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Efficient FCTN Decomposition With Structural
Sparsity for Noisy Tensor Completion

Wei-Jian Huang *“, Li Huang

and Guisong Liu

Abstract—Recently, the fully-connected tensor network (FCTN)
decomposition has shown a powerful capability of depicting intrin-
sic correlations between any pair of tensor modes. But there exists a
challenging question in FCTN decomposition-based methods, i.e.,
the accurate determination of the complicated FCTN-rank, which
contains N (IN — 1)/2 elements for Nth-order tensors. In this
paper, we design a structural sparsity regularization for the FCTN
decomposition, which estimates the complicated FCTN-rank by
adaptively pruning near-zero groups in FCTN factor. Based on
this regularization, we propose a noisy tensor completion (NTC)
model, aiming at the recovery of a tensor from its partial and
noisy observation. Besides, we design a proximal alternating min-
imization (PAM)-based algorithm to solve the model. In theorem,
we prove a guarantee for the global convergence of the devel-
oped algorithm. To further accelerate our method for large-scale
data sets, we customize the randomized block sampling strategy
for general tensor network decomposition methods by updating
factors from small samples. Experiments demonstrate that our
strategy can accurately estimate the FCTN-rank and achieve better
reconstruction performances, and our methods outperform the
state-of-the-art methods in the reconstruction of different types
of real-world tensors.

Index Terms—Tensor decomposition, noisy tensor completion
(NTCQ), structural sparsity, randomized block sampling.

I. INTRODUCTION

resentation of high-dimensional real-world data, such as
color images, color videos, hyper-spectral videos, audio data,
and traffic data. The tensor decomposition (TD), an effec-
tive tool for mining high-dimensional tensor data, factorizes

T HE tensor as a multidimensional array is a natural rep-
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high-dimensional data into a series of latent factors through
multi-linear operations. These concepts can be traced back to
Hitchcock in the 1920s [1], [2] and Cattell in 1944 [3], [4]. By
far, numerous efforts have been devoted into the TD and interests
have expanded to various fields, such as signal processing [5],
[6], computer vision [7], [8], machine learning [9], [10], [11],
and neuroscience [12], [13].

In the past decades, two widely investigated TD schemes
are the Tucker decomposition [14], [15] and the CANDE-
COMP/PARAFAC (CP) decomposition [16], [17]. The Tucker
decomposition factorizes a target tensor into factor matrices
and a factor tensor where each factor matrix is “connected”
to the factor tensor via the tensor-matrix product. The CAN-
DECOMP/PARAFAC (CP) decomposition decomposes a tensor
into the sum of rank-one tensors constructed by outer products
of vectors. Recently, the tensor singular value decomposition
(t-SVD) framework [18], [19], [20], which is based on the tensor-
tensor product between third-order tensors, newly emerges re-
cently and operates third-order tensors integrally without any
matricization or flattening. As above TDs are capable of charac-
terizing the inner low-dimensional structure of real-world tensor
data, and concepts of rank or the nuclear norm for tensors derived
from them, are utilized for the tensor data recovery; See [21],
[22], [23], [24], [25], [26].

In this work, we focus our attention on the popular tensor
network (TN) [27], [28] decomposition, which represents a
higher-order tensor as interconnected small-scale sub-tensors
(also called TN factors). In the past ten years, many TN-based
TDs have emerged and two of the most representative ones
are the tensor train (TT) [29] decomposition and the tensor
ring (TR) [30], [31] decomposition. The TT decomposition
represents an N'th-order tensor as N — 2 third-order sub-tensors
and two matrices. Based on this foundation, the TR decom-
position replaced two matrices with a cyclically connected
third-order tensor resulting in a ring structure. As TT and TR
have shown great abilities to characterize the higher-order tensor
data’s intrinsic inner correlation, which is essential in the area
of higher-order tensor data recovery, they have been success-
fully applied for tensor recovery, e.g., tensor completion [32],
[33], [34], [35] and the more challenging task of noisy tensor
completion [36]. However, one imperfection of TT and TR is
that they concentrate more on the local connections between
adjacent modes of higher-order tensors, leading to limited de-
scriptions of the global correlation of tensors. Very recently,
Zheng et al. proposed a fully-connected tensor network (FCTN)
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Fig. 1. Illustrations of the structural sparsity regularization and the randomized block sampling.

decomposition [37], which decomposes an Nth-order tensor
into a set of Nth-order small-sized factor tensors. In the FCTN
decomposition, exhibited in Fig. 1(a), each factor tensor is
connected to all other factor tensors and thus the correlations
between any two modes of the tensor are well encoded. However,
there are two main limitations inherent in FCTN-based methods.
First, FCTN decomposition is unable to adaptively determine the
FCTN-rank, which contains N (N — 1)/2 different elements for
an Nth-order tensor. The accurate estimation of the FCTN-rank
is difficult in itself, and the degradation of the tensor data
in tensor recovery applications would further make it harder.
Second, the computational complexity of TN-based decompo-
sitions is particularly high for high-order tensors, mainly due
to the large-scale factor tensor computations involved. These
limitations also apply for other TN-based decompositions, e.g.,
tensor wheel decomposition [38].

To address these two limitations, this paper proposes ideas
aimed at addressing them. First, we design the structural sparsity
regularization for the FCTN decomposition and apply it to the
noisy tensor completion (NTC) problem. The proposed method
can explore the low-rank structure and estimate the FCTN-rank
automatically with high accuracy, and it can effectively address
the performance degradation of FCTN decomposition. Second,
we design a randomized block sampling strategy for tensor
decompositions, which can significantly reduce the computa-
tional complexity. Specifically, our contributions include the
following:

® We propose a structural sparsity regularization for the

FCTN decomposition. We consider the equivalent matrix
form of the tensor contraction and introduce the structural
sparsity into the factor tensors within the framework of the
FCTN decomposition. We illustrate that this regularization
term can not only enhance the global low-rankness but
also help to determine the complicated FCTN-rank values

automatically with high accuracy. Then, we propose a
structural sparsity regularized FCTN decomposition model
for tensor completion from partial and noisy observations.

e A proximal alternating minimization (PAM) based algo-

rithm is proposed to solve the proposed noisy tensor com-
pletion model. We prove that the sequence generated by our
algorithm globally converges to a critical point. Besides,
we customize the randomized block sampling method for
the tensor neural network decomposition scheme to fur-
ther accelerate our algorithm with acceptable performance
impairments. Experiments carried out with synthetic and
real-world data and results demonstrate the effectiveness
of our method.

The rest of this paper is organized as follows. Section III
presents basic notations and preliminaries. Section IV de-
signs a structural sparsity regularization, and proposes a noisy
tensor completion model with efficient solving algorithms.
Section V proves a theoretical guarantee for the convergence.
Sections VI and VII show the experimental results and conclu-
sions, respectively.

II. RELATED WORK

Tensor decompositions and low-rank tensor completion tech-
niques have been extensively studied, with various methods
developed to address different challenges in high-dimensional
data processing. In this section, we review the most relevant work
in the field, focusing on classical tensor decomposition methods
and recent advancements in low-rank tensor completion.

A. Tensor Decomposition

a) CP decomposition: The CANDECOMP/PARAFAC (CP)
decomposition [16], [17] is one of the earliest tensor decompo-
sition techniques and has been applied to fields such as machine
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learning [39], signal processing [9], and data mining [40]. CP
decomposition factorizes a tensor into a sum of rank-one com-
ponents, expressed as:

R
A= E ajoazo---oay,
r=1

where R is the minimum number of components required to
express the tensor. Although CP decomposition is simple and in-
terpretable, its primary challenge is in determining the rank [41]
and the computational cost associated with fitting the model,
especially for large-scale tensors.

b) Tucker decomposition: Tucker decomposition [14], [15] is
another widely-used tensor decomposition technique preserving
important interactions across different dimensions. The Tucker
decomposition expresses of an Nth-order tensor as:

A=Bx1U; xaUy--- xy Uy,

where xj represents mode-k multiplication [42]. Tucker de-
composition is extensively applied in fields such as compressed
sensing [43], high-order data analysis [44], and signal process-
ing. The challenge with Tucker decomposition lies in selecting
the appropriate ranks for each mode.

c) Tensor singular value decomposition (t-SVD): The t-
SVD [19], [20], based on the t-product, extends the classical
matrix SVD to third-order tensors. It decomposes a third-order
tensor as:

A:U*tS*tVH,

where *, denotes the tensor-tensor product proposed in [19].
T-SVD has proven effective in applications such as including
image/video completion [25], [45], [46] and hyperspectral de-
noising [47] for its algebraic framework to handle the third-
order tensor while preserving intrinsic structural information.
However, t-SVD is primarily limited to third-order tensors and
becomes less efficient for higher-order tensors.

d) Tensor network decomposition: Tensor network (TN)-
based methods, such as tensor train (TT) [29] and tensor ring
(TR) [30], have been widely studied in quantum physics, scien-
tific computing, and machine learning [48]. These methods rep-
resent a high-order tensor as a sequence of lower-order tensors,
reducing the computational complexity and storage require-
ments. FCTN [37] and tensor wheel (TW) [31] decompositions
represent more recent advancements, where each factor tensor
is connected to every other tensor or the core tensor, capturing
all possible interactions between tensor modes.

B. Low-Rank Tensor Completion

The problem of low-rank tensor completion aims to recover
missing entries by leveraging the low-rank structure of the tensor
across multiple dimensions. Two common approaches are:

a) Rank minimization: Rank minimization methods seek to
recover the missing entries by minimizing the rank of the tensor.
This can be formulated as:

m}nrank(X) s.t. Xy = My, (D

3227

where rank(X) refers to the rank of tensor X, M is the observed
tensor, and (2 is the set of observed indices. As minimizing
the rank function is hard, convex/nonconvex surrogates such
as the nuclear norm are typically used in practice [21]. While
rank minimization approaches can recover low-rank tensors
effectively, they often struggle with scalability when applied
to large tensors due to the high computational cost involved in
the computation of SVD [49].

b) Tensor decomposition: The second approach is tensor
completion using decomposition. It is assumed that the target
tensor has an inherent low-rank structure that can be captured
using various tensor decomposition techniques. The problem
can be formulated as:

1 2
min 5“26— TD(Gi)||7 stXq = Mq, )

where TD(G;) denotes a specific tensor decomposition and G;s
indicate the corresponding factor vectors/matrices/tensors. Ten-
sor decomposition-based methods provide a scalable alternative
to rank minimization but require the selection of an appropriate
rank prior, which can be challenging in practical applications.

III. NOTATIONS AND PRELIMINARIES

We use z,x,X and X to denote scalars, vectors, ma-
trices, and tensors, respectively. Given an Nth-order ten-
sor X € RIV*IN its (4,49, ... ,45)-th element can be de-
noted by Al(iq,i2,...,in) or X;, 4, . . The vector n =
[n1,n2,...,ny] based tensor permutation of the tensor X €
RTv*In - denoted by &A™ € RIni**Iny is obtained by re-
arranging modes of A’ in the order specified by n. We use
the symbol © to denote the Hadamard (element-wise) product,
and we use symbol o to denote the outer product. The inner
product between two same-sized tensors A and B is defined
as (A, B) = >, i, in Airsis,inBiyia,....in - The Frobenius
norm of Xis defined as || X]|| p = +/ (X, X). For brevity of exposi-
tion, we use x1.4 to denoted a variable of vector [z1, o, . . ., Z4).
vec(+) is the vectorization operation reshaping all the entries into
acolumn vector. Then, we restate those important and frequently
used definitions.

Definition 1 (mode-n unfolding [42]): The mode-n unfold-
ing of A € RIv*IN ig a matrix, which can be denoted as
Ay € R *Im=tmen Im The (i1,12,...,ix)-th element of
A is mapped to the (i,,j)-th element of A(,), where j =
L+ 30l e (i — D) with J = TI0 2 .

Intuitively, the lexicographic ordering of the mode-n un-
folding of tensor 4 arranges the fibers along mode n. The
columns of A(,) can be denoted as A(i1,ia,...,0n 1,[]:
I,),in+1,---,in). It can also be easily accomplished with the
Matlab command! reshape and we have A(,) = reshape
(AP, [In,, T, I, ]), where b = [n,1,....,n —1,n+1,...,
N]. The inverse operation is denoted as mode-n folding.

Definition 2 (n-unfolding [30]): The n-unfolding of an Nth-
order tensor A € Rt >IN s a matrix, which can be denoted
as Ay, € RIv+InxInii-In =~ And it can be implemented by

Uhttps://www.mathworks.com/help/matlab/ref/reshape.html
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Matlab command A ,,, = reshape(A, [[];"; I;, HfV:TH_l L)),
where the first n indices enumerate the rows of A,y and the last
N — n indices for its columns.

Definition 3 (tensor contraction [37]): A € RIuxI2xxIn
and B € R71*J2x<Jm gwng d common dimensions, i.e., I,
= Jm, with i =1,2,...,d. n and m are permutations of
vectors [1,...,N] and [1,..., M], respectively. The result of
the contraction between .4 and B along their common dimen-
sions is C € Rira+ > Iny*Jmapy - Jmy which is defined as
C= A xitd B. Element-wisely, we have

Iy, In, In,
C(ind+17'"ainN,jnLd+1v"'aij)* E E §
1 =lin,= ing=1
A gy s ey tny)
: Bm(inu s a.ij)'

Definition 4 (Fully-Connected Tensor Network Decom-
position [37]): The FCTN decomposition of an Nth-order
tensor A € RIv>Iv js denoted as §({Gx}1_,), where
{Gi}Y_, is the set of all FCTN factor tensors. Each G €
REB1&X X Rpe1 o X T X Ry g1 XX R, N (k=1,2 ,N) is con-
nected with all other factor tensors through the tensor contrac-
tion. Element-wisely, the FCTN decomposition can be formu-
lated as

Ry, Ri,n Ra3 RN-1,N

=D >

Aliy, ia, - ..

ra=1 rn=lras=l ry_1n=1

Gi(i1, 71,2, ,71,N)

Ga(r1,2,92,72,3,- -+, T2,N)
~gk(’l“1,;€,...,ik,Tk,]H_l,...,7“;@71\1)

'gN(Tl,N7T2,Na'"7TN—1,N77:N)'

The vector, constituted by the minimal positive values I2; js
(1<i<j<Nandi,j€ NT)required to express A, is corre-
spondingly called the FCTN-rank.

IV. Noisy TENSOR COMPLETION VIA STRUCTURAL SPARSITY
REGULARIZED FCTN

As the graphical representation of the FCTN decomposition
illustrated in Fig. 1(a) illustrates and we can see that any two fac-
tor tensors are connected. The fully connected structure enables
it to adequately characterize the intrinsic correlations between
any two modes. However, this also leads to the complicated
FCTN-rank of O(N?) positive values for an Nth-order tensor.
Meanwhile, when applying FCTN decomposition for tensor
data recovery, the noise or missing values would further burden
the users for the accurate identification of the FCTN-rank. In
this section, we would first tailor the structural sparsity regu-
larization for the FCTN decomposition and then propose the
NTC model and algorithms. The randomized block sampling
strategy designed to accelerate our NTC method is subsequently
introduced.

IEEE TRANSACTIONS ON BIG DATA, VOL. 11, NO. 6, NOVEMBER/DECEMBER 2025

A. Structural Sparsity Regularization for FCTN

Although the structure of FCTN is complicated, the specific
connection between any prescribed two factor tensors is clear
and simple. We can see in the graphical representation of FCTN
in Fig. 1(a) that there is only one edge between any two fac-
tor tensors. As we know that the tensor contraction operation
would degenerate to the common matrix product whend = 1 in
Definition 3. Thus, the interaction between any two factor ten-
sors is indeed equivalent to the matrix multiplication between
two matrices. To be specific, we take the fourth order tensor
of size I} x Iy x I3 x I, shown in Fig. 1(b) as an example.
Six positive values, from R;; to R34, constitute its FCTN-
rank. Let’s focus on the first and second factor tensors, i.e.,
the orange dashed line circled G; and G5 in Fig. 1(b). As
mentioned above, there is only one same-sized dimension be-
tween Gy € RI1xRi12xRi3xR14 gnd Gy € RE12xI2XR2 3xRa 4
and their contraction? along their shared edge is equivalent to
the matrix multiplication between their unfolding matrices, i.e.,
(Gl)(Tg) and (GQ)(]_).

With the above analysis, we can see that the elements in
FCTN-rank are indeed the rank values of the multiplication
results between unfolding matrices. Therefore, exploring the low
FCTN-rank structure of a tensor is to find low-rank structures of
a series of matrices. Similar insights can be found in [50]. How-
ever, different from [50], which considers the overall unfolding
matrices of the tensor, we focus on specific low-rank structures
corresponding to connections between any two factor tensors,
resorting to the following theoretical result.

Theorem 1 (Lemma 3 in [51]): Given a matrix X € R™*"™
with rank(X) = r < min(m,n) and non-zero singular val-
ues 08 (2 =1,2,...,r), there exist two factor matrices A =
[a,as,...,a4] € R and B = [by,by,...,by]" € R™*4

with » < d < min(m,n), such that the Schatten-1/2 norm
1/2 &

(a quasi norm) of X, denoted and defined as ||X|| R

1/2
22:1 g;

1/2 l|ax |3 +ku||
IXI[g,7, = min Z\/—Q 2, Q)

and the equation holds when X admits the singular value decom-
position X = USVT A= UE%, and B = VX3, Moreover,
we can generalize the above to a tensor version, which can be
defined as

satisfies

1/2 || A.,... + IB.,... k.o [
||X||Sl/2:XAB \/ )

“)

where X’ = f01d(X), and fold(.) denotes the inverse operation
of n-folding.

Guided by Theorem 1, we propose the structural sparsity
regularization for a tensor A with its FCTN decomposition, i.e.,

2We use the symbol * to denote their contraction for simplicity.
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= BUGHL,) € RXTIn ag
N-— N Rij ‘ 9 ) 9 i
{gk}k 1 Z Z (‘g;{ﬂ,r} F_|_Hg§_z,r} F) 7
1=1 j=i+1r=1

(&)

where g?”} (r=1,2,...,R;;) denotes the r-th subten-
sor of G; € RFtvix xRy ixlixRiipax-xRin glong its j-th
N QZ{]’T} = gl([l : Rl,i]a ey [1 : Ri"j,ﬂ,T, [1 :
[1: R; n]), and the same applies to Q}l’r}s. In (5),

N 1))/

FCTN-rank values, and the remaining Zf:l{(HgZ{”}H%Jr

dimension, i.e

Ri7j+1], ceey
the first two summations are corresponding to (N (

||gj<”'} |2.)/2 reflects the structural sparsity of unfolding matri-
ces of G; and G;. As stated in Theorem 1, minimizing it would
undoubtedly enhance the low-rankness of the contraction result
of two factor tensors, yielding the entire low-dimensionality of
the tensor data.

Intuitively, as shown in Fig. 1(c), regularizing the structural
sparsity would result in a few columns or rows near to zero in
the unfolding factor matrices. Thus, on the one hand, we can
effectively exploit the low-rankness without the heavy burden
of SVD computations. On the other hand, it is reasonable and
connivent to prune those zero columns and rows (collectively
called groups) for an adaptive and accurate determination of the
FCTN-rank.

B. Proposed Noisy Tensor Completion Model

With the structural sparsity regularization for FCTN designed
in (5), our noisy tensor completion model is formulated as

| = FUG )% + BIW e (X - B)|%

min
{Gr}h_ X

+ 26 ({Grtil1) s (6)

where B € RI1*/2xxIn ig the observed tensor, 5 and A are two
nonnegative trade-off parameters,

1, if (i,...,in) € 9Q,
W’Ll ..... ZN:{O ( )

otherwise,
and (2 denotes the index set of observed entries.

In (6), |X—F({Gx}_,)||% explore the low-rankness by
mining the FCTN decomposition structure of the resulting tensor
X. The weighted Frobenius norm, ie., 5|[W® (X — B)||%,
accounts for the degradation process of missing entries and the
Gaussian noise corruption. The structural sparsity regularization
S({Gr}1_,) would be helpful to further exploit the precise
low-rank structure and ensure the robustness of our model to
disturbances, such as the noise and entry missing.

It can be found that direct minimizing the structural sparsity
regularization &({Gy, }&_, ) is difficult. Considering the inequal-
ity of arithmetic and geometric means, we have

el

2 (i} 3 :
L% < x
(‘ F * ng HF) - 2

for any 2 > 0 and the equality holds when z = (|G |12, +

(ir} ||

]
J F
+x

||gj”} |2.)1/2. Thus, we adopt the iteratively reweighted least
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squares (IRLS) strategy [51], [52] and turn to solve the following
model

N =s0anlolz +slwe (x-B);

mln
{Gr}h_ X
N-1 N Rij N . )
AT Sl (195 + 1651 )
i=1 j=i+1r=1
(7
where nﬁ 9) = L

gz

C. Proposed PAM Algorithm

In this part, we employ the framework of PAM and give the
solving algorithm for our noisy tensor completion model (7).

a) Gy, subproblem (k=1,...,N): For k=1,... N, with
other variables fixed, we update G by solving the following
subproblem

) U

2
s+1 s
g:k—£7gk’gk+1 N)HF +p1 Hgk — g

+a Z Zn“” k7],
(®)

Moreover, (G ) (k) is the mode-£ unfolding of Gy, M is the
incomplete FCTN structure consisting of all latent factors except
Gk» (My)(n—1y is the N — 1 unfolding of M} (See Theorem

4 in [37]), p; is a nonnegative parameter, and g,(j) denote
the Value of Q}f in the latest iteration. The summation term
Sk R G2, can be viewed as the squared weighted

Frobenius norm of G with assigning nﬁ '

k—1 Rik
33 ok
i=1 r=1

" to the r-th group
(Z k) Hg{z o} 12 =

of Gy, along the ¢-th dimension, i.e., Z
[WER © (Gy) iyl %, where columns of W k) are all the

same as /ngz k) / (z k (z k

Ry.j  (k.j) g{] T2
et e VNG

Thus, we unfold Gy, in (8) and equivalently convert (8) into
the matrix form as

T. The same applies to

2

HXE?) — (G iy (M) vy HF

2
Gooo

k-1
i)W e
i=1

2
Gk)(k)HF

N
i Y ||WED e

Jj=k+1
Gl — (G|l 9
+o|[(Gr)w) = (G |, )

where W () g reshaped from W (%) according to the transi-
tion from (Gy)(;) to (Gg) (k). i.€., mode-i folding and mode-k
unfolding, for« = 1,2,...,k — 1. The same applies to W (k)
for j=k+1,...,N. As all columns of W) are the same,
it follows that all rows of W (%) are also the same. We use
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Algorithm 1: FCTN-GS.

Algorithm 2: FCTN-GSR.

1: Input: The observed data B € RIt*T2XxIN the
maximum value of the FCTN-rank Ry, the
maximum iteration sy, = 500, the initial target tensor
X9 = B, parameters A, 3, p1, pa, T

2: while Not converged and s < Syx do

3 fork=1,2,...,N do

4: Update g,f*” through (10)

5: Update ngi’k)s and ngk’j)s via (11)

6: end for

7: Update X*t1 through (13) and (14)

8 Update the FCTN-rank by pruning slices with the
threshold 7

9: end while

10:  Output: The reconstructed tensor X and the
estimation of the FCTN-rank.

this common row vector to create a diagonal matrix A(-*) with
this common row placed along the diagonal. Thus, we have
Wk o (Gr) (k) = (Gi) 1y A"*). Then, we consider the first
order optimal condition and update Gy, (or equivalently (G ) (x))
by solving the following linear equation

S S S ]“
(G = (XG O vy +21(GL )

k—1 N
A Z(A(i,k))2+ Z (A(lw'))? + pilg
i=1 j=k+1

+(M§:))<TN71>(M§:))<N—1>) ) (10)

where 1 denotes pseudo-inverse. After updating Gy, the weights
are updated as

(k) = ! : (1)
k,r 1,7
VIS + 166712
where r = 1,2,..., RR; 1, and the same applies to nﬁk’j).

b) 2) X subproblem Then, the subproblem with respect to X’
is
2
. s+1
min |2 - 5({GC VN + BIwe (x- Bl
2

+ p2 HX* )

12)
F

Considering the separability of the Frobenius norm, we have

A'/('S+1)‘N _ (S({g}is+l)}llcv_1) + p2X<S)> a3

(SR 1+ 02

‘1,

for (i1,...,in) ¢ Q, and
ety _ [(BUGETIN ) + BB+ po)
oty 1+ 58+ p2 o
ARTEERY2\
(14)
for (i1, ...,in) € Q. After updating X, we compute the Frobe-

nius norm of slices of different directions in all factor tensors. If

1: Input: The observed data B € RTt*T2XxIN the
maximum value of the FCTN-rank Ry, the
maximum iteration sp,x=500, the initial target tensor
X0 = B, parameters A, 3, p1, pa, T.

2:  while not converged and s < sp,x do

fork=1,2,...,N do

4: Obtain sampling size (Z1, ..., Zy) through

randomized block sampling strategy

5: Conduct randomized block sampling to obtain

(98]

2c<;> and g,(j)zk s through sampling size

Update nﬁi’k)s and nﬁk’j)s via (11)

Update G* ™ through its related A%*) and G\ #*
end for
Update X**1) through (13) and (14)
Update the FCTN-rank by pruning slices with the
threshold 7
11:  end while
12:  Output: The reconstructed tensor X(*) and the

estimation of the FCTN-rank.

@Y

the value is smaller than a preset positive value 7, this slice will
be pruned and the FCTN-rank is then adjusted. Our algorithm
to optimize (7) is summarized in Algorithm 1.

D. Randomized Block Sampling

Large-scale tensors are playing an increasingly important role
in the real world as people become more capable of accessing
data. So we introduce the randomized block sampling [53], [54],
[55], [56] strategy to reduce the computational burden. As we
will illustrate, the randomized block sampling naturally fits the
TN decomposition. In the following, we show how to conduct
randomized block sampling taking the FCTN as an example.

Given an Nth-order tensor X € RI1*[2x<In FCTN decom-
position aims to find Gys via

min (= §UGH|[

15
P (15)

we conduct random sampling along each dimension to ob-
tain a sub-tensor X, € RZ1x%2x 2N where 7, < I1, (k =
1,2,...,N) is a positive integer representing the k-th sample
size.

Specifically, in most TC problems with TN decomposition,
we will encounter this form of optimization problem, such as

Hgliﬂ X (k) — G (1) Mg [+ (16)
It can be easily observed that sampling along each dimen-
sion except k-th dimension will greatly reduce the computa-
tion of the M;M] and X ;)M]. Given an Nth-order tensor
X e RlviI2xxIn - we conduct random sampling along each
dimension to obtain a sub-tensor Xy € RZ1%Z22%XZN yhere
Zr < I (k=1,2,..., N)is apositive integer representing the
k-th sample size. That is, for the k-th order of the length I, we
only sample a length of Zj, uniformly at random. We can see from
Fig. 1(d) that this sampling operation is equivalent to sampling
the rows (or columns) of the factor tensor’s unfolding matrix.
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On the one hand, if the original tensor A maintains an FCTN
decomposition structure, i.e., X' = 5({%}27:1), its sub-tensor
X, of amuch smaller size, can be expressed by the same FCTN
decomposition structure as X, = F({GZ*}N_,), where G7* is
sampled from G, and the sampling is along its k-th dimension.
On the other hand, as we can see from Fig. 1(c) and (d), the
sampling direction is orthogonal to the direction of employing
the structural sparsity. Thus, when estimating the sub-tensor X,
and sub-factor tensor g,f ks, our structural sparsity regularization
can be simultaneously utilized.

The randomized block sampling preserves the FCTN structure
and the dimension can be largely reduced. Thus, we turn to
update the randomly sampled part of Gy, i.e., Qf’“, instead of
the entire Gy in Algorithm 1. For k =1,2,... N, the gf’“
subproblem can be formulated as

mln HX(S) 11

( S+1)lek—1 g g;)fle N)H2
) J’» F

1R7

k—
+AY

i=1 r=

N Ry
4 Z,, ',
a0 N kg U2,
j=k+1 r=1

$) 2
— G713

k
i Zi,r
R |G T 2,
1

+p |G (17)

As (17) has the same form as (8), the optimal solution of the
Qf * subproblem can be obtained by solving the equation similar
to (10). For simplicity, we have summarized Algorithm 1 and
extended it into Algorithm 2 by incorporating the randomized
block sampling strategy. This strategy is applicable to other
tensor network decomposition-based methods as their factors
are similar to those used in FCTN. As a result, we developed
accelerated versions of TW-TC and FCTN-TC, named TW-TCR
and FCTN-TCR, respectively.

Additionally, to clearly illustrate the effectiveness of the
randomized block sampling strategy, we present Tab. I, which
lists the time complexities per iteration of methods that will be
compared in the experimental part. In Table I, an Nth-order
incomplete tensor X € RT*1*1**I i5 considered. The tensor
rank values are all set to be I, and all the sampled data dimension
sizes are assumed to be .J. Moreover, d is the size of the columns
in the dictionary matrix in [46], and k denotes the k-th unfolding.

V. CONVERGENCY ANALYSIS

In this section, we establish the theoretical guarantee for the
convergence of Algorithm 1, and its proof is provided in the
following.

Theorem 2: Denoting that f ({Gy, }1_,, X) is the sum of ®(X),
S({Gr}izi)s and h({Gk}il,, X). @(X) and h({Gi};,, X)
are defined as B|W® (X — B)||% and ||X— F({Gx}2_))II%,
respectively. The sequence {{g,(j)}kN:l, X(S)}(SeN) obtained by
the Algorithm 1 is bounded. And it converges to a critical point

of f({gk}k X
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Algorithm 3: FCTN-TCR/TW-TCR.

1: Input: The observed data B € R11*/2xxIN the
initial value of the rank R, the maximum value of the
rank Rp.x, the maximum iteration Spmax—500, the initial
target tensor X'°) = B, parameters 3, p1, po.

2:  while not converged and s < Sya; do

fork=1,2,...,N do

4: Obtain sampling size (Z1, ..., Zy) through the

randomized block sampling strategy

5: Conduct randomized block sampling to obtain the

sub-tensor ng) and sub-factor tensor g,‘j‘)zk

6: Update each sub-factor tensor by solving a least
square problem as in FCTN-TC [37] or
TW-TC [31]

end for
Update X**Y) through (10) and (11)
Update the rank R by increasing its value

end while

Output: The reconstructed tensor X*) and the

estimation of the FCTN-rank.

(O8]

— —
Do e

As Algorithm 1 is factually a special instance of Algorithm
4 described in [58], the proof of Theorem 2 confirms Theorem
6.2 in [58] if the following 4 conditions are fulfilled:

i) {Ql(f)}ff:l and X**) (s € N) are bounded;

i) f({Gx}Y_,, X) is proper lower semi-continuous;

iii) the K-ELproperty of f({Gx}i_,, X) at each point;

iv) f({Gr}i_,, X) satisfies the relative error condition ((64)

in [58]) and the sufficient decrease condition ((65) and
(66) in [58]).

We first verify conditions i) to iii). As shown in Algorithm 1,
the initial g,(f) (k=1---N) and X? are apparently bounded.
Therefore, we only need to verify that g§j+” and At
are bounded when g§j> and X% are bounded. Denoting that

||g,(j)|\p <, ||| p < dand ||A,(€S)HF < e, and according to
(7)%, we have
)

o) = ([

47

» + p1 Hg(ls)

: H (Qgs) +AWy + ,01IR>71

F

. ! 1
S (dCN 1 —+ Plc) <Z s _|_)\.77 + p1>
i Vi i

QY = M) oy My, Wi =Y
(AGF)2 4 Z k+1(A(k’])) ,vis(i=1,...,j = I, R) are the

eigenvalues of Q1 ,m;s are the eigenvalues of Wy. Thus, g(f“)
(s+1) (s+1)
Gy NN,

(18)

where

is bounded. Similarly, we can obtain that

(G = (Xgi))(M(s))< ha PG )T (N (AGR))2

N s
+ 3t (AF)2) o T+ (MU T (M) (1)),
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TABLE I
THE COMPLEXITIES PER ITERATION OF THE METHODS

Method Vanilla version Accelerated version
HaLRTC [21] O(NT>(N—-1)) —
TNN [25] O(12(N+1)) —
DTNN [46] O((d? + d)IN + dI3) —
TRLREF [57] O(INR? 4+ IN-'R%) O(IJN-1R? 4+ JN—1R%)

TMacTT [32]
HTNN-FFT [26]
TW-TC [31] O(N

O(3IVR)
O(IN log(IN=2) + IN+1)

FCTN-GS

ZN 1 IZRZ+3 +NINR3 +INR2N)
FCTN-TC [47] O(N N, IlRlN PHl-1 4 NIN-1R2N-2 4 NR3N-3) O
(NEI\; IlRlN l+l 1+NIN 1R2N 2+NR3N 3)

O(3I*JN-FR)

O(NZN 1JlRl+3+NIJN 1R3+INR2N)
(NZN JlRlN l+l 1+NJN 1R2N 2+NR3N 3)
(NZ{\; JIRIN-1P+1— Ly NJN-1R2N-2 4 NR3N-3)

Tensor rank values are all set to be R with all data dimensions equaling to /. The sampled dimensions are set to be J.

are also bounded. Let @ > 0 be the maximum of ||g,j+ ) || for

k=1,2,..., N, we have
a + pad B
+B+p2 1+B8+4p2

Therefore, X 1D ig also bounded and condition i) holds.

Second, it can be seen that h({Gx. }2_,, X) and S({G,}1_,)
are C'! functions whose gradients are Lipschitz continuous and
®(X), which is in a Frobenius norm manner, is obviously a
proper lower semi-continuous function. Therefore, as the sum
of semi-algebraic functions is still semi-algebraic, condition ii)
holds.

Third, since the semi-algebraic real-valued function satisfies
the K-Eproperty [58], we have that the semi-algebraic real-
valued function f({Gy }4_,, X) satisfies the K-Lproperty at each
point. Therefore, condition iii) is satisfied.

The verification of condition iv) needs two additional lemmas
as follows.

Lemma 1 (Sufficient Decrease): Denote that p;, po > 0 and
let {g } N &)Y oy be generated by Algorithm 1. The fol-
lowing inequalities hold

FOGY G0l X)) + pal|GSTY —
< /(G
FUGE I AT) 4 po | ACHD — A
< FHGTYY, ).

Proof: Since the updating of QE:H) satisfies the first order
optimal condition, for £ = 1,2,..., N we have

FGED G LX) 4G — 62

a3
s+1) ( s _
lh—1 kN,X( N, k=1,2,...,N,

%

s+1 s s s
< FGSN N X)) + 116 — G 1%
s+1
= F(GE G, X)),

Similarly, since the updating of X'is element-wisely optimal, we
have

FUGETIML,, A+ 4 | s+
< f({gks+l)}llc\[:1v X(s))-

R

O

Lemma 2 (Relative Error): Let p; and ps be positive
constants, and suppose that the sequence obtained by the

Algorithm 1, denoted as {QSH)}szl, )C(S)}SeN, is under con-
sideration. There exist A?*” € ang(g,(j“)) and AéS'H) €
Dr®(X5TY) which satisfy

s 1 s+1 s
JASHY V6, h(GT, G X))
<p |G = 69|k =1,2,... N,
JASTY 4 Vah({G T, D) |

< pa|XFY — A

where h({G7 11, X) = ¥~ F{G,7 1)1
Proof: As our updating of each sub-problem satisfies the first
order optimal condition, we have

0 € Vg h(G0, G0 n, A9) + 06,6(Gr)
(g (s+1) gks )7
0e vxh({g;“) IV X)) 4 9,8 (X)
+p2(X(s+1) _ X(s))_

Then, there exist

AP = = e @Y, G s A= (G - 6))
€ 96.8(G,"")
ATV = = Vah({GT L A — o — )
€ 0x®(X).
D

Then, combining the above results, we can establish the proof
of Theorem 2.

Proof of Theorem 2: From (18) and (19), we can see that
the sequence generated by Algorithm 1 is bounded. Meanwhile,
f({Gr}_,, X) is a semi-algebraic real-valued function satisfy-
ing the K-Eproperty at each point. Then, from Lemma 1, the
value of f({Gy}2_,, X) monotonically decreases, and we can
obtain the relative error condition the sequence generated by
Algorithm 1 from Lemma 2. Therefore, this proof conforms
Theorem 6.2 in [58] under the above conditions. O

Authorized licensed use limited to: Tsinghua University. Downloaded on December 02,2025 at 05:13:35 UTC from IEEE Xplore. Restrictions apply.



HUANG et al.: EFFICIENT FCTN DECOMPOSITION WITH STRUCTURAL SPARSITY FOR NOISY TENSOR COMPLETION

015 -
N-GS (MRSE)

o

x x
. FCTN-GS (MREF)
b » FCTN-TC (MREE) ,
2 0.

MREE Value
MRSE Value

05t " . . 0 . . .
07001 =001 =001 07005 =005 g=005 07001 =001 =001 07005 =005 G005
MR60%  MR70%  MRSO%  MR60%  MR:70%  MR:80% MR:60%  MR:70%  MRSO0%  MR60%  MR:70%  MR:80%

Fig. 2. The MREE and MRSE values of the results by our FCTN-GS and
FCTN-TC with different missing rates (MRs) and noise levels. Best viewed in
% 2 sized color pdf file.

VI. EXPERIMENT

In this section, we compare our methods with many state-
of-the-art methods on synthetic and real-world data sets. All
the experiments are implemented on Matlab (R2020b) with an
Intel(R) Xeon(R) Gold-52182.20 GHz CPU and 32 GB memory.

A. Synthetic Data

In this part, we conduct experiments on synthetic data to
verify the FCTN-rank estimation ability of our method. The
synthetic groundtruth (GT) tensor AT = F({Gx}1_,) with a
given FCTN-rank, denoted by r®T, is obtained by i) entries
in each Gj, being randomly generated following the uniform
distribution in [0,1], and ii) contracting all Gis to obtain X
and normalizing entries in X’ to the interval of [0,1]. Then,
the observed data is generated by uniformly dropping 60% to
80% entries at random and adding a zero-mean Gaussian noise
with standard deviations o = 0.01 or 0.05. Finally, we run our
structural sparsity regularized FCTN method in Algorithm 1,
denoted as “FCTN-GS”, and the method in [37]*, denoted
as “FCTN-TC”, to obtain the recovered tensor and estimated
FCTN-rank. Denoting the estimated FCTN-rank by r®! and the
recovered tensor by A*'. Then we employ the rank estimation
error (REE) [51] to measure the rank estimation ability. It is
defined as
1/2

N(N-1)

20 k=t

(rGT(k) . rEst(k))2

REE =
N(N —1)

(20)

Meanwhile, we employ the relative squared error (RSE) to
measure the reconstruction quality. RSE is calculated by

AT — AR
T2
[Ea e
For each degradation case, we randomly generate 10 tensors of
the size 35x20 x 25x20 with different FCTN-ranks.
Fig. 2 exhibits the mean values of REE and RSE (denoted as
MREE and MRSE, respectively). The MREE values for FTCN-

TC are all the same. The main reason for this is that FTCN-TC
adopts a rank-increasing strategy; however, this process of rank

RSE = 21

4In [37], the authors only consider noise-free tensor completion. We remark
here that it is easy to modify their methods for the noisy tensor completion
problem by replacing the indicator function in their objective function with the
weighted Frobenius norm. Meanwhile, the projection step in [37] should be
correspondingly changed to be in the same manner as (13) and (14). This also
applies to other tensor completion methods.
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Fig. 3. The reconstructed slices (made up of the time interval and segment
modes) on the traffic speed dataset with MR=80%. Best viewed in x2 sized
color pdf file.

TABLE II
THE RMSE VALUES AND MAE VALUES (IN PERCENTAGE) OF RESULTS BY ALL
METHODS ON THE TRAFFIC SPEED DATA

Method MR=80% MR=70% MR=60% Time
RMSE MAE RMSE MAE RMSE MAE (s)
Observed  0.329 0.241 0.309 0.212 0.287 0.183 0
HaLRTC 0.098 0.069 0.075 0.052 0.062 0.042 O
TNN 0.064 0.042 0.055 0.034 0.048 0.027 1
DTNN 0.084 0.055 0.096 0.062 0.081 0.049 13
TRLRF 0.067 0.041 0.046 0.028 0.041 0.023 4
TMacTT 0.091 0.047 0.068 0.033 0.052 0.026 3
HTNN-FFT 0.055 0.036 0.049 0.030 0.043 0.024 1
TW-TC 0.064 0.037 0.051 0.029 0.039 0.022 44
FCTN-TC 0.061 0.037 0.051 0.029 0.044 0.023 19
FCTN-GS  0.046 0.029 0.041 0.025 0.037 0.021 12
FCTN-GSR 0.052 0.033 0.046 0.028 0.041 0.024 5

The red and blue colors stand for the best and second best values, respectively.

increase is imprecise, and as a result, its rank often increases
to the maximum value we have set. From the left part, we can
see that the FCTN-rank estimated by our FCTN-GS is much
more accurate than that by FCTN-TC. Meanwhile, the MRSE
values show that our recovery results are also better in all cases,
illustrating that the structural sparsity regularization can better
enhance the low-rankness with robustness.

B. Real Data

In this section, we test our FCTN-GS and its randomized
block sampling accelerated version (denoted as FCTN-GSR,
the block sampling ratio is 70%) on real data. Compared meth-
ods consist of i) HaLRTC [21], ii) TNN [25], iii)) HTNN-
FFT [26], iv) TMacTT [32], v) TRLRF [57], vi) DTNN [46],
vii) FCTN-TC [37], and viii) TW-TC [38]. Then we compute the
peak signal-to-noise ratio (PSNR) and the structural similarity
(SSIM) [59] values of the results by different methods on the face
data and video data. The root mean square error (RMSE) and
the mean absolute error (MAE) are employed to quantitatively
measure the reconstruction quality of the traffic data, and MAE
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TABLE III
THE PSNR VALUES AND SSIM VALUES OF RESULTS BY ALL METHODS ON THE HUMAN FACE DATA

o =0.05

o =0.07

Method Time

MR=90% MR=80% MR=70% MR=90% MR=80% MR=70%

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM ()
Observed 10.643 0.015 11.094 0.040 11.618 0.071 10.597 0.014 11.019 0.037 11.512 0.065 0
HaLRTC 16.737 0.249 19.673 0.405 21.592 0.491 16485 0.232 19.246 0.371 20.932 0.444 11
TNN 20.312 0.378 21.984 0.458 23.016 0.501 19.860 0.350 21.117 0.413 21.783 0.445 31
DTNN 20.463 0.372 20.264 0.394 21.715 0.465 19.345 0.319 18.288 0.312 19.368 0.373 1111
TRLRF 21.037 0417 22.761 0.504 23.257 0.526 21.947 0.461 22.629 0492 23.075 0.511 499
TMacTT 18.520 0.308 23.600 0.531 25.333 0.587 16.853 0.233 21.799 0.460 24.136 0.543 92
HTNN-FFT 20.799 0.400 22.156 0.464 23.171 0.504 20.281 0.367 21.283 0.416 21.990 0.448 40
TW-TC 22968 0.511 23429 0.528 23.945 0.550 22.831 0.501 23.298 0.518 23.706 0.534 795
FCTN-TC 23.786 0.538 24.852 0.579 25.352 0.595 23.363 0.519 24478 0.561 24956 0.576 324
FCTN-GS 24.179 0.562 25.102 0.595 25.632 0.612 23.860 0.543 24.753 0.576 25.215 0.589 369
FCTN-GSR 24.210 0.569 25.140 0.601 25.636 0.613 23.954 0.552 24.808 0.580 25.222 0.589 219

The red and blue colors stand for the best and second best values, respectively.

and RMSE are respectively defined as

T S
. Z “X?17~~~,i1\7 Z‘lt'u;iN’
MAE = 2 (22)
k=N
Hk:l I

1/2

| AT — A%,
k=1

Higher values of PSNR and SSIM and lower values of MAE and
RMSE indicate better recovery performances.

1) Traffic Data: In this part, we conduct experiments on the
traffic speed dataset® collected from 21 road segments over
a period of 30 days. The data point is sampled at 5-minute
intervals. The size of traffic data is 12 x 24 x 21 x 30 (minute
x hour x segmentx day). The observed data is obtained by
random sampling from noiseless® elements with MR € {80%,
70%, 60%}. Meanwhile, considering that the sensor failure
could occur across time intervals, we also set some element-
wise missing to simulate this situation. In Fig. 3, we show the
reconstructed results on the 4th day. Table II presents the RMSE
and MAE values. As observed, the results of our FCTN-GS
and FCTN-GSR are closer to the ground truth with better index
values.

2) Face Data: We employ the Extended Yale B face data set,’
which includes 38 subjects under 64 illumination conditions.
The size of the face image is 48 x 42. Thus, the size of face
data is 48 x 42 x 64 x 38 (height x width x illumination x
subjects). We test three MRs (90%, 80%, and 70%) at two noise
levels o = 0.05 and 0.07.

Table III shows the PSNR and SSIM values of the results by
different methods. The correlations between different modes of
the face data tensor are heterogeneous. The performances of the
tensor network decomposition based methods are generally bet-
ter. This illustrates the outstanding ability of the tensor network

5The data is available at https://pems.dot.ca.gov.

OWe remark that we consider the noiseless completion for traffic data, as
many compared methods are originally designed for this case. We think this
would gravitate towards greater equity of the comparison and thus better show
the superiority of our method.

"The data is available at http://vision.ucsd.edu/content/yale-face-database.

to characterize different types of inner correlations. Besides,
Fig. 4 shows the reconstructed results of human faces. Although
the quantitative metrics of FCTN-TC’s results are better than
those of the TW-TC method, TW-TC obtains a more clear visual
result. We can easily find that TRLRF, TW-TC, FCTN-GS, and
FCTN-GSR have fewer noisy pixels in their results.

3) Color and Hyperspectral Videos: In this part, three color
videos® (“boat”, “container”, and “rhino”), and one hyper-
spectral video,? denoted as “HSV”, are selected. The size of
three color videos is 144 x 176 x 3 x 50 (height x width x
channel x frame) and the size of the hyperspectral video is
60 x 60 x 20 x 20 (heightx width x spectrum X frame). For
each video, we test three missing rates (MRs): 80%, 90%, and
95%, and the zero-mean Gaussian noise with standard deviations
o =0.05 and 0.07. Table IV shows the quantitative metrics
of the results by different methods together with their running
time in seconds (s). We can see that our FCTN-GS can largely
outperform FCTN-TC in the MR cases and the superiority is
more obvious for the high standard deviation value. This shows
that our structural sparsity regularization enhances the robust-
ness and indeed helps to exploit the accurate low-FCTN-rank
structure with its accurate determination of the FCTN-rank
values. The acceleration in FCTN-GSR is obvious however its
performance is not quite stable. It occasionally obtains better
results that those by the FCTN-GS and the reason might be that
the randomized sampling acts as an implicit regularization. The
performances of compared methods would vary for different
data and our FCTN-GS and FCTN-GSR almost make a clean
sweep of the best and second best metrics. In Fig. 5, we exhibit
the results by different methods on the color videos “boat” and
“containe” and the HSV. We can see that the completion from
noisy and partial observations is difficult. Results by TW-TC,
TRLRF, FCTN-GS, and FCTN-GSR are more clear and visually
better than those by other methods. Their additional constraints
or regularization help them to be robust to the noise while we can
see more obvious noise patterns in the results of other methods.

8The data is available at http:/trace.eas.asu.edu/yuv.
9The data is available at https://openremotesensing.net.
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Clean Observed HaLRTC TNN FCTN-TC ~ FCTN-GS FCTN-GSR

Fig. 4. The reconstructed results of the face data, which shows the 9-th, 13-th and 15-th face at the 15-th illumination with MR=90%, o = 0.05.

TABLE IV
THE PSNR VALUES AND SSIM VALUES OF RESULTS BY ALL METHODS ON CVS AND THE HSV

o =0.05 o =0.07

MR=95% MR=90% MR=80% MR=95% MR=90% MR=80% (s)
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 8

Observed 5.876 0.002  6.108 0.006 6.613 0.016 5.874 0.002 6.104 0.006 6.603 0.015 0
HaLRTC 17.957 0.154 21.210 0.253 24.138 0.367 17.390 0.143 20.599 0.231 23.255 0.323 14
TNN 23573 0300 26449 0412 27.300 0.460 22.869 0.265 25.157 0.351 25361 0.384 22
DTNN 24611 0385 25872 0.431 26933 0472 23912 0354 24.844 0.386 25.388 0.409 1188
TRLRF  25.852 0.387 26.555 0.425 27.265 0.457 25.508 0.360 26.303 0.401 26.932 0428 285
TMacTT 26.196 0.376 26.968 0.418 27.601 0.454 24.998 0.326 26.686 0.399 27.361 0.433 25
HTNN-FFT 25.654 0.369 26.708 0.422 27.107 0.453 24.670 0.317 25.195 0356 25.108 0.376 32
TW-TC 25945 0386 27.610 0.466 28.741 0.517 24904 0.335 26.803 0.421 28.040 0.478 730
FCTN-TC 24.728 0.343 27.367 0.460 29.252 0.537 23360 0.286 25943 0.397 28.029 0485 150
FCTN-GS 26453 0418 28.092 0.493 29.947 0.560 25.620 0.368 27.200 0.444 28.501 0.501 171
FCTN-GSR 26.242 0.407 28.139 0.494 29.536 0.552 25.698 0.372 27.426 0.448 28.648 0.504 102

Observed 4.596 0.003 4.829 0.006 5.336 0.017 4.594 0.002 4.826 0.006 5.329 0.017 0
HaLRTC 16.875 0.216 20.309 0.330 23.519 0436 16.406 0.199 19.762 0.295 22.671 0.378 15
TNN 23.085 0.362 27.581 0.464 28570 0.479 22383 0.325 25.888 0.410 26.186 0.421 22
DTNN 25565 0.476 27.355 0.515 28.637 0.524 24.664 0.430 25944 0.461 26.534 0.464 1166
container TRLRF  24.882 0.431 26.417 0489 27.141 0.506 24.682 0.407 26.154 0461 26.802 0.473 298
TMacTT 25.553 0.441 27.037 0.489 27.990 0.515 25.071 0.412 26.798 0.461 27.641 0.482 29
HTNN-FFT 26430 0.439 28.185 0.468 28.337 0.472 25.123 0.390 26.196 0.415 25948 0415 35
TW-TC  27.055 0.482 29408 0.545 30.715 0.569 25.843 0.431 28.360 0.499 29.732 0.525 796
FCTN-TC 25.613 0.433 29.791 0.530 32.101 0.575 23943 0376 27.617 0.468 30.083 0.520 134
FCTN-GS 27.300 0.497  30.437 0.565 32.465 0.588 26.272 0.446 29.409 0.512 30.707 0.531 162
FCTN-GSR 26.657 0.494 29.101 0.545 31.469 0.584 26.382 0.458 28.730 0.509 30310 0.537 107

Observed 8292 0.006 8523 0.016 9.023 0.041 8.288 0.006 8.515 0.015 9.006 0.040 0
HaLRTC 13.459 0.090 16.201 0.202 19.064 0.394 13.256 0.086 15972 0.190 18.662 0.359 15
TNN 18.870 0.315 22.008 0.530 24.172 0.658 18.575 0.289 21.290 0.474 22.830 0.581 22
DTNN  20.066 0.406 20.948 0.486 22.253 0.584 19.812 0.379 20.538 0.447 21.521 0.525 1160
thino TRLRF  18.910 0.261 20.269 0.381 21.075 0.456 18.815 0.253 19.517 0.320 20.288 0.393 173
TMacTT 16.070 0.199 18.445 0.402 24.289 0.691 16.016 0.175 15.404 0.240 20.878 0.537 68
HTNN-FFT 20.814 0.431 22.719 0.573 24.293 0.662 20.296 0.386 21.784 0.507 22.824 0.580 33
TW-TC  20.555 0.407 21.690 0.502 22.439 0.561 20.269 0.383 21.447 0480 22.267 0.542 641
FCTN-TC 20.482 0424 22412 0.561 23.624 0.638 19.860 0.380 21.983 0.530 23.258 0.613 152
FCTN-GS 21.296 0.463 23213 0.606 24.876 0.704 20.597 0.407 22.570 0.561 24.334 0.670 180
FCTN-GSR 21.343 0.467 22995 0.590 24.878 0.705 21.103 0.441 22.557 0.554 24331 0.670 109

Observed 8411 0.006 8.643 0.015 9.145 0.040 8.407 0.006 8.635 0.014 9.128 0.038 0
HaLRTC 11.946 0.195 19.499 0.573 24479 0.733 11.575 0.168 18.514 0.523 23.182 0.661 6
TNN 25.039 0.666 28910 0.739 29.115 0.727 24.013 0.617 26.859 0.671 26.548 0.649 9
DTNN  29.688 0.773 30.026 0.758 28910 0.719 27.805 0.713 27.653 0.691 26.404 0.646 171
TRLRF 29997 0.802 31.319 0.830 32.229 0.841 29.004 0.763 30.380 0.796 31.091 0.805 50
TMacTT 30.841 0.789 33.636 0.847 34.433 0.859 25.635 0.625 29.186 0.728 31.116 0.777 14
HTNN-FFT 28304 0.735 29.083 0.734 28.818 0.717 26.632 0.675 26.850 0.664 26.293 0.639 13
TW-TC 31.052 0.790 33.245 0.829 34473 0.847 28.024 0.704 30.372 0.762 32.151 0.801 326
FCTN-TC 25.805 0.631 28.902 0.716 31.682 0.784 23.196 0.541 25.897 0.629 28.615 0.707 164
FCTN-GS 31.203 0.841 33.632 0.857 34.972 0.863 30.281 0.800 31.341 0.792 31.826 0.792 131
FCTN-GSR 30.896 0.845 33.487 0.867 34.332 0.865 30.278 0.817 31.818 0.816 32.454 0.815 61

The red and blue colors stand for the best and second best values, respectively.

Data Method

boat

HSV

Authorized licensed use limited to: Tsinghua University. Downloaded on December 02,2025 at 05:13:35 UTC from IEEE Xplore. Restrictions apply.



3236

Observed HalLRTC

IEEE TRANSACTIONS ON BIG DATA, VOL. 11, NO. 6, NOVEMBER/DECEMBER 2025

TMacTT

-

Obseved

Observed

Fig. 5.

HTNN-FFT

FCTN-GS FCTN-GSR

FCTN-GSR

Results on videos. The first two rows are reconstructed results of the 45-th frame of the color video “container” with MR=95%, 0 = 0.05. The middle

two rows are reconstructed results of the 35-th frame of the color video “boat” with MR=80%, o = 0.07. The bottom two row are pseudo color images (R-16 G-8
B-4) of reconstructed results of the 15-th frame of the hyperspectral video “HSV”” with MR=90% and o = 0.07.

C. Discussions

In this part, we conduct more experiments to further discuss
the settings that would affect the result.

a) Initial FCTN-rank values: In order to verify that our pro-
posed method is less affected by the setting of the maximum val-
4,5,6,7,8}. Then, we compare our FCTN-GS with the FCTN-
TC method on HSV with MR=90% and 0=0.05. The perfor-
mance of FCTN-GS and FCTN-TC methods are presented in
Fig. 6. In terms of PSNR values and SSIM values, it is easy to

PSNR value at different maximums of the FCTN-rank

AT
-kESS) || os |
» .01
| x| | ,,
os |
» os |
N
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o
o
0 ‘ .
FCTN.GS FCIN-TC

Fig. 6. The reconstruction performance of the FCTN-TC and FCTN-GS at
different maximums of the FCTN-rank. Best viewed in x 2 sized color pdf file.

SSIM value at different maximums of the FCTN-rank

-
-
k(6.

FCTN-GS.

FCTN-TC
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TABLE V
THE RESULT OF THE RANDOMIZED BLOCK SAMPLING
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o =0.05 o =0.07 .
Data  Method Time
MR=95% MR=90% MR=80% MR=95% MR=90% MR=80%
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM (s)
Observed  5.88  0.00 6.11 0.01 6.61 0.02 5.87 0.00 6.10 0.01 6.60 0.02 0
FCTN-TCR 25.37 0.37 27.60 0.47 28.25 0.49 23.92 0.31 26.26 0.41 2697 0.44 89
boat FCTN-TC 24.73 0.34 27.37 0.46 29.25 0.54 2336 0.29 2594 0.40 28.03 0.49 150
TW-TCR 2645 0.40 2690 043 27.24 045 25.89 0.37 26.34 0.40 26.34 0.40 144
TW-TC 2595 0.39 27.61 047 28.74 0.52 2490 0.34 26.80 0.42 28.04 0.49 730
Observed 10.64 0.02 11.09 0.04 11.62 0.07 10.60 0.01 11.02 0.04 11.51 0.07 0
FCTN-TCR 22.50 0.49 22.60 0.49 22.81 0.50 2230 0.48 2224 047 2237 047 71
face FCTN-TC 23.80 0.54 2492 0.58 25.45 0.60 23.39 0.52 24.53  0.56 25.04 0.58 414
TW-TCR 20.61 041 21.10 0.43 21.47 0.45 20.51 0.40 20.86 0.41 21.11 042 170
TW-TC 2295 0.1 23.50 0.53 23.89 0.55 22.81 0.50 23.36 0.52 23.66 0.53 1182
] TABLE VI
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T 100 10!
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PSNR  Value N
i
]
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95 o 2 045 048
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Fig. 7. The effect of the parameters p1, p2, 5, 2 on the FCTN-GS algorithm
and FCTN-GSR algorithm. The first row is the result of the FCTN-GS algorithm,
and the second row is the result of the FCTN-GSR algorithm.

see that the results reconstructed by FCTN-GS are more stable
than FCTN-TC at different maximums of the FCTN-rank.

b) Parameters: In our method, the main parameters are A, p1,
p2 and B. To test the effects from different values of them, we
conduct 8 experiments on the color video “container” with MR
= 80% and o = 0.05. The PSNR values and SSIM values with
respect to different parameters are represented in Fig. 7. When
testing one parameter, other parameters are fixed as default
values. The default values are set as follows: p; = 0.1, po = 0.1,
A =10', 5 = 1. From Fig. 7, we can see that the performance
of FCTN-GS and FCTN-GSR is stable at A = {10°,10'}, p; =
{107%,10°} and po = {1071, 10°} respectively. As observed, if
A or po continues to increase, it will bring huge offsets to decrease
the performance. Meanwhile, we can see the performance of
our method is more sensitive to 3 and our method could obtain
satisfactory results with a wide range of p;.

c) The result of the randomized block sampling strategy: In
recent years, some complicated tension network decompositions
have emerged. Therefore, it is necessary to reduce the com-
putation burden among them. TW decomposition and FCTN
decomposition both are complicated, which is due to their factor
tensor owning higher order. It can be naturally imagined that
reducing the size of the dimensions of the core tensor can reduce
computational burden.

To highlight the effectiveness of this approach, we compare
TW-TCR and FCTN-TCR with their original counterparts on

THE PARAMETERS OF PROPOSED METHODS FOR REPRODUCIBILITY

Method Data

Color Video

Parameters

[15,3,5,3,5,3]8\:56:1

Rmax

p1 = 0.01 po = 0.001
Hyperspectral Video Rpax = [6, 6,(6), 316, 6] )\O:éf) A=1
FCTN-GS p1 = 0.01 p3 = 0.001
Face Data Ruax = [6,6,6,6,6,6] A\=158=1
p1 = 0.1 p2 = 0.01
Traffic Data Ruax = [5,5,5,5,5,5] A=18=10
p1=0.1 p2 =0.01
Color Video  Rpax = [15,3,5,3,5,3] A=258=1
01 = 0.01 ps = 0.001
Hyperspectral Video Rpax = [6, 6,8, 816, 6] )\O: 8.5 B=1
FCTN-GSR p1 = 0.01 p3 =0.001
Face Data Rnax = [6,6,6,6,6,6) A=18=1
p1 = 0.1 p2 =0.01
Traffic Data Rnax = [5,5,5,5,5,5) A=0.5 =10
p1 = 0.1 pa .01

150

Time (s)

1100

SSIM  Value
o
o
gL

0.52 . .
50% 60% 70%

Randomized Sampling Ratio

80%

60% 70%
Randomized Sampling Ratio

Fig. 8. The PSNR values and SSIM values related to the sampling ratios of
the randomized block sampling.

two datasets. Results are shown in Table V, demonstrating the
improvements in speed and efficiency.

d) Parameters settings for FCTN-GS and FCTN-GSR: For
the experimental results presented in this paper, we provide the
following table of parameters as a basis for reproducibility. From
Table VI, we can summarize that the parameter requiring the
most adjustment across different datasets is A, which needs to be
set smaller in FCTN-GSR compared to FCTN-GS. Otherwise,
this paper aims to set Ryayx as close as possible to its estimation
based on the results obtained from the experiments.

e) The effect from randomized block sampling: From real data
experiments, we can see the acceleration brought in from the
randomized block sampling. In this part, we test our FCTN-
GSR also on the color video “container” with MR = 80%
and o = 0.05. We vary the sampling ratio of the randomized
block sampling strategy from 50% to 90%. Then, the PSNR and
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SSIM values are reported in Fig. 8. We also exhibit the running
time. We can see that the performance is generally better as the
sampling ratio grows. However, the running time would also
increase.

VII. CONCLUSION

In this work, we propose a noisy tensor completion model
based on the structural sparsity regularized FCTN decomposi-
tion. The structural sparsity regularization can lead to near-zero
groups and thus the FCTN-rank can be adaptively adjusted by
pruning them. We design a proximal alternating minimization
algorithm and theoretically establish its global convergence.
To further accelerate the proposed method, we customized a
randomized block sampling strategy. Experiments on synthetic
data show that our structural sparsity regularization helps to au-
tomatically and accurately determine complicated FCTN-rank
in the presence of pixel missing and Gaussian noise corruptions.
We also conduct abundant experiments on different types of
real-world tensor data and results illustrate that our methods out-
perform compared state-of-the-art methods. It is imperative to
emphasize that our randomized block sampling strategy, coupled
with structural sparsity regularization, possesses the potential for
broader applicability across various large-scale TNs. We have
undertaken some experiments to substantiate the viability of this
assertion.
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