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Tensor completion aims at estimating the missing entries from the incomplete observation. Under 
the tensor singular value decomposition framework, the exact recovery of a low-tubal-rank third-

order tensor could be achieved via convex optimization with high probability if the tensor satisfies 
the tensor incoherence condition. In this work, we show that, when the random selection of entries 
is made adaptive to a distribution which is dependent on the coherence structure of the tensor, 
any low-tubal-rank tensor of the size 𝑛 × 𝑛 × 𝑛 with tubal-rank 𝑟 can be exactly recovered with 
high probability from as few as 𝑂(𝑟𝑛2 log2(𝑛)) randomly chosen entries. In practice, tensor leverage 
scores are not known a priori, and we design a two-phase adaptive sampling strategy to obtain the 
leverage scores. Numerical experiments on synthetic and real-world third-order tensor data sets 
are used to validate our theoretical results and illustrate that the tensor recovery performance of 
the proposed two-phase adaptive sampling scheme is better than that of the other state-of-the-art 
methods.

1. Introduction

The main aim of tensor completion is to estimate the missing or unobserved entries from incomplete observation. It is an important 
problem that has appeared in the literature of a diverse set of fields including color image inpainting [1–4], video inpainting [5], and 
remote sensing hyperspectral image restoration [6,7] to name a few. Similar to matrix completion, tensor completion is an ill-posed 
problem and some prior or assumptions are needed. For the matrix case, the common assumption is to suppose that the unknown 
matrix is low-rank or approximately low-rank. One can recover a low-rank matrix by solving the following convex optimization 
problem

min
𝐗∈ℝ𝑛1×𝑛2

‖𝐗‖∗ s.t. Ω(𝐗) = Ω(𝐎), (1)

where 𝐗 is the underlying matrix, 𝐎 ∈ℝ𝑛1×𝑛2 is the original matrix, Ω is the support of the observed entries, Ω(⋅) is the projection 
operator keeping the elements in Ω while making others to be zeros, and ‖ ⋅ ‖∗ is the matrix nuclear norm defined as the sum of 
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singular values, being the convex envelope of the matrix rank within a certain set. The nuclear norm of 𝐀 can also be calculated as 
trace(

√
𝐀∗𝐀), where ∗ means complex conjugate.

The low-rank matrix completion (LRMC) problem in (1) can be efficiently optimized by the alternating direction method of 
multipliers (ADMM) [8,9] with the singular value thresholding (SVT) operator [10]. Candès and Recht [11] showed that one can 
perfectly recover most low-rank matrices from an incomplete set of entries, which are uniformly sampled at random, via (1) with 
high probability (w.h.p.) if 𝐎 satisfies the incoherence condition. Intuitively, the incoherence condition requires the matrix 𝐎 not 
to be sparse. Also, when the incoherence condition is satisfied, nuclear norm minimization can produce the minimum rank solution 
[12]. Candès and Tao [13] presented the information limit for the minimum number of entries needed to recover a matrix of rank 𝑟
exactly by any method in follow-on work. Then, Recht [14] provided a simpler proof with the help of the Noncommutative Bernstein 
Inequality [15]. In [16], the joint incoherence condition is successfully removed by using the 𝓁∞,2 norm to get a similar bound when 
constructing a dual certificate to ensure the solution is the unique minimizer of the optimization program. In [17], Chen et al. showed 
that the incoherence is actually required because of the uniform sampling and further considers the leveraged sampling, i.e., random 
sampling conducted according to a specific biased distribution dependent on the coherence structure of the matrix.

When it comes to tensors, three categories of low-rank tensor completion (LRTC) methods can be found.1 They are based on the 
CANDECOMP/PARAFAC (CP) decomposition [21–23], the Tucker decomposition [24,2], and the tensor train (TT) or tensor ring 
(TC) decomposition [25–28], respectively. As discussed in [29], being NP-hard to compute the CP-rank [18] and unrevealed convex 
envelope of the CP-rank make the low-CP-rank tensor recovery challenging. Meanwhile, provable guarantees for low-Tucker-rank 
tensor recovery [30–32] and low TT (or TR) -rank tensor recovery [33,34] are given with employing the theory and methods for 
matrix completion after matricizing the tensor in various ways.

In this work, we mainly focus on another type of LRTC methods based on the tensor singular value decomposition (t-SVD) frame-

work [35–38], in which the fundamental tensor-tensor product (t-prod) operation is closed on the set of third-order tensors and allows 
new extensions of familiar matrix analysis to the third-order tensors while avoiding the loss of information inherent in matricizing or 
flattening [38]. More specifically, we consider the following tensor tubal nuclear norm (TNN, subsequently defined in Definition 10) 
minimization model [39] for third-order tensor completion:

min
∈ℝ𝑛1×𝑛2×𝑛3

‖‖TNN s.t. Ω() = Ω(), (2)

where  is the underlying tensor,  ∈ ℝ𝑛1×𝑛2×𝑛3 is the original tensor. As shown in [39], a tensor  of the tubal-rank 𝑟 can be ex-

actly recovered w.h.p. via solving (2) provided that elements are uniformly sampled at random and  satisfies the tensor incoherent 
condition. Similar to the matrix case, required number of measurements in (2) is in direct proportion to 𝑟𝑛(1)𝑛3 log2(𝑛(1)𝑛3), where 
𝑛(1) = max(𝑛1, 𝑛2). In [29], linear invertible transform is used to construct the t-prod and t-SVD framework. Song et al. [40] theoreti-

cally provide bounds for exact robust tensor completion using unitary transform based t-SVD. In [41], Liu et al. also minimized the 
TNN to complete the fingerprint data, while they further consider a two-pass adaptive tubal-wise sampling strategy in their indoor 
localization application. Provided that the total sampling budget is 𝑀 tubes, in the 1st-pass sampling, 𝜎𝑀(0 < 𝜎 < 1) tubes are 
sampled uniformly at random. Then, in the 2nd-pass sampling, remaining (1 − 𝜎)𝑀 tubes are allocated to those highly informative 
columns identified by the 1st-pass sampling. This two-pass adaptive sampling strategy results in an attractive improvement over (uni-

form) random sampling in localization accuracy for the same sample complexity. Meanwhile, completing the coherent low-tubal-rank 
tensor is also studied in a pioneer work [42], while the authors only studied the sufficient condition of exact completion without 
experimental validations.

The main aim of this work is to break through the requirement of the tensor incoherence via providing the theoretical guarantees 
for any low-rank tensor completion from a subset of entries, which are adaptively sampled at random. Our main contributions are 
listed as follows:

• The first contribution which is also our key innovation is that we define tensor leverage scores, which can be viewed as the 
local versions of the standard tensor incoherence parameter to measure the coherence structure of the low-rank tensor. Then, 
we prove that any low-tubal-rank tensor (of the size 𝑛 × 𝑛 × 𝑛 and tubal-rank 𝑟) can be exactly recovered w.h.p. from as few 
as 𝑂(𝑟𝑛2 log2(𝑛)) observed entries via solving the convex optimization problem in (2), if the probability of an element being 
observed is in proportion to the sum of related tensor leverage scores.

• A two-phase adaptive sampling strategy is provided when tensor leverage scores are not known a priori. When the amount of 
elements to be sampled is determined, a portion of entries is first sampled uniformly at random. Then, the tensor leverage scores 
are estimated via t-SVD on the samples in the first phase. Then, the remaining entries are sampled according to estimated tensor 
leverage scores.

• Numerical results on the synthetic data are reported to verify our theoretical results and the effectiveness of the two-phase 
adaptive sampling. Experiments on color images further illustrate the superiority of our method over state-of-the-art methods. 
Meanwhile, for the traffic data imputation, it is shown that the temporal periodicity can be utilized to well estimate the leverage 
score, further illustrating the practical application value of our method.
2

1 Please refer to [18–20] for a comprehensive overview.
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Fig. 1. Tensor completion results for a color image with 50% missing entries with different sampling strategies. All the results are obtained via minimizing the 
tensor nuclear norm [39]. “Uniform” indicates uniform sampling at random. “Leveraged” denotes adaptive sampling according to probabilities in direct proportion to 
tensor leverage scores while probabilities for “Inv-leveraged” are inversely proportional to tensor leverage scores. “Two-phase” and “Inv-two-phase” stand for random 
sampling in the second phase using the leveraged sampling and inv-leveraged sampling, respectively. The favored pixels in the last column are from the element-wise 
multiplication between the probabilities, which are scaled to [0, 1], and the original image.

We show in Fig. 1 that when the random sampling of a real-world color image is conducted according to the tensor leverage scores, 
i.e., “Leveraged” and “Two-phase” (to be introduced in Sect. 3.2), the color image completion results are obviously better than that 
of the uniformly random sampling. Moreover, if elements are randomly sampled according to probabilities inversely proportional to 
tensor leverage scores, results evidently become inferior. Meanwhile, we can see that, for the image in Fig. 1, the leveraged sampling 
favors pixels in the foreground in stead of those in the homogeneous background, generating promising results.

From the definition of the tensor leverage score (to be introduced in Sect. 3.2), we can see that it measures how well a low-

dimensional subspace corresponds to coordinate subspaces [43]. Meanwhile, from Theorem 5.3 in [44], we can see that approximating 
the tensor with the t-SVD framework has less error than with the matrix method. Thus, we can deduce that the low-rank subspace 
generated by t-SVD is closer to the original tensor than that of the matrix method. Therefore the tensor leverage score captures the 
importance of the original tensor information better than the matrix counterpart.

The remainder of this paper is organized as follows. Sect. 2 introduces the basic tensor notations and preliminaries for the t-SVD 
framework. Our main results are given in Sect. 3. We report the experimental results in Sect. 4. Finally, Sect. 5 discusses limitations 
and draws some conclusions.

2. Notations and preliminaries

Throughout this paper, we use lowercase letters, e.g., 𝑥, boldface lowercase letters, e.g., 𝐱, boldface upper-case letters, e.g., 𝐗, 
and boldface calligraphic letters, e.g.,  , to denote scalars, vectors, matrices, and tensors, respectively. 𝑖𝑗𝑘 is used to denote the 
(𝑖, 𝑗, 𝑘)-th element of a given third-order tensor  ∈ ℝ𝑛1×𝑛2×𝑛3 . The 𝑘-th frontal slice of  is denoted as  (𝑘) (or (∶, ∶, 𝑘)). In this 
paper, we use ̂ to denote the transformed tensor by performing one-dimensional discrete Fourier transform (DFT) along the mode-3 
fibers (tubes) of  .2

Definition 1 (Tensor conjugate transpose [38]). The conjugate transpose of a tensor  ∈ ℝ𝑛1×𝑛2×𝑛3 , denoted as ⊤ ∈ ℝ𝑛2×𝑛1×𝑛3 , is 
obtained by conjugate transposing each of the frontal slices and then reversing the order of transposed frontal slices 2 through 𝑛3 :
3

2 ̂ can be efficiently computed by using the fast Fourier transform (FFT) and obtained via the Matlab command 𝚏𝚏𝚝( , [], 3).
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(⊤)(1) =((1))⊤,

(⊤)(𝑖) =((𝑛3+2−𝑖))⊤, 𝑖 = 2,⋯ , 𝑛3,

where (⋅)⊤ denotes the matrix conjugate transpose.

Definition 2 (T-prod [38]). The t-prod  = ∗ between  ∈ℝ𝑛1×𝑛2×𝑛3 and  ∈ℝ𝑛2×𝑛4×𝑛3 is an 𝑛1 × 𝑛4 × 𝑛3 tensor whose (𝑖, 𝑗)-th 
tube (𝑖, 𝑗, ∶) is given by

(𝑖, 𝑗,∶) =
𝑛2∑
𝑘=1

(𝑖, 𝑘,∶)⊛(𝑘, 𝑗,∶),

where ⊛ denotes the circular convolution between two same sized tubes.

Definition 3 (Special tensor [38]). The identity tensor  ∈ ℝ𝑛1×𝑛1×𝑛3 is the tensor whose first frontal slice is the 𝑛1 × 𝑛1 identity 
matrix, and whose other frontal slices are all zeros. A tensor  ∈ ℂ𝑛1×𝑛1×𝑛3 is orthogonal if it satisfies ⊤ ∗ = ∗⊤ = . A tensor 
 is called f-diagonal if each frontal slice (𝑖) is a diagonal matrix.

Definition 4 (Block diagonal form of third-order tensor [5]). Let  denote the block-diagonal matrix of the tensor  in the Fourier 
domain, i.e.,

≜ blockdiag(̂)

≜

⎡⎢⎢⎢⎣
̂(1)

̂(2)

⋱
̂(𝑛3)

⎤⎥⎥⎥⎦ ∈ℂ𝑛1𝑛3×𝑛2𝑛3

It is easy to verify that the block diagonal matrix of ⊤ is equal to the transpose of the block diagonal matrix of , i.e., ⊤ =
⊤

. 
We also have that

 ∗ =  ⇔  = .

Definition 5 (Tensor Singular Value Decomposition (t-SVD) [37,38]). For  ∈ℝ𝑛1×𝑛2×𝑛3 , the t-SVD of  is given by

 = ∗  ∗ ⊤,

where ∗ is the t-prod,  ∈ℝ𝑛1×𝑛1×𝑛3 and  ∈ℝ𝑛2×𝑛2×𝑛3 are orthogonal tensors,  ∈ℝ𝑛1×𝑛2×𝑛3 is an f-diagonal tensor, and entries in 
 are called the singular values of .

Definition 6 (Tensor tubal-rank [39]). The tensor tubal-rank of  is defined to be the number of non-zero singular tubes of  , where 
 comes from the t-SVD of  ∶ = ∗  ∗ ⊤.

An alternative definition of the tensor tubal-rank is that it is the largest rank of all the frontal slices of ̂ in Fourier domain. If we 
say a third-order tensor  is of full tubal-rank, it means 𝑟 =min{𝑛1, 𝑛2}.

Definition 7 (Tensor operator and tensor operator norm [39]). Tensor operators are denoted by Calligraphic letters. Let  be a tensor 
operator mapping a tensor  ∈ℝ𝑛1×𝑛2×𝑛3 to a tensor  ∈ℝ𝑛4×𝑛2×𝑛3 via the t-product as follows:

 =() = ∗,

where  ∈ℝ𝑛4×𝑛1×𝑛3 . Then, the tensor operator norm of  is defined as

‖‖op = sup{
|‖‖𝐹≤1}‖()‖𝐹 .

Definition 8 (Tensor spectral norm and infinity norm [39]). The tensor spectral norm ‖‖ is defined as the largest singular value of 
 and the tensor infinity norm ‖‖∞ is defined as the largest absolute value of .

Moreover, we have that ‖‖ = ‖‖.

Definition 9 (Inner product of tensors [39]). If  and  are third-order tensors of same size 𝑛1 × 𝑛2 × 𝑛3, then the inner product 
4

between  and  is defined as the following,
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⟨,⟩ = 1
𝑛3

trace(
⊤
),

where 1∕𝑛3 comes from the normalization constant of the FFT. Because of the conjugate symmetric property of the FFT, this inner 
product produces a real-valued result.

Subsequently, the tensor Frobenius norm is defined as

‖‖𝐹 = ⟨,⟩ 12 ,
and we can easily verify that ‖‖𝐹 = 1√

𝑛3
‖‖𝐹 .

Definition 10 (Tubal nuclear norm (TNN) [39]). The tubal nuclear norm of a tensor , denoted as ‖‖TNN, is the sum of singular 
values of all the frontal slices of ̂. In particular,

‖‖TNN = ‖‖∗.
Definition 11 (Tensor basis [39]). The tensor column basis 𝑒𝑖 ∈ℝ𝑛1×1×𝑛3 is defined with one entry equaling 1 and the rest equaling 
zero. The nonzero entry 1 will only appear at the first frontal slice of 𝑒𝑖. Naturally, its transpose 𝑒𝑖

⊤
is called row basis. The tensor 

tube basis is 𝑒𝑖 ∈ℝ1×1×𝑛3 is defined with the 𝑖-th entry equaling to 1 and rest equaling to 0.

Definition 12 (𝑙2∗ norm of tensor column [39]). Let 𝑥⃗ be an 𝑛1 × 1 × 𝑛3 tensor column, we define an 𝑙2∗ norm on it as follows

‖𝑥⃗‖2∗ =
√√√√ 𝑛1∑

𝑖=1

𝑛3∑
𝑘=1

𝑥⃗2
𝑖1𝑘.

3. Main results

In this section, we consider the low-tubal-rank tensor completion problem via solving the following tensor nuclear norm mini-

mization model. The TNN minimization model is formulated as follows

min


‖‖TNN

s.t. 𝑖𝑗𝑘 =𝑖𝑗𝑘, (𝑖, 𝑗, 𝑘) ∈ Ω,
(3)

where Ω is the index set of observed entries. Different from previous works, in which Ω is generated via uniformly random sampling, 
our work considers the situation where the elements are randomly chosen according to a specific biased distribution. Before giving 
the specific distribution, the definition of the tensor leverage score is needed.

Definition 13 (Tensor Leverage Score). Let the reduced t-SVD of a tensor  be  ∗  ∗ ⊤. Its (normalized) leverage scores 𝜇𝑖()
for the 𝑖-th tensor row (𝑖, ∶, ∶) and 𝜈𝑗 () for the 𝑗-th tensor column (∶, 𝑗, ∶) are defined as

𝜇𝑖() ∶=
𝑛1
𝑟

‖‖‖ ⊤ ∗ 𝑒𝑖
‖‖‖22∗ , 𝑖 = 1,2,⋯ , 𝑛1,

𝜈𝑗 () ∶=
𝑛2
𝑟

‖‖‖⊤ ∗ 𝑒𝑗
‖‖‖22∗ , 𝑗 = 1,2,⋯ , 𝑛2.

(4)

The tensor incoherent condition in (25) of [39] represents the case that all leverage scores are bounded by 𝜇0.

Theorem 1. Suppose  is an 𝑛1 × 𝑛2 × 𝑛3 tensor and its reduced t-SVD is given by  ∗  ∗ ⊤ where  ∈ ℝ𝑛1×𝑟×𝑛3 ,  ∈ ℝ𝑟×𝑟×𝑛3 and 
 ∈ℝ𝑛2×𝑟×𝑛3 . There is a universal constant 𝑐0 > 0 such that, if each element (𝑖, 𝑗, 𝑘) is independently observed with probability 𝑝𝑖𝑗𝑘, and 𝑝𝑖𝑗𝑘
satisfies

𝑝𝑖𝑗𝑘 ≥min

{
𝑐0
(𝜇𝑖() + 𝜈𝑗 ())𝑟 log2((𝑛1 + 𝑛2)𝑛3)

min{𝑛1, 𝑛2}
,1

}
,

𝑝𝑖𝑗𝑘 ≥
8

min{𝑛1, 𝑛2}8𝑛113
,

then  is the unique minimizer to (3) with probability at least 1 − 5(𝑛1 + 𝑛2)−10.

Remark 1. The second inequality in Theorem 1 only requires all 𝑝𝑖𝑗𝑘 being non-zero. The specific value of 8
min{𝑛1 ,𝑛2}8𝑛113

comes from 

the scaling of some inequalities in our proof of Theorem 1. This lower bound could be adjusted while the probability of successful 
5

recovery will also change accordingly.
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Remark 2. If 𝑝𝑖𝑗𝑘 in Theorem 1 are all the same, indicating the uniformly random sampling, and all tensor leverage scores are upper 
bounded by 𝜇0, our theoretical result in Theorem 1 would reduce to the existing guarantees for incoherent tensors with uniformly 
random sampling in [39].

Remark 3. If 𝑛3 = 1, Theorem 1 conforms to Theorem 2 in [17] and the road map of our analysis also largely follows the line in 
[17]. However, as mentioned in [39], when 𝑛3 > 1, under the leveraged sampling of the tensor, the problem does not reduce to 
slice-wise matrix completion under leveraged sampling in the Fourier domain since the measurements are coupled. Thus, the main 
difference brought in by the tensor case makes our analysis more difficult than [17], as the sampling is in the original domain while 
the tensor-tensor product is computed in the Fourier transformed domain.

We can easily deduce that the minimal expected number of observed elements for exact recovery of  in (3) is 
∑

𝑖𝑗𝑘 𝑝𝑖𝑗𝑘, and we 
have

∑
𝑖𝑗𝑘

𝑝𝑖𝑗𝑘 ≥max

{∑
𝑖,𝑗,𝑘

8
(min{𝑛1, 𝑛2})8𝑛113

, 𝑐0
𝑟 log2((𝑛1 + 𝑛2)𝑛3)

min{𝑛1, 𝑛2}
∑
𝑖,𝑗,𝑘

(𝜇𝑖() + 𝜈𝑗 ())

}
= 2𝑐0𝑛3𝑟max{𝑛1, 𝑛2} log2

(
(𝑛1 + 𝑛2)𝑛3

)
.

3.1. Proof of Theorem 1

The proof of Theorem 1 follows by (i) verifying that  is the unique minimum tubal nuclear norm solution to (3) under specific 
conditions, and (ii) then validating that such conditions are met w.h.p. under the conditions of Theorem 1.

Without loss of generality, we assume 𝑛1 = 𝑛2 = 𝑛. Let Ω ∶ℝ𝑛×𝑛×𝑛3 →ℝ𝑛×𝑛×𝑛3 be a random projection as follows,

Ω() =
∑
𝑖,𝑗,𝑘

1
𝑝𝑖𝑗𝑘

𝛿𝑖𝑗𝑘𝑖𝑗𝑘𝑒𝑖 ∗ 𝑒̊𝑘 ∗ 𝑒⊤𝑗 , (5)

where 𝛿𝑖𝑗𝑘 = 𝟏(𝑖,𝑗,𝑘)∈Ω is a random variable and 𝟏(⋅) is the indicator function.

Before continuing, let’s define two projections 𝑇 and 𝑇⊥ , given that the t-SVD of  in (3) is  ∗  ∗ ⊤, as follows,

𝑇 () = ∗ ⊤ ∗+ ∗  ∗ ⊤ − ∗ ⊤ ∗ ∗  ∗ ⊤,

𝑇⊥ () =− 𝑃𝑇 () = ( − ∗ ⊤) ∗ ∗ ( −  ∗ ⊤),

where  ∈ℝ𝑛×𝑛×𝑛3 is the identity tensor. With projections defined above, the tensor space ℝ𝑛×𝑛×𝑛3 is orthogonally decomposed into 
𝑇 and 𝑇⊥ and they satisfy ℝ𝑛×𝑛×𝑛3 = 𝑇 ⊕ 𝑇⊥.

Then, we give the following Proposition, to derive conditions required for verifying whether  is the unique minimum solution 
to (3).

Proposition 1. The tensor  is the minimizer to (3) if the following conditions hold: (i) ‖𝑇Ω𝑇 −𝑇 ‖op ≤
1
2 ; (ii) there exists a tensor 

 such that Ω() = , ‖𝑇 () − ∗ ⊤‖𝐹 ≤ 1
𝑛4𝑛53

, and ‖𝑇⊥ ()‖ ≤ 1
2 .

To prove Proposition 1, we restate some facts borrowed from [39] as follows

⎧⎪⎨⎪⎩
‖𝑇⊥ ()‖TNN = 𝑛3

⟨
⊥ ∗ ⊤

⊥
, ⊥ ()

⟩
,‖‖TNN = 𝑛3

⟨
 ∗ ⊤ +⊥ ∗ ⊤

⊥
,

⟩
,‖ ∗ ⊤ +⊥ ∗ ⊤

⊥
‖ = 1.

Meanwhile, the following lemma is needed. Its proof can be found in Appendix.

Lemma 1. Suppose ‖𝑇Ω𝑇 −𝑇 ‖op ≤
1
2 . Denote the smallest 𝑝𝑖𝑗𝑘 as 𝑝min. Then for any  such that Ω( = 0), we have

√
2𝑛 𝑝
6

‖𝑇⊥ ()‖TNN >
3 min

2
‖𝑇 ()‖𝐹 .
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Given any  ∈ℝ𝑛×𝑛×𝑛3 such that Ω() = 0 and the t-SVD of 𝑇⊥ () to be 𝑇⊥ () =⊥ ∗ ⊥ ∗ ⊥, we have

‖+‖TNN ≥ 𝑛3
⟨
 ∗ ⊤ +⊥ ∗ ⊤

⊥
,+

⟩
= ‖‖TNN + 𝑛3

⟨
 ∗ ⊤ +⊥ ∗ ⊤

⊥
,
⟩

= ‖‖TNN + 𝑛3
⟨
 ∗ ⊤,𝑇 ()

⟩
+ 𝑛3

⟨
⊥ ∗ ⊤

⊥
,𝑇⊥ ()

⟩
= ‖‖TNN + 𝑛3

⟨
 ∗ ⊤ −𝑇 (),𝑇 ()

⟩
+ 𝑛3

⟨
⊥ ∗ ⊤

⊥
−𝑇⊥ (),𝑇⊥ ()

⟩
= ‖‖TNN +

⟨
 

⊤
−𝑇 (),𝑇 ()

⟩
+ ‖𝑇⊥ ()‖TNN − ⟨𝑇⊥ (),𝑇⊥ ()⟩

≥ ‖‖TNN − ‖ 
⊤
−𝑇 ()‖𝐹 ‖𝑇 ()‖𝐹 + ‖𝑇⊥ ()‖TNN − ‖𝑇⊥ ()‖‖𝑇⊥ ()‖∗

Then, considering that the ‖𝑇⊥ ()‖∗ is exactly the TNN of 𝑇⊥ (), we have

‖+‖TNN ≥ ‖‖TNN − ‖ 
⊤
−𝑇 ()‖𝐹 ‖𝑇 ()‖𝐹 + ‖𝑇⊥ ()‖TNN − ‖𝑇⊥ ()‖‖𝑇⊥ ()‖∗

= ‖‖TNN − 𝑛3‖ ∗ ⊤ −𝑇 ()‖𝐹 ‖𝑇 ()‖𝐹 + ‖𝑇⊥ ()‖TNN − ‖𝑇⊥ ()‖‖𝑇⊥ ()‖TNN

≥ ‖‖TNN − 1
𝑛4𝑛43

‖𝑇 ()‖𝐹 + 1
2
‖𝑇⊥ ()‖TNN

> ‖‖TNN.

The above inequality is similar to [39] and interested readers can refer to it for detailed derivations. So far, for any  ≠ obeying 
Ω( −) = 0, we have ‖‖TNN > ‖‖TNN, which proves  is the unique minimizer of (3).

In the subsequent part, we will validate the first condition in Proposition 1, construct a tensor dual certificate  , and prove the 
constructed  satisfies both requirements of the second condition in Proposition 1.

Lemma 2. If 𝑝𝑖𝑗𝑘 ≥min{ 28𝛽 log(𝑛𝑛3)(𝜇𝑖+𝜈𝑗 )𝑟
3𝑛 , 1} for all (𝑖, 𝑗, 𝑘), then

‖𝑇Ω𝑇 −𝑇 ‖op ≤
1
2

holds with probability at least 1 − 2(𝑛𝑛3)1−𝛽 .

Lemma 2, whose proof can be seen in Appendix, shows that condition 1 in Proposition 1 is satisfied w.h.p. if 𝑝𝑖𝑗𝑘 satisfies conditions 
in Theorem 1.

The construction of the dual certificate follows the Golfing Scheme introduced by Gross [45] using the iterative strategy in 
[14,17,16,39]. Let Ω be a union of smaller sets Ω𝑡 such that Ω = ∪𝑡0

𝑡=1Ω𝑡 where 𝑡0 = ⌊5 log(𝑛𝑛3)⌋. For each 𝑡, it is assumed that

ℙ[(𝑖, 𝑗, 𝑘) ∈ Ω𝑡] = 𝑞𝑖𝑗𝑘 ∶= 1 − (1 − 𝑝𝑖𝑗𝑘)
1
𝑡0 ,

and it is not difficult to verify that it’s equivalent to our original Ω. Define Ω𝑡
() as follows

Ω𝑡
() =

∑
𝑖,𝑗,𝑘

1
𝑞𝑖𝑗𝑘

𝟏(𝑖,𝑗,𝑘)∈Ω𝑡
𝑖𝑗𝑘𝑒𝑖 ∗ 𝑒̊𝑘 ∗ 𝑒⊤𝑗 .

Set 0 = 𝟎 being a zero tensor and for each 𝑡 = 1, 2, ⋯ , 𝑡0,

𝑡 =𝑡−1 +Ω𝑡
𝑇 ( ∗ ⊤ −𝑇 (𝑡−1)),

and tensor  =𝑡0
. By this construction we can see Ω() = .

For 𝑡 = 0, 1, ⋯ , 𝑡0, set 𝑡 = ∗ ⊤ −𝑇 (𝑡). Then we have 0 = ∗ ⊤ and

𝑡 = (𝑇 −𝑇Ω𝑡
𝑇 )(𝑡−1).

Applying Lemma 2 with Ω replaced by Ω𝑡, with probability at least 1 − 2(𝑛𝑛3)
(1− 3𝑐0

140 ), we obtain that

‖𝑡‖𝐹 ≤ ‖𝑇 −𝑇Ω𝑇
𝑇 ‖op‖𝑡−1‖𝐹 ≤

1
2
‖𝑡−1‖𝐹 .

Applying the above inequality recursively with 𝑡 ∶= 𝑡0, 𝑡0 − 1, ⋯ , 1, gives

‖𝑇 () − ∗ ⊤‖𝐹 ≤ ( 1
2
)𝑡0‖ ∗ ⊤‖𝐹 ≤

√
𝑟

𝑛5𝑛53

≤
1

𝑛4𝑛53

.

7

In order to proceed, we need more definitions.
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Definition 14 (Tensor 𝜇(∞, 2 ∗) norm). The 𝜇(∞, 2 ∗) norm of a tensor  ∈ℝ𝑛1×𝑛2×𝑛3 is defined as

‖‖𝜇(∞,2∗) ∶= max
⎧⎪⎨⎪⎩max

𝑖

√
𝑛

𝜇𝑖𝑟

∑
𝑏,𝑘

2
𝑖𝑏𝑘

,max
𝑗

√
𝑛

𝜈𝑗𝑟

∑
𝑎,𝑘

2
𝑎𝑗𝑘

⎫⎪⎬⎪⎭
Definition 15 (Tensor 𝜇(∞) norm). The 𝜇(∞) norm of a tensor  ∈ℝ𝑛1×𝑛2×𝑛3 is defined as

‖‖𝜇(∞) ∶= max
𝑖,𝑗

|||||𝑖𝑗𝑘

√
𝑛

𝜇𝑖𝑟

√
𝑛

𝜈𝑗𝑟

||||| .
Before we continue, three technical lemmas, whose proof can be found in Appendix, are shown as follows.

Lemma 3. If 𝑝𝑖𝑗𝑘 ≥min{𝑐0
(𝜇𝑖+𝜈𝑗 )𝑟 log2(2𝑛𝑛3)

𝑛
, 1}, and  ∈𝑅𝑛×𝑛×𝑛3 , then for any constant 𝑐 ≥ 4

log(2𝑛𝑛3)
, we have

‖Ω() −‖ ≤ 𝑐√
𝑐0

(‖‖𝜇(∞) + ‖‖𝜇(∞,2∗)
)

holds with probability at least 1 − (2𝑛𝑛3)−(𝑐−1).

Lemma 4. If 𝑝𝑖𝑗𝑘 ≥min{𝑐0
(𝜇𝑖+𝜈𝑗 )𝑟 log2(2𝑛𝑛3)

𝑛
, 1}, for some constant 𝑐1 making 𝑐1

𝑐0
≤

log(2𝑛𝑛3)
48 , and  ∈𝑅𝑛×𝑛×𝑛3 , then

‖𝑇Ω() −𝑇 ()‖𝜇(∞,2∗) ≤
1
2
(‖‖𝜇(∞) + ‖‖𝜇(∞,2∗))

holds with probability at least 1 − 2𝑛2−𝑐1𝑛−(𝑐1−1)3 .

Lemma 5. If 𝑝𝑖𝑗𝑘 ≥min{𝑐0
(𝜇𝑖+𝜈𝑗 )𝑟 log2(2𝑛𝑛3)

𝑛
, 1}, and  ∈𝑅𝑛×𝑛×𝑛3 , then

‖(𝑇Ω𝑇 −𝑇 )‖𝜇(∞) ≤
1
2
‖‖𝜇(∞)

holds with probability at least 1 − 2𝑛−(
3𝑐0 log(2𝑛𝑛3)

124 −2)𝑛
1− 3𝑐0 log(2𝑛𝑛3)

124
3 .

By the construction,  can be rewritten as 
𝑡0∑
𝑡=1

(Ω𝑇
𝑇 )(𝑡−1). It follows that

‖𝑇⊥ ()‖ ≤ 𝑡0∑
𝑡=1

‖(Ω𝑇
− )𝑇 (𝑡−1)‖.

Then, we apply Lemma 3, and have that, w.h.p.,

‖𝑇⊥ ()‖ ≤ 𝑐√
𝑐0
(
𝑡0∑
𝑡=1

‖𝑡−1‖𝜇(∞) +
𝑡0∑
𝑡=1

‖𝑡−1‖𝜇(∞,2∗)).

After applying Lemma 5, we have, w.h.p.,

‖𝑡−1‖𝜇(∞) = ‖(𝑇 −𝑇Ω𝑡−1
𝑇 )𝑡−2‖𝜇(∞) ≤ ( 1

2
)𝑡−1‖ ∗ ⊤‖𝜇(∞).

Also, applying Lemma 4, we have, w.h.p.,

‖𝑡−1‖𝜇(∞,2∗) = ‖(𝑇 −𝑇Ω𝑡−1
𝑇 )𝑡−2‖𝜇(∞,2∗)

≤
1
2
‖𝑡−2‖𝜇(∞) +

1
2
‖𝑡−2‖𝜇(∞,2∗)

≤ ( 1
2
)𝑡−1‖ ∗ ⊤‖𝜇(∞) +

1
2
‖𝑡−2‖𝜇(∞,2∗)

≤ (𝑡− 1)( 1
2
)𝑡−1‖ ∗ ⊤‖𝜇(∞) + ( 1

2
)𝑡−1‖ ∗ ⊤‖𝜇(∞,2).
8

It follows that
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Algorithm 1 Two-phase sampling for tensor completion.

Input: Tubal-rank 𝑟, 𝑚, 𝛽 ∈ [0, 1]
Step 1: Acquire the first index set Ω1 by sampling uniformly without replacement such that |Ω1| = 𝛽𝑚. Compute t-SVD of Ω(𝑀), ̃𝑈 Σ̃𝑉 𝑇 , and estimate the tensor 

leverage scores 𝜇̃𝑖 and 𝜈̃𝑗 .
Step 2: Obtain the second index set Ω2 by sampling without replacement according to the distribution (6). Then, solve the minimization problem in (7).

Output: The completed tensor ̂.

‖𝑇⊥ ()‖ ≤ 𝑐√
𝑐0
(
𝑡0∑
𝑡=1

(𝑡)( 1
2
)𝑡−1‖ ∗ ⊤‖𝜇(∞) +

𝑡0∑
𝑡=1

( 1
2
)𝑡−1‖ ∗ ⊤‖𝜇(∞,2∗))

≤ 4 𝑐√
𝑐0
‖ ∗ ⊤‖𝜇(∞) + 2 𝑐√

𝑐0
‖ ∗ ⊤‖𝜇(∞,2∗).

With 𝑐0 large enough, we can conclude that

‖𝑇⊥ ()‖ ≤ 6 𝑐√
𝑐0

≤
1
2
.

As we have shown in the above argument, if 𝑝𝑖𝑗𝑘 satisfies the inequalities in Theorem 1 for all (𝑖, 𝑗, 𝑘), conditions in Proposition 1

are met with probability at least 1 − 5(𝑛1 + 𝑛2)−10. Then, the proof of Theorem 1 follows directly from Proposition 1.

3.2. Two-phase adaptive sampling

We have seen that an arbitrary 𝑛 × 𝑛 × 𝑛3 tensor with tubal-rank 𝑟 can be exactly restored with 𝑂(𝑛𝑛3𝑟 log2(𝑛𝑛3)) elements which 
are sampled according to the tensor leverage scores. A pertinent question is how to conduct the random sampling according to the 
probability described in Theorem 1 when tensor leverage scores are not known a priori. In this part, we proposed a two-phase adaptive 
sampling strategy, which is greatly inspired by [17].

Suppose 𝑚 elements of  ∈ ℝ𝑛1×𝑛2×𝑛3 in (3) can be randomly observed, we can estimate the tensor leverage scores of the 
underlying tensor from the set of indices Ω1 obtained by first sampling uniformly without replacement, where ||Ω1|| = 𝛽𝑚 and 𝛽 ∈ [0, 1]
is the proportion of the index number of Ω1 to the sample budget 𝑚. Then, we compute the t-SVD of Ω1

(), i.e., Ω1
() =1 ∗

1 ∗ 1
⊤. Let ̃ = 1(∶, 1 ∶ 𝑟, ∶) ∈ ℝ𝑛×𝑟×𝑛3 and ̃ = 1(∶, 1 ∶ 𝑟, ∶) ∈ ℝ𝑛×𝑟×𝑛3 . Thus, the estimated leverage scores values of 𝜇̃𝑖 and 

values of 𝜈̃𝑗 can be obtained via (4) using ̃ and ̃ . Second, we generate the index set Ω2, which contains the remaining (1 − 𝛽)𝑚
entries of the tensor , by sampling without replacement with distribution

𝑝𝑖𝑗𝑘 ∝
(𝜇𝑖 + 𝑣𝑗 )𝑟 log2(2min{𝑛1, 𝑛2}𝑛3)

𝑛
. (6)

Then, we solve the following problem to obtain the final completion result.

̂ = argmin

‖‖TNN s.t. Ω1∪Ω2

() = Ω1∪Ω2
(). (7)

Our two-phase adaptive sampling strategy is summarized in Algorithm 1. Similar to the discussion in [17], if the underlying tensor 
is incoherent, this algorithm will successfully recover  if |Ω1| =Θ(𝑛𝑛3𝑟 log2(𝑛𝑛3)) with 𝑛 =min{𝑛1, 𝑛2}. On the contrary, when 
is highly coherent with most of the energy concentrating on only a few elements, the estimation of tensor leverage scores would 
be seriously affected, resulting in a poor recovery result. Between these two extremes, our two-phase adaptive sampling strategy is 
believed to generate a better estimation of  than the entirely uniform random sampling, and the numerical experiments in the 
subsequent section can support it.

Although the two-phase adaptive sampling strategy is inspired by [17], but we have two key distinctions: i) We use a tensor 
leverage score, which allows us to handle higher dimensional data better. ii) We propose a specialized two-phase strategy for traffic 
data by utilizing the periodicity of traffic flow (using the first week or the previous week’s data to approximate the leverage score as the 
first phase, instead of the traditional uniform sampling). This novel design sampling largely enhances the flexibility and practicality 
of our method for real-world applications.

4. Numerical experiments

In this section, we conduct experiments on synthetic data and real data to verify our theoretical results and the effectiveness of 
the two-phase sampling strategy.

4.1. Synthetic data

The synthetic tensor  of size 𝑛 × 𝑛 × 𝑛3 = 100 × 100 × 50 and tubal-rank 2 is constructed via  =  ∗  ∗ ⊤ ∗ , where 
the elements of  ∈ ℝ100×2×50,  ∈ ℝ2×100×50 are randomly generated obeying the i.i.d. Gaussian  (0, 1) distribution and  ∈
ℝ100×100×50 is a tensor whose first frontal slice is a diagonal matrix with power-law decay, i.e., 𝑖𝑖1 = 𝑖−𝛼 for 1 ≤ 𝑖 ≤ 100, and whose 
9

other frontal slices are zero matrices. We refer to such construction as the power-law tensor. The parameter 𝛼 adjusts the tensor 
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Table 1

The minimal samples (×𝑛𝑛3 log(𝑛𝑛3)) required for successful recovery of the power-law tensors with different 𝛼.

𝛼 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Uniform 1.1 1.3 1.9 1.9 2.9 4 5.3 5.6 7.1 7.3 7.8

Two-phase 1.1 1.1 1.1 1.1 1.3 1.3 1.3 1.4 1.4 1.4 1.5

“Oracle” 1 1 1 1 1 0.9 0.8 0.8 0.7 0.7 0.7

Fig. 2. The minimal samples (×𝑛𝑛3 log(𝑛𝑛3)) required for successful recovery of the power-law tensors with different 𝛽s.

leverage scores and the coherence level of  with 𝛼 = 0 being maximal incoherence 𝜇0 = Θ(1) and 𝛼 = 1 corresponding to maximal 
coherence 𝜇0 = Θ(𝑛).3 Finally, we normalize the generated  to make ‖‖𝐹 = 1.

First, we compare different random sampling schemes, including the uniform sampling, our two-phase sampling strategy, and the 
leveraged sampling (denoted as “Oracle”), i.e., sampling according to the probability computed in (6) with groundtruth tensor leverage 
scores. After sampling, the reconstruction is realized via optimizing (3). The minimal samples required for successful recovery, which 
is defined as when at least 95% of trials have relative errors in the Frobenius norm ‖ − ̂‖𝐹 ∕‖‖𝐹 not exceeding 0.01, of the 
simulated tensor with respect to different 𝛼s are shown in Table 1. As 𝛼 becomes larger, the coherence level increases, and most 
energy of the tensor data would concentrate on a few entries, which are favored by the leveraged sampling. Thus, as 𝛼 becomes 
larger, the number of required samples for the successful recovery becomes less through leveraged sampling. Meanwhile, we can see 
that, as the parameter 𝛼 varies from 0 to 1, our two-phase sampling strategy achieves comparable results as the leveraged sampling.

Second, we test our two-phase sampling strategy with respect to different values of 𝛽. Fig. 2 illustrates the minimal samples 
required for successful recovery with different values of 𝛽. It can be found that the selection of 𝛽 is robust for the successful recovery 
in the interval of [0.1, 0.6].

4.2. Color images completion

In this part, we conduct experiments on 20 color images which are of the size 481 × 321 × 3 (width × height × color channel) 
selected from the Berkeley Segmentation Dataset [46]. Compared methods are i) LRMC with uniform sampling [11], denoted as “LRMC 
(Uniform)”, ii) LRMC with a two-phase adaptive sampling strategy [17], denoted as “LRMC (Adaptive)”, iii) HaLRTC with random 
sampling [2], denoted as “HaLRTC (Uniform)”, iv) TNN with random sampling [39], denoted as “TNN (Uniform)”, v) discrete cosine 
transformation (DCT) based TNN with random sampling [29], denoted as “DCT-TNN (Uniform)”, vi) TNN minimization with leveraged 
sampling, denoted as “TNN (“Oracle”)”, and vii) TNN minimization with our two-phase adaptive sampling strategy, denoted as “TNN 
(“Adaptive”)”. The peak signal-to-noise ratio (PSNR) and the structural similarity index (SSIM) [47] are computed for quantitative 
evaluation of the completion results. Higher values of PSNR and SSIM indicate better reconstruction results. In our experiment, 50% 
of the entries are sampled in total. When conducting the uniformly random sampling and the adaptively leveraged sampling, those 
observed entries are sampled at once. For a fair comparison, when doing the adaptive two-phase sampling, we set 𝛽 = 0.6 and elements 
sampled in the first phase are randomly extracted from those selected by TNN (Uniform).

We exhibit PSNR values and SSIM values of results in Fig. 3. For better visualization, the vertical axis starts from 20 for the PSNR 
and 0.75 for the SSIM, respectively. From Fig. 3, we can see an overall trend that i) results by tensor-based methods are better than 
those by matrix-based methods, and ii) adaptive sampling could help to generate better reconstructions than uniform sampling with 
the same amount of observed entries. Meanwhile, the performance of our two-phase adaptive sampling is close to “Oracle” leveraged 
sampling, especially in terms of the SSIM values.
10

3 Here, 𝜇0 is the upper bound of tensor leverage scores and it is indeed the 𝜇0 in (25) of [39].
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Fig. 3. The PSNR values of the first 20 images and the SSIM values of the last 20 images.

Fig. 4. The completion results of one color image.

The reason our method performs better is that the usage of tensor leverage score allows us to take more information-rich points, as 
is shown in Fig. 1, which allows for better detail recovery. For example, Fig. 4 displays the reconstruction results on one image. From 
the enlarged area, the superiority of our methods are obvious as the nostril are restored better. However, for less information-rich 
points, even if fewer points are selected, it does not have a significant effect on the recovery result. Therefore, with the same total 
sampling rate, we have better overall results, and our approach is particularly well suited for some downstream tasks that require 
greater detail. It is worth noting that our adaptive method performs only a little worse than the oracle method, which means that we 
are able to recover the image fairly well without knowing the leverage score in advance.

4.3. Multispectral image completion

In this section, we conduct experiments on the CAVE data set [48] provided by the Computer Science Department at Columbia 
University. The data set consists of multispectral images which are of the size 512 × 512 × 31 (spatial height × spatial width ×
spectrum). The third dimension comprising full spectral resolution reflectance data that ranges from 400 nm to 700 nm in 10 nm 
increments, totaling 31 bands. We selected the mean values of PSNR and SSIM of frontal slices to quantitatively measure the quality 
11

of the results. The total sampling rate for all methods is set as 50%, where the sampling points in the first phase of the adaptive 
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Table 2

The average PSNR and SSIM values of different methods 
in MSI data.

Method PSNR SSIM

Observed 21.71 0.1382

LRMC Uniform 46.32 0.9169

LRMC Adaptive 47.09 0.8935

HaLRTC Uniform 47.66 0.8655

TNN Uniform 55.01 0.9440

DCT-TNN Uniform 54.85 0.9417

TNN Oracle 56.81 0.9421

TNN Adaptive 55.40 0.9436

TNN Adaptive (interpolation) 56.08 0.9452

Table 3

The averaged MAPE and RMSE values of differ-

ent methods in traffic data.

Methods MAPE RMSE

Observe 50.00% 0.6390

LRMC Uniform 2.13% 0.0324

LRMC Adaptive 2.46% 0.0364

HaLRTC Uniform 4.43% 0.0490

TNN Uniform 2.18% 0.0304

DCT-TNN Uniform 2.18% 0.0304

TNN Oracle 1.24% 0.0197

TNN Adaptive-Latest 1.46% 0.0229

TNN Adaptive-First 1.45% 0.0236

sampling accounted for 60% of the total number of sampling points. The TNN Adaptive (interpolated version) method interpolates 
all the unsampled ones after sampling uniformly in the first stage, and then calculates the leverage score to select the samples for the 
second stage.

Table 2 provides quantitative measurements of results obtained with different methods. When rotating the images to size 𝑛3 ×𝑛1 ×
𝑛2, the two matrix-based methods (LRMC Uniform and LRMC Adaptive) as well as HaLRTC Uniform performed the worst in terms 
of both PSNR and SSIM indices. In contrast, tensor methods based on leverage score achieved the best results overall. In particular, 
the Oracle method excelled in PSNR, while TNN Adaptive (interpolation) achieved the highest SSIM. However, the performance 
differences among these top methods are slight.

4.4. Traffic data

In this part, we conduct experiments on traffic data [49] (A set of 207 days, 1440 time windows and 21 detection points of traffic 
speed data) provided by Grenoble traffic Lab (GTL), which can constitute a third-order tensor of size 1440 ×207 ×21. As in practice the 
leverage score of the week is not known, we designed some methods trying to use the leverage score of historical data. We manually 
clipped the continuous dataset, selecting 1440 time windows and 21 detection points from the 8th day (inclusive) to the 203rd day 
(inclusive), and obtained some continuous data set of size 1440 × 7 × 21 as the actual complete test dataset. The Root Mean Square 
Error (RMSE) and Mean Absolute Percentage Error (MAPE) are computed to quantitatively measure the quality of the results. The 
sampling rate is 50% for all methods. In this case, as the traffic data exhibit typical cyclicity, we can estimate the tensor leverage 
scores from previous periods. Thus, we add two alternatives of our method: i) TNN Adaptive-Latest, which means the tensor leverage 
scores are estimated from last week, and ii) TNN Adaptive-First, which obtains the tensor leverage scores from the first week (not 
involved in testing). Table 3 gives the quantitative measures of the results obtained by the different methods. We can see that the 
oracle case of our method achieves the best performance and two alternatives are comparable to the oracle case.

We present MAPE values and RMSE values of results in Fig. 5. From Fig. 5, we observe an overall trend that i) results by leverage 
score sampling based methods are better than those using uniform sampling, and ii) the sampling method based on this week’s 
leverage score helped reconstruction the most, and iii) the matrix-based method performs worse than other tensor-based methods 
except HaLRTC Uniform. Meanwhile, the sampling method based on the first and previous week’s leverage score also have a significant 
increase in MAPE and RMSE values, and the difference in the improvement was not significant. This is in large part due to the fact 
that our tensor leverage score sampling enables sampling to be more focused on data points that differ from their surrounding points. 
Fig. 6 displays the reconstruction results on 5-th lateral slice of traffic data in week 18. As can be seen from the figure, the three 
leverage score based methods are much better than the others in some details. Interestingly, the highlighted area that contrasts with 
the surrounding region is the traffic data of the area around the Centre Commercial Grand’Place during afternoon rush hour, and our 
12

advantage in recovering data like that allows for more accurate downstream tasks like traffic jams analysis.
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Fig. 5. The MAPE and RMSE values of every week, respectively.

In this experiment, we have given two-phase strategy a very novel meaning. In the first phase, not only can we estimate leverage 
scores using uniform sampling like what we did in the first three experiments, but we can also utilize historical data to estimate the 
leverage score of current data in periodic datasets. This insight allows our approach to be used in more realistic scenarios.

5. Concluding remarks

In this work, we define the tensor leverage scores, which can be viewed as the local version of the tensor incoherent condition. 
Then, we prove that one can exactly recover any low-tubal-rank tensor from as few as 𝑂(𝑟𝑛𝑛3 log2(𝑛𝑛3)) random observations via 
solving a convex optimization problem with high probability. The required condition is that the random selection of entries is made 
adaptive to a specific distribution and the probability of entries being sampled should be at least a constant times the sum of the 
tensor leverage scores. A two-phase adaptive sampling strategy follows with our theoretical results. Experiments verify our theory 
and show that our two-phase adaptive sampling works well.
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Appendix A. Noncommutative Bernstein inequality

First, we introduce the Noncommutative Bernstein Inequality (NBI) [15], which will be frequently utilized throughout this Ap-
13

pendix.
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Fig. 6. The 5-th lateral slice of the reconstructions by different methods on the traffic data (Week 18).

Theorem 2 (Noncommutative Bernstein Inequality [15]). Let 𝐗1, 𝐗2, ⋯ , 𝐗𝐿 be independent zero-mean random matrices of dimension 𝑑1 ×
𝑑2. Suppose

𝜌2
𝑘
=max{‖𝔼[𝐗𝑘𝐗⊤

𝑘
]‖,‖𝔼[𝐗⊤

𝐾
𝐗𝐾 ]‖}

and

‖𝐗𝐾‖ ≤𝑀

almost surely for all k. Then for any 𝜏 > 0,

ℙ[‖ 𝐿∑
𝑘=1

𝐗𝑘‖ ≥ 𝜏] ≤ (𝑑1 + 𝑑2) exp(
−𝜏2∕2∑𝐿

𝑘=1 𝜌
2
𝑘
+𝑀𝜏∕3

)

If

max{‖ 𝐿∑
𝑘=1

𝐗𝐾𝐗⊤
𝐾
‖,‖ 𝐿∑

𝑘=1
𝐗⊤

𝐾
𝐗𝐾‖} ≤ 𝜎2

and let

𝜏 =
√

4𝑐𝜎2 log(𝑑1 + 𝑑2) + 𝑐𝑀 log(𝑑1 + 𝑑2)

for any 𝑐 > 0, then

𝐿∑
−(𝑐−1)
14

ℙ[‖
𝑘=1

𝐗𝑘‖ ≥ 𝜏] ≤ (𝑑1 + 𝑑2) .
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Appendix B. Proof of technical lemmas

In this part, we give the detailed proof of all the lemmas in our main manuscript. For the readers’ convenience, we would first 
restate those lemmas and then prove them.

B.1. Proof of Lemma 1

Lemma 1. Suppose ‖𝑇Ω𝑇 −𝑇 ‖op ≤
1
2 . Denote the smallest 𝑝𝑖𝑗𝑘 as 𝑝min. Then for any  such that Ω( = 0), we have

‖𝑇⊥ ()‖TNN >

√
2𝑛3𝑝min

2
‖𝑇 ()‖𝐹 .

Proof of Lemma 1. Define the operator 
1
2
Ω ∶ℝ𝑛×𝑛×𝑛3 ↦ℝ𝑛×𝑛×𝑛3 by


1
2
Ω() =

∑
𝑖,𝑗,𝑘

1√
𝑝𝑖𝑗𝑘

𝛿𝑖𝑗𝑘𝑖𝑗𝑘𝑒𝑖 ∗ 𝑒̊𝑘 ∗ 𝑒⊤𝑗 .

Then

‖ 1
2
Ω ()‖𝐹 =

√⟨𝑇Ω𝑇 (),𝑇 ()⟩
=
√⟨(𝑇Ω𝑇 −𝑇 )(),𝑇 ()⟩+ ⟨𝑇 (),𝑇 ()⟩

≥
√‖𝑇 ()‖2

𝐹
− ‖𝑇Ω𝑇 −𝑇 ‖op‖𝑇 ()‖2

𝐹

≥
1√
2
‖𝑇 ()‖𝐹

Thus

‖ 1
2
Ω ()‖𝐹 = ‖−

1
2
Ω ⊥ ()‖𝐹 ≤

‖ ⊥ ()‖𝐹√
𝑝𝑚𝑖𝑛

.

Combining the equations gives

‖ ⊥ ()‖𝑇𝑁𝑁 ≥
√
𝑛3‖ ⊥ ()‖𝐹 ≥

√
𝑛3𝑝𝑚𝑖𝑛√

2
‖𝑇 ()‖𝐹 . □

B.2. Proof of Lemma 2

Lemma 2. If 𝑝𝑖𝑗𝑘 ≥min{ 28𝛽 log(𝑛𝑛3)(𝜇𝑖+𝜈𝑗 )𝑟
3𝑛 , 1} for all (𝑖, 𝑗, 𝑘), then

‖𝑇Ω𝑇 −𝑇 ‖op ≤
1
2

holds with probability at least 1 − 2(𝑛𝑛3)1−𝛽 .

Before proving Lemma 2, we need a fact borrowed from [39]:

‖𝑇 (𝑒𝑖 ∗ 𝑒𝑘 ∗ 𝑒𝑗
⊤)‖2

𝐹
≤

(𝜇𝑖 + 𝜈𝑗 )𝑟
𝑛

.

Proof of Lemma 2. Define the operator 𝑖𝑗𝑘 which maps  to 1
𝑝𝑖𝑗𝑘

𝛿𝑖𝑗𝑘

⟨
,𝑇 (𝑒𝑖 ∗ 𝑒̊𝑘 ∗ 𝑒⊤

𝑗
)
⟩
𝑇 (𝑒𝑖 ∗ 𝑒̊𝑘 ∗ 𝑒⊤

𝑗
). When 𝑝𝑖𝑗𝑘 ≥

28𝛽 (𝜇𝑖+𝜈𝑗 )𝑟 log𝑛
3𝑛 , we have

‖𝑖𝑗𝑘 −
1

𝑛2𝑛3
𝑇 ‖op = ‖𝑖𝑗𝑘 −

1
𝑛2𝑛3

𝑇 ‖op ≤max
{

1
𝑝𝑖𝑗𝑘

‖𝑇 (𝑒𝑖 ∗ 𝑒̊𝑘 ∗ 𝑒⊤𝑗 )‖2𝐹 , 1
𝑛2𝑛3

}
≤

(𝜇𝑖 + 𝜈𝑗 )𝑟
𝑝𝑖𝑗𝑘𝑛

On the other hand, observe that we have 𝔼[𝑖𝑗𝑘] =
1

𝑛2𝑛3
𝑇 . Thus, we have

‖‖‖‖‖𝔼
[
( 𝑖𝑗𝑘 −

1
𝑛2𝑛3

𝑇 )2
]‖‖‖‖‖ <

(
1

𝑝𝑖𝑗𝑘

(𝜇𝑖 + 𝜈𝑗 )𝑟
𝑛

1
𝑛2𝑛3

)‖‖𝑇
‖‖op ≤

(𝜇𝑖 + 𝜈𝑗 )𝑟
𝑝𝑖𝑗𝑘𝑛

3𝑛3
15

Now, let
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𝜏 =

√
7𝛽 log(𝑛𝑛3)𝑟(𝜇𝑖 + 𝜈𝑗 )

3𝑝𝑖𝑗𝑘𝑛
<

1
2

with some constant 𝛽 > 1. Then, we have

𝑃
[‖‖𝑇Ω𝑇 −𝑇

‖‖op > 𝜏
]
≤ 2𝑛𝑛3 exp

⎛⎜⎜⎜⎝
−7

6
𝛽 log(𝑛𝑛3)(𝜇𝑖+𝜈𝑗 )𝑟

𝑝𝑖𝑗𝑘𝑛

(𝜇𝑖+𝜈𝑗 )𝑟
𝑝𝑖𝑗𝑘𝑛

+ (𝜇𝑖+𝜈𝑗 )𝑟
6𝑝𝑖𝑗𝑘𝑛

⎞⎟⎟⎟⎠ ≤ (2𝑛𝑛3)1−𝛽 .

Therefore, we get

𝑃
[‖‖𝑇Ω𝑇 −𝑇

‖‖op ≤
1
2

]
≥ 𝑃

[‖‖𝑇Ω𝑇 −𝑇
‖‖op ≤ 𝜏

]
≥ 1 − (2𝑛𝑛3)1−𝛽 ,

which finishes the proof. □

B.2.1. Proof of Lemma 3

Lemma 3. If 𝑝𝑖𝑗𝑘 ≥min{𝑐0
(𝜇𝑖+𝜈𝑗 )𝑟 log2(2𝑛𝑛3)

𝑛
, 1}, and  ∈𝑅𝑛×𝑛×𝑛3 , then for any constant 𝑐 ≥ 4

log(2𝑛𝑛3)
, we have

‖Ω() −‖ ≤ 𝑐√
𝑐0

(‖‖𝜇(∞) + ‖‖𝜇(∞,2∗)
)

holds with probability at least 1 − (2𝑛𝑛3)−(𝑐−1).

Proof of Lemma 3. Let

Ω() − =
∑
𝑖,𝑗,𝑘

(𝑖𝑗𝑘) =
∑
𝑖,𝑗,𝑘

( 1
𝑝𝑖𝑗𝑘

𝛿𝑖𝑗𝑘 − 1)𝑖𝑗𝑘𝑒𝑖 ∗ 𝑒𝑘 ∗ 𝑒𝑗
⊤
,

where (𝑖𝑗𝑘) are independent tensors. Then we have

(𝑖𝑗𝑘) =
∑
𝑖,𝑗,𝑘

( 1
𝑝𝑖𝑗𝑘

𝛿𝑖𝑗𝑘 − 1)𝑖𝑗𝑘𝑒𝑖𝑒𝑘𝑒𝑗
⊤

Notice that 𝔼[𝑖𝑗𝑘] = 0 and ‖𝑖𝑗𝑘‖ ≤ 1
𝑝𝑖𝑗𝑘

‖‖∞. Moreover, we have

‖‖‖‖‖‖𝔼
[∑
𝑖,𝑗,𝑘

𝑖𝑗𝑘

⊤
𝑖𝑗𝑘

]‖‖‖‖‖‖ =
‖‖‖‖‖‖𝔼

[∑
𝑖,𝑗,𝑘

 ⊤
(𝑖𝑗𝑘)(𝑖𝑗𝑘)

]‖‖‖‖‖‖ =
‖‖‖‖‖‖
∑
𝑖,𝑗,𝑘

2
𝑖𝑗𝑘

𝑒𝑗 ∗ 𝑒𝑗
⊤𝔼( 1

𝑝𝑖𝑗𝑘
𝛿𝑖𝑗𝑘 − 1)2

‖‖‖‖‖‖ =max
𝑗

||||||
∑
𝑖,𝑘

1 − 𝑝𝑖𝑗𝑘

𝑝𝑖𝑗𝑘
2

𝑖𝑗𝑘

|||||| .
Similarly, 

‖‖‖‖𝔼 [∑𝑖,𝑗,𝑘 𝑖𝑗𝑘𝑖𝑗𝑘

⊤
]‖‖‖‖ is also bounded in the same way. Then, applying the matrix NBI [15], we have

‖Ω() −‖ = ‖Ω() −‖ = ‖∑
𝑖,𝑗,𝑘

𝐽(𝑖𝑗𝑘)‖op

≤

√√√√4𝑐 log(2𝑛𝑛3)max

{
max
𝑗

∑
𝑖,𝑘

1 − 𝑝𝑖𝑗𝑘

𝑝𝑖𝑗𝑘
2

𝑖𝑗𝑘
,max

𝑖

∑
𝑗,𝑘

1 − 𝑝𝑖𝑗𝑘

𝑝𝑖𝑗𝑘
2

𝑖𝑗𝑘

}
+ 𝑐max

𝑖,𝑗,𝑘

|𝑍𝑖𝑗𝑘|
𝑝𝑖𝑗𝑘

log(2𝑛𝑛3)

holds with probability at least 1 − (2𝑛𝑛3)−(𝑐−1). If 𝑝𝑖𝑗𝑘 ≥min
{
𝑐0

(𝜇𝑖+𝜈𝑗 )𝑟
𝑛

log2(2𝑛𝑛3),1
}

for all (𝑖, 𝑗, 𝑘) and a sufficiently large constant 

𝑐 ≥ 4
log(2𝑛𝑛3)

, we further have

‖Ω() −‖ ≤ 𝑐√
𝑐0
(‖‖𝜇(∞) + ‖‖𝜇(∞,2∗)) □

B.2.2. Proof of Lemma 4

Lemma 4. If 𝑝𝑖𝑗𝑘 ≥min{𝑐0
(𝜇𝑖+𝜈𝑗 )𝑟 log2(2𝑛𝑛3)

𝑛
, 1}, for some constant 𝑐1 making 𝑐1

𝑐0
≤

log(2𝑛𝑛3)
48 , and  ∈𝑅𝑛×𝑛×𝑛3 , then

‖𝑇Ω() −𝑇 ()‖𝜇(∞,2∗) ≤
1
2
(‖‖𝜇(∞) + ‖‖𝜇(∞,2∗))
16

holds with probability at least 1 − 2𝑛2−𝑐1𝑛−(𝑐1−1)3 .
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Proof of Lemma 4. Consider any 𝑏-th tensor column of 𝑇Ω() −𝑇 ():√
𝑛

𝜈𝑏𝑟
(𝑇Ω() −𝑇 ()) ∗ 𝑒𝑏 =

√
𝑛

𝜈𝑏𝑟

∑
𝑖,𝑗,𝑘

( 1
𝑝𝑖𝑗𝑘

𝛿𝑖𝑗𝑘 − 1)𝑖𝑗𝑘𝑇 (𝑒𝑖 ∗ 𝑒̊𝑘 ∗ 𝑒⊤𝑗 ) ∗ 𝑒𝑏

=
∑
𝑖,𝑗,𝑘

𝑎𝑖𝑗𝑘,

where 𝑎𝑖𝑗𝑘 ∈ ℝ𝑛×1×𝑛3 are zero-mean independent tensor columns. Let 𝑎̃𝑖𝑗𝑘 be the vectorized column vector of 𝑎𝑖𝑗𝑘. Then for some 
constant 𝑐0 > 0, we have

‖𝑎̃𝑖𝑗𝑘‖ = ‖𝑎𝑖𝑗𝑘‖2∗ ≤√ 𝑛

𝜈𝑏𝑟

1 − 𝑝𝑖𝑗𝑘

𝑝𝑖𝑗𝑘
𝑖𝑗𝑘‖𝑇 (𝑒𝑖 ∗ 𝑒𝑘 ∗ 𝑒𝑗

⊤) ∗ 𝑒𝑏‖2∗ ≤√ 𝑛

𝜈𝑏𝑟

|𝑖𝑗𝑘|
𝑝𝑖𝑗𝑘

‖𝑇 (𝑒𝑖 ∗ 𝑒𝑘 ∗ 𝑒𝑗
⊤) ∗ 𝑒𝑏‖2∗ .

When 𝑗 = 𝑏:

‖𝑎̃𝑖𝑗𝑘‖2 ≤√ 𝑛

𝜈𝑏𝑟

|𝑖𝑗𝑘|
𝑝𝑖𝑗𝑘

(
√

𝜇𝑖𝑟

𝑛
+
√

𝜈𝑏𝑟

𝑛
) ≤ 2

𝑐0 log2(2𝑛𝑛3)
‖‖𝜇(∞).

When 𝑗 ≠ 𝑏:

‖𝑎̃𝑖𝑗𝑘‖2 ≤√ 𝑛

𝜈𝑏𝑟

|𝑖𝑗𝑘|
𝑝𝑖𝑗𝑘

√
𝜈𝑗𝑟

𝑛

√
𝜈𝑏𝑟

𝑛
≤

2
𝑐0 log2(2𝑛𝑛3)

‖‖𝜇(∞),

given 𝑝𝑖𝑗𝑘 ≥min{ 𝑐0(𝜇𝑖+𝜈𝑗 )𝑟 log2(2𝑛𝑛3)
𝑛

, 1}. We also have

||||||𝔼
[∑
𝑖,𝑗,𝑘

𝑎̃⊤
𝑖𝑗𝑘

𝑎̃𝑖𝑗𝑘

]|||||| = 𝔼

[∑
𝑖,𝑗,𝑘

‖𝑎𝑖𝑗𝑘‖22∗
]

= 𝑛

𝜈𝑏𝑟

1 − 𝑝𝑖𝑗𝑘

𝑝𝑖𝑗𝑘

∑
𝑖,𝑗,𝑘

2
𝑖𝑗𝑘
‖𝑇 (𝑒𝑖 ∗ 𝑒𝑘 ∗ 𝑒𝑗

⊤) ∗ 𝑒𝑏‖22∗
= (

∑
𝑖,𝑗=𝑏,𝑘

+
∑

𝑖,𝑗≠𝑏,𝑘

) 𝑛

𝜈𝑏𝑟

1 − 𝑝𝑖𝑗𝑘

𝑝𝑖𝑗𝑘
2

𝑖𝑗𝑘
‖𝑇 (𝑒𝑖 ∗ 𝑒𝑘 ∗ 𝑒𝑗

⊤) ∗ 𝑒𝑏‖22∗
≤

(∑
𝑖,𝑘

2
𝜇𝑖𝑟+ 𝜈𝑏𝑟

𝑛
+
∑
𝑗≠𝑏,𝑘

‖𝑒𝑗⊤ ∗  ∗ ⊤ ∗ 𝑒𝑏‖2) 1 − 𝑝𝑖𝑏𝑘
𝑝𝑖𝑏𝑘

2
𝑖𝑏𝑘

𝑛

𝜈𝑏𝑟

≤
3

𝑐0 log2(2𝑛𝑛3)
‖‖2

𝜇(∞,2∗).

Applying the matrix NBI [15], if 𝑐1
𝑐0

≤
log(2𝑛𝑛3)

48 , we have, with probability at least 1 − (𝑛𝑛3)−(𝑐1−1),

‖‖‖‖‖
√

𝑛

𝜈𝑏𝑟

(
𝑇Ω() −𝑇 ()

)
𝑒𝑏

‖‖‖‖‖2∗ =
‖‖‖‖‖‖
∑
𝑖,𝑗,𝑘

𝑎𝑖𝑗𝑘

‖‖‖‖‖‖2∗ =
‖‖‖‖‖‖
∑
𝑖,𝑗,𝑘

𝑎̃𝑖𝑗𝑘

‖‖‖‖‖‖2
≤

√
12𝑐1

𝑐0 log(2𝑛𝑛3)
‖‖𝜇(∞,2∗) +

2𝑐1
𝑐0 log(2𝑛𝑛3)

‖‖𝜇(∞,2)

≤
1
2
(‖‖𝜇(∞) + ‖‖𝜇(∞,2∗)).

We can also do the same to the tensor rows and get the same bound. Then using a union bound over all the tensor columns and 
tensor rows, the results hold with probability at least 1 − 2𝑛2−𝑐1𝑛−(𝑐1−1)3 . □

B.2.3. Proof of Lemma 5

Lemma 5. If 𝑝𝑖𝑗𝑘 ≥min{𝑐0
(𝜇𝑖+𝜈𝑗 )𝑟 log2(2𝑛𝑛3)

𝑛
, 1}, and  ∈𝑅𝑛×𝑛×𝑛3 , then

‖(𝑇Ω𝑇 −𝑇 )‖𝜇(∞) ≤
1
2
‖‖𝜇(∞)

3𝑐0 log(2𝑛𝑛3) 1− 3𝑐0 log(2𝑛𝑛3)
17

holds with probability at least 1 − 2𝑛−( 124 −2)𝑛 124
3 .
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Proof of Lemma 5. Observe that

𝑇Ω𝑇 () =
∑
𝑖,𝑗,𝑘

1
𝑝𝑖𝑗𝑘

𝛿𝑖𝑗𝑘𝑖𝑗𝑘𝑇 (𝑒𝑖 ∗ 𝑒𝑘 ∗ 𝑒𝑗
⊤).

Let 𝑤𝑎𝑏𝑐 =
√

𝜇𝑎𝑟

𝑛

𝜈𝑏𝑟

𝑛
. Then, we can write⟨

𝑇Ω𝑇 () −𝑇 (), 𝑒𝑎 ∗ 𝑒𝑐 ∗ 𝑒𝑏
⊤
⟩ 1
𝑤𝑎𝑏𝑐

=
∑
𝑖,𝑗,𝑘

(
𝛿𝑖𝑗𝑘

𝑝𝑖𝑗𝑘
− 1)𝑖𝑗𝑘

⟨
𝑇 (𝑒𝑖 ∗ 𝑒𝑘 ∗ 𝑒𝑗

⊤), 𝑒𝑎 ∗ 𝑒𝑐 ∗ 𝑒𝑏
⊤
⟩ 1
𝑤𝑎𝑏𝑐

∶=
∑
𝑖,𝑗,𝑘

𝑖𝑗𝑘,𝑎𝑏𝑐 .

We can compute the following bound:

||||⟨𝑇 (𝑒𝑖 ∗ 𝑒𝑘 ∗ 𝑒𝑗
⊤), 𝑒𝑎 ∗ 𝑒𝑐 ∗ 𝑒𝑏

⊤
⟩|||| ≤

⎧⎪⎪⎨⎪⎪⎩

𝜇𝑎𝑟

𝑛
+ 𝜈𝑏𝑟

𝑛
, if 𝑖 = 𝑎, 𝑗 = 𝑏,‖𝑒𝑏⊤ ∗  ∗ ⊤ ∗ 𝑒𝑗‖2∗, if 𝑖 = 𝑎, 𝑗 ≠ 𝑏,‖𝑒𝑖⊤ ∗ ∗ ⊤ ∗ 𝑒𝑎‖2∗, if 𝑖 ≠ 𝑎, 𝑗 = 𝑏,‖𝑒𝑏⊤ ∗  ∗ ⊤ ∗ 𝑒𝑗‖2∗‖𝑒𝑖⊤ ∗ ∗ ⊤ ∗ 𝑒𝑎‖2∗, if 𝑖 ≠ 𝑎, 𝑗 ≠ 𝑏.

If 𝑝𝑖𝑗𝑘 ≥
𝑐0𝑟(𝜇𝑖+𝜈𝑗 ) log2(2𝑛𝑛3)

𝑛
, it is easy to observe that

|||𝑖𝑗𝑘,𝑎𝑏𝑐
||| ≤ |𝑖𝑗𝑘|

𝑤𝑎𝑏𝑐𝑝𝑖𝑗𝑘

||||⟨𝑇 (𝑒𝑖 ∗ 𝑒𝑘 ∗ 𝑒𝑗
⊤), 𝑒𝑎 ∗ 𝑒𝑐 ∗ 𝑒𝑏

⊤
⟩|||| ≤ ‖‖𝜇(∞)∕𝑐0 log2(2𝑛𝑛3).

On the other hand, note that||||||𝔼
[∑
𝑖,𝑗,𝑘

2
𝑖𝑗𝑘,𝑎𝑏𝑐

]|||||| =
∑
𝑖,𝑗,𝑘

𝔼

[(
𝛿𝑖𝑗𝑘

𝑝𝑖𝑗𝑘
− 1

)2] 2
𝑖𝑗𝑘

𝑤2
𝑎𝑏𝑐

⟨
𝑇 (𝑒𝑖 ∗ 𝑒𝑘 ∗ 𝑒𝑗

⊤), 𝑒𝑎 ∗ 𝑒𝑐 ∗ 𝑒𝑏
⊤
⟩2

=
∑

𝑖=𝑎,𝑗=𝑏,𝑘
+

∑
𝑖=𝑎,𝑗≠𝑏,𝑘

+
∑

𝑖≠𝑎,𝑗=𝑏,𝑘
+

∑
𝑖≠𝑎,𝑗≠𝑏,𝑘

≤
2‖‖2

𝜇(∞)

𝑐0 log2 2𝑛𝑛3
+

2‖‖2
𝜇(∞)

𝑐0 log2 2𝑛𝑛3
+

‖‖2
𝜇(∞)

𝑐0 log2 2𝑛𝑛3

=
5‖‖2

𝜇(∞)

𝑐0 log2 2𝑛𝑛3
.

Then, using the NBI [15], we have

𝑃
[(
𝑇Ω𝑇 () −𝑇 ()

)
𝑎𝑏𝑐

≥
1
2
‖‖𝜇(∞)

]
≤ 2exp

⎛⎜⎜⎜⎝
−1

8‖‖2𝜇(∞)

5‖‖2
𝜇(∞)

𝑐0 log2 2𝑛𝑛3
+

‖‖2
𝜇(∞)

6𝑐0 log2 2𝑛𝑛3

⎞⎟⎟⎟⎠
≤ 2exp

(
−
3𝑐0 log2 2𝑛𝑛3

124

)
≤ 2(𝑛𝑛3)

− 3𝑐0 log(2𝑛𝑛3)
124 .

Then using the union bound on every (𝑎, 𝑏, 𝑐)-th entry, we have the inequality holds with probability at least 1 −2𝑛−
( 3𝑐0 log(2𝑛𝑛3)

124 −2
)
×

𝑛
1− 3𝑐0 log(2𝑛𝑛3)

124
3 . □

Data availability

Data will be made available on request.
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