box).
FastHyDe, NGmeet, FastHyMix, and our method perform
similar denoising results, effectively reducing most of the

noise while preserving the image details. Comparing the
absolute error maps, our proposed FallHyDe demonstrates
significantly higher spatial and spectral fidelity, with error
maps much closer to the ground truth. These results verify that
our method achieves competitive denoising performance com-
pared to state-of-the-art methods, while also greatly improving
denoising efficiency.
4) Experimental Results on Large-Scale WDC Dataset:

We evaluated the denoising accuracy and efficiency of all
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TABLE III

QUANTITATIVE COMPARISON OF DIFFERENT COMPARISON METHODS UNDER DIFFERENT NOISE INTENSITIES ON LARGE-SCALE WDC DATASET. THE
BEST RESULT IS HIGHLIGHTED IN BOLD

Case Index Noisy BM3D LRMR NMoG RCTV FastHyDe NGmeet FastHyMix FallHyDe

PSNR 28.13 37.52 47.53 52.93 44.10 54.54 54.62 50.84 55.70

SSIM 0.654 0.938 0.993 0.998 0.987 0.998 0.998 0.998 0.998

10 SAM 8.166 2.728 0.952 0.614 1.270 0.514 0.510 0.546 0.473
Time (s) 740.0 217.6 1301.9 96.4 93.6 131.2 156.2 9.7

PSNR 18.59 33.98 40.57 48.69 37.68 52.87 52.92 48.59 54.19

SSIM 0.252 0.849 0.971 0.993 0.952 0.998 0.998 0.997 0.998

30 SAM 23.056  5.025 2.046 1.062 2.461 0.595 0.591 0.664 0.514
Time (s) 809.8 205.7 1312.9 89.2 79.5 119.2 122.2 9.7

PSNR 14.15 31.66 36.12 45.53 34.86 52.00 52.08 45.66 52.76

SSIM 0.125 0.772 0.932 0.988 0.915 0.997 0.997 0.995 0.998

50 SAM 35357  6.617 3.334 1.509 3.298 0.634 0.624 0.929 0.578
Time (s) 985.4 200.5 945.0 91.0 78.9 126.3 91.3 9.7

PSNR 10.07 29.22 30.01 42.97 31.49 49.93 49.86 44.84 50.14

SSIM 0.057 0.684 0.813 0.982 0.804 0.996 0.996 0.994 0.996

80 SAM 48583 8512 6482 2009  5.125 0.797 0.797 1.021 0.782
Time (s) 1050.8 194.3 878.2 88.7 65.2 117.9 74.2 8.9

PSNR 8.13 27.15 27.38 36.98 31.10 44.65 44.24 40.15 46.09

SSIM 0.038 0.615 0.692 0.954 0.816 0.989 0.987 0.976 0.993

100 SAM 54.794  9.778 8.879 3.963 5.058 1.537 1.578 1.698 1.167
Time (s) 1101.7 194.9 503.3 82.8 37.9 95.9 49.2 9.1

PSNR 14.53 31.87 35.69 44.37 32.90 51.79 51.86 44.42 52.44

SSIM 0.164 0.778 0.918 0.970 0.876 0.997 0.997 0.993 0.997

[10, 100] SAM 40.394  6.831 3.857 10.673  4.638 0.645 0.636 1.116 0.605
Time (s) 959.0 202.7 723.4 85.6 78.6 126.1 102.5 8.8

PSNR 13.41 31.48 35.81 47.28 33.99 51.81 51.87 44.98 52.45

SSIM 0.116 0.763 0.925 0.984 0.890 0.997 0.997 0.994 0.997

(30, 80] SAM 39.386  6.998 3.604 4.104 3.813 0.645 0.636 1.013 0.599
Time (s) 982.3 204.0 1019.3 83.8 78.6 125.4 97.8 8.4

PSNR 13.77 31.34 35.22 45.84 33.00 51.78 47.73 45.00 51.86

) SSIM 0.144 0.761 0.912 0.981 0.867 0.997 0.994 0.994 0.997

Mixed SAM 42.084 7552 4.087 7.596 4.426 0.684 0.953 1.064 0.700
Time (s) 898.0 2275 774.4 86.9 80.4 120.5 103.0 8.9

PSNR 15.10 31.78 36.04 45.57 34.89 51.17 50.65 45.56 51.95

SSIM 0.194 0.770 0.895 0.981 0.888 0.996 0.996 0.993 0.997

Average SAM 36478  6.755 4.155 3.941 3.761 0.756 0.791 1.006 0.677
Time (s) 940.9 205.9 932.3 88.1 74.1 120.3 99.6 9.2

methods on the large-scale WDC dataset. Since KBR, LLRT,
and WLRTR were unable to perform denoising in our exper-
imental environment, we excluded them from the comparison
in this experiment. The quantitative results for different noise
intensities are presented in Table III. Remarkably, the proposed
FallHyDe method achieved the best denoising results on the
large-scale dataset in all cases. FastHyDe and NGmeet still
obtained competitive denoising results, but FastHyMix showed
significantly lower performance on the large-scale dataset
compared to the small-scale dataset. The running time results
in Table III demonstrate that our proposed FallHyDe method
efficiently processes large-scale HSIs within 10 s, which is the
lowest among all evaluated methods. Particularly, compared
to BM3D, our method achieved an average running time gain
of 100 times, and over LRMR by 20 times, over NMoG by
100 times, over RCTV by nine times, over FastHyDe by seven
times, over NGmeet by 12 times, and over FastHyMix by ten
times.

To further demonstrate the denoising capabilities of Fall-
HyDe, Fig. 4 presents the false-color images of the large-scale
WDC dataset before and after denoising. The denoising results

of FastHyDe, NGmeet, FastHyMix, and FallHyDe outper-
form the other comparison methods significantly. However,
the absolute error map reveals that FastHyDe, NGmeet, and
FastHyMix lose some spatial information, while our FallHyDe
method produces the lowest error results. It is noteworthy that
most learning-based methods struggle to process large-scale
HSI due to limited computational resources or extensive pro-
cessing time (see Table I). In contrast, the proposed FallHyDe
method not only exhibits superior denoising capability but also
boasts remarkable processing speeds, making it highly efficient
for large-scale HSI denoising.

B. Experiments on HSI With Real Noise

To facilitate comparisons with different methods and
demonstrate that the proposed method is applicable to real-
world scenarios, we further evaluate our method on real-world
HSI using the HYDICE Terrain dataset with dimensions of
500 x 307 x 210. Compared to previous works that used
experimental data with spatial dimensions of 200 x 200 or
256 x 256, this dataset is also relatively larger. This dataset
contains bands that are seriously degraded by complex noise,
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Fig. 4. Denoised results of large-scale WDC dataset under noise cases o = 100. The first row is the visual results, and the second row is the corresponding
absolute error maps between the ground truth and denoising results. The false-color image is composed of bands (R: 157, G: 109, and B: 47). (a) Original.
(b) Noisy. (c) BM3D. (d) LRMR. (e) NMoG. (f) RCTV. (g) FastHyDe. (h) NGmeet. (i) FastHyMix. (j) FallHyDe.

but it also includes many HSNRBs (see Fig. 1). We empirically
select the top one-fourth of bands with the lowest noise
levels as the HSNRBs, which is typically feasible in real
datasets. However, due to the unavailability of clean HSI in
real experiments, quantitative evaluation metrics cannot be
computed to illustrate the denoising results of all methods.
Instead, we compare the denoising results on two representa-
tive bands with different noise levels and use the mean curve to
qualitatively evaluate the denoising results. The KBR method
still shows insufficient memory on our experimental device,
so we exclude it from the comparison.

Fig. 5 presents the false-color results of all methods on
the real dataset, where both bands are heavily degraded by
noise. BM3D, LRMR, LLRT, WLRTR, and RCTV fail to
restore the original image and contain stripes. FastHyMix
effectively suppresses the noise but loses spatial details like
edges and textures. On the other hand, NMoG, FastHyDe,
NGmeet, and FallHyDe achieve similar denoising results,

effectively suppressing noise and preserving structural infor-
mation, resulting in visually pleasing images. Fig. 6 shows
the row mean profiles of band 106, indicating that NMoG,
FastHyDe, NGmeet, and FallHyDe approximately maintain
the trend of the original image and produce smoother
curves. Table IV lists the running times of different meth-
ods, and our proposed FallHyDe remains the fastest among
all the comparison methods. In summary, although the
proposed method is designed with the Gaussian noise
assumption, it can also achieve superior results for real
datasets.

C. Discussion

1) Comparison With Supervised Learning-Based Method:
Recent studies have shown that well-trained learning-based
approaches can achieve denoising efficiently. To further illus-
trate the efficiency of our method, we compare the denoising
results with the state-of-the-art supervised learning method
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Fig. 5. Denoised results of the real Terrain dataset. The false-color image is composed of bands (R: 151, G: 106, and B: 1). (a) Noisy. (b) BM3D. (c) LRMR.
(d) NMoG. (e) LLRT. (f) WLRTR. (g) RCTV. (h) FastHyDe. (i) NGmeet. (j) FastHyMix. (k) FallHyDe.
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Fig. 6.
(h) FastHyDe. (i) NGmeet. (j) FastHyMix. (k) FallHyDe.

(f)
Row mean profiles of band 106 for the real Terrain dataset. (a) Noisy. (b) BM3D. (¢) LRMR. (d) NMoG. (e) LLRT. (f) WLRTR. (g) RCTV.
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TABLE IV
RUNNING TIME OF DIFFERENT METHODS ON THE REAL TERRIAN DATASET

Method BM3D LRMR NMoG LLRT WLRTR RCTV FastHyDe NGmeet FastHyMix FallHyDe
Time (s)  292.7 91.2 230.6  2387.7 5063.7 37.2 124 38.0 43.5 4.5
TABLE V

QUANTITATIVE COMPARISON WITH SUPERVISED LEARNING-BASED METHOD UNDER DIFFERENT NOISE INTENSITIES ON SMALL-SCALE PAC DATASET

Method Index 10 30 50 80 100 [10, 100]  [30, 80]
PSNR 36.06 34.06 31.71 29.03 27.03 30.94 31.41
QRNN3D SSIM 0971 0950 0909 0.833 0.761 0.893 0.903
Time (s) 2.1 2.1 2.1 2.1 2.1 2.1 2.1
PSNR 54.25 51.53 4886 46.92 43.73 48.66 49.05
FallHyDe ~ SSIM 0999 0.998 0997 0.99 0993  0.997 0.997
Time (s) 0.2 0.2 0.2 0.2 0.2 0.2 0.2
QRNN3D® [9]. Since QRNN3D is unable to process the 120 omi v ey l
large-scale WDC dataset on a single NVIDIA GeForce RTX 100{ 40 H
3090 (see Table I), we use the small-scale PaC dataset for 5 80 230 I
. . . . 2 —®—FastHyDe G meet
testing. Table V presents the quantitative results and running £ o -_:_-gaf;e}];“x . L Min
time of the PaC dataset obtained by QRNN3D and our Fall- 0 e HaiiDe .
HyDe method. QRNN3D achieves relatively poor quantitative *
results due to the absence of these noise types in its training % 16 1 20 2 2 2% L1 d6 18 20 2 a2
. . . . . . .« . og oqe . Subspace dimension Subspace dimension
set, indicating its limited denoising flexibility. Even without @ (b)

considering the comparison of quantitative results, our method
still demonstrates faster denoising efficiency compared to
QRNN3D.

2) Robustness of Computational Efficiency and Denoising
Effectiveness: To demonstrate the robustness of our method’s
subspace dimension selection, we compare the computational
time and PSNR values of fast denoising methods such as
FastHyDe, NGmeet, FastHyMix, and FallHyDe with respect
to different subspace dimensions in Fig. 7. The results show
that the PSNR values of FastHyDe, NGmeet, and FastHyMix
remain stable as the subspace dimension increases, but their
computational time increases linearly. In contrast, our method
not only achieves stable denoising effects but also maintains

The result is achieved by using a model published by the authors on their
homepage.

Fig. 7. Computational time and PSNR values with different subspace
dimensions. (a) Time versus subspace dimension. (b) PSNR versus subspace
dimension.

nearly unchanged computational time with the increase of
subspace dimension.

3) Impact of the Number of HSNRBs: Fig. 8 illustrates
the PSNR values with varying band ratios of HSBRBs at
two noise levels. As the number of HSNRBs increases, the
PSNR value gradually improves due to the availability of more
guidance information. In our experiments, we set the number
of HSNRBs based on empirical observations and realistic
scenarios to ensure practical applicability.

4) Limitations: When most of the bands in the HSI are
contaminated by complex mixed noise, the estimation of the
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Fig. 8. Impact of the number of HSNRBs under two different noise levels.
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Fig. 9. Comparison of the results when 20% impulse noise is added to the
Gaussian noise degradation across all bands. (a) PSNR. (b) SSIM.
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spectral subspace may become inaccurate, leading to reduced
denoising effectiveness. Fig. 9 shows a comparison of the
results when 20% impulse noise is added to the Gaussian
noise degradation across all bands. We can observe that the
denoising performance quickly deteriorates after the addition
of impulse noise. In fact, this is also a limitation of other
Gaussian noise removal methods, including comparison meth-
ods NGmeet, FastHyDe, FastHyMix, and others. In future
work, we will focus on improving the accuracy of learning
the spectral subspace from HSI contaminated with complex
mixed noise to address this limitation and further enhance the
performance of our method.

V. CONCLUSION

In this article, we have introduced a novel noniterative
LR subspace representation method to efficiently tackle the
large-scale HSI denoising problem. The method decomposes
the HSI into the spectral subspace and SRCs, capturing strong
spectral correlation and reducing computational complexity.
The spectral subspace is learned from the observed HSI, and
the SRCs are efficiently estimated from guided HSNRBs.
Compared to the previous works that try to denoise the HSI
with different complex priors, our FallHyDe method does
not require regularizers or iterations, resulting in a massive
reduction in computational time. The theoretical analysis
further validates the feasibility of our denoising framework.
Experimental results demonstrate that FallHyDe achieves com-
petitive denoising performance with far less computational
time. In summary, our methods restore the HSI in an effi-
cient, effective, and flexible manner, which is expected to be
extended to other HSI fields.
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