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A B S T R A C T

Transform-based tensor nuclear norm (TNN) methods have gained considerable attention for their effectiveness
in addressing tensor recovery challenges. The integration of deep neural networks as nonlinear transforms has
been shown to significantly enhance their performance. Minimizing transform-based TNN is equivalent to
minimizing the 𝓁1 norm of singular values in the transformed domain, which can be interpreted as finding
a sparse representation with respect to the bases supported by singular vectors. This work aims to advance
deep transform-based TNN methods by identifying a more compact representation through learnable bases,
ultimately improving recovery accuracy. We specifically employ convolutional kernels as these learnable bases,
demonstrating their capability to generate more compact representation, i.e., sparser coefficients of real-world
tensor data compared to singular vectors. Our proposed model consists of two key components: a transform
component, implemented through fully connected neural networks (FCNs), and a convolutional component that
replaces traditional singular matrices. Then, this model is optimized using the ADAM algorithm directly on the
incomplete tensor in a zero-shot manner, meaning all learnable parameters within the FCNs and convolution
kernels are inferred solely from the observed data. Experimental results indicate that our method, with this
straightforward yet effective modification, outperforms state-of-the-art approaches on video and multispectral
image recovery tasks.
1. Introduction

In multidimensional data applications, tensors – higher-order gen-
eralizations of matrices – serve as fundamental data structures. These
applications span a wide range of fields, including color image and
video processing [1–4], hyperspectral data recovery and fusion [5–7],
personalized web search [8,9], high-order web link analysis [10], mag-
netic resonance imaging (MRI) data recovery [11], and seismic data
reconstruction [12], etc. Due to inherent constraints such as the acquisi-
tion conditions and transmission capacity limitations, multidimensional
data frequently exhibit incompleteness or significant corruption. The
challenges associated with these issues, as highlighted in [3], drive the
need for advanced methods in this field. Effectively characterizing and
harnessing the internal structure of complex multidimensional data is
thus crucial for achieving accurate and reliable results.

Low-rank models have demonstrated their effectiveness in pro-
cessing two-dimensional data from diverse sources [13,14]. Extending
this concept from matrices to tensors allows for the integration of
multi-linear structural information, making tensors a powerful tool for
handling data that is both multi-model and multi-relational [15]. The
idea of using tensor completion for image compression was proposed in
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[16], and the super-pixel approach was also later studied in [17]. How-
ever, extending the concept of low-rankness from matrices to tensors
directly is not trivial, as defining the rank of a tensor uniquely remains
a challenging problem. In recent decades, the most commonly used
rank definitions are the CANDECOMP/PARAFAC (CP) rank [18,19]
and the Tucker rank [20] (also referred to as ‘‘n-rank’’ [21]). The
CP rank is determined by CP decomposition, but calculating the CP
rank for a specific tensor is recognized as an NP-hard problem [22].
Conversely, Tucker rank is derived via Tucker decomposition, which
requires unfolding the tensor along each mode, often disrupting its
inherent structures. In this paper, we focus on an innovative alter-
native form of tensor rank, derived from the tensor singular value
decomposition (t-SVD). Originally introduced by Braman et al. [23]
and Kilmer et al. [24], the t-SVD relies on the tensor–tensor product
(referred to as t-prod), which enables the integral manipulation of
third-order tensors, thereby preserving the information that is often
lost when tensors are converted into matrices or flattened [25]. Recent
advancements have integrated the t-SVD with deep learning techniques
to optimize the sparsity of singular values in recovered tensors by
exploiting spatial dimensions more effectively [26]. Additionally, to
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Fig. 1. The accumulation energy ratio (AccEgy) is calculated by considering the proportion of singular values derived from different transformations applied to the transformed
frontal slices of the MSI Peppers (top left) and video Foreman (bottom left). The right side displays the restoration outcomes using several techniques on these two datasets with
a sampling rate (SR) of 10%. The AccEgy of the 𝑘 largest singular values is defined as ∑𝑘

𝑖=1 𝜎
2
𝑖 ∕

∑

𝑗 𝜎2
𝑗 , where 𝜎𝑖 represents the 𝑖th singular value. In our method, 𝜎𝑖 refers to

the 𝑖th representation coefficient after convolution. It can be observed that SSCNT exhibits a higher energy concentration, indicating that our method learns a more compact
representation, leading to superior completion results.
enhance the robustness of tensor transformations, Saragadam et al. [27]
proposed a novel framework that employs deep generative networks
for low-rank decomposition of both matrices and tensors, demonstrat-
ing improved stability and decomposition quality. Furthermore, t-SVD
has demonstrated an exceptional ability to capture the spatial shift
correlations frequently present in real-world data [23,24,28].

In [29], Kernfeld et al. emphasized that the t-prod relies on a
convolution-like operation, which can be efficiently executed by im-
plementing the Discrete Fourier Transform (DFT). A practical approach
for computing the t-prod of two tensors involves three key steps: (i)
applying the Fast Fourier Transform (FFT) along the tubes of the
tensors, (ii) performing matrix multiplications on each pair of frontal
slices in the transform domain, and (iii) applying an inverse FFT along
the tubes of the resulting tensor. Importantly, beyond the Fourier
transform, the t-prod and the t-SVD framework can be established
using any invertible linear transformation [29], such as the Discrete
Cosine Transform (DCT). In [30], it was demonstrated that the mirror
boundary conditions used in DCT are more effective in preserving the
head and tail frontal slices compared to the periodic boundary condi-
tions of DFT, resulting in improved performance in tensor completion.
Additionally, studies such as [31,32] have derived robust theoretical
guarantees by utilizing transformations like unitary and invertible lin-
ear transformations. However, the requirement of invertibility limits
exploration of results obtained from non-invertible (or semi-invertible)
transformations, potentially leading to redundant outcomes. To address
this, Jiang et al. [33] proposed using the tight wavelet frame, also
known as a framelet, as a transformation method, which effectively re-
duces redundancy in transformations. Furthermore, in their subsequent
work [34], they explored a more efficient low-rank representation of
the transformed tensor by employing a dictionary-based technique to
obtain low-rank coding coefficients.

However, the linear structure of the aforementioned transforma-
tions limits their ability to accurately capture the intricate and non-
linear characteristics inherent in real-world data. To address this limi-
tation, Luo et al. [35] introduced a nonlinear multilayer neural network
approach, which significantly enhances the model’s ability to represent
the complexity and nonlinear features of real-world data. We begin
2 
by defining the forward transform 𝑓 of the nonlinear transformation
and its corresponding backward transform 𝑔. The model can then be
formulated as follows:

min
𝑓 ,𝑔 𝜆

𝑛3
∑

𝑘=1
‖𝑓 ()(𝑘)‖∗ + 𝐿(𝑔(𝑓 ()),), (1)

where  ∈ R𝑛1×𝑛2×𝑛3 and 𝑓 () is the transformed tensor acquired
through nonlinear multi-layer neural network. The superscript denotes
the 𝑘th frontal slice of the transformed tensor. The term 𝐿(𝑔(𝑓 ()),)
represents the fidelity loss function, and 𝜆 is the trade-off parameter.
This model’s multi-layer adaptive transformation enables it to achieve
excellent results across a wide range of datasets and tasks. According
to the definition of t-SVD, the 𝑘th frontal slice of the transformed
tensor can be expressed as 𝑓 ()(𝑘) = 𝐔(𝑘)𝐒(𝑘)𝐕(𝑘)𝐻 . Since minimizing
‖𝑓 ()(𝑘)‖∗ is equivalent to minimizing ‖𝐒‖1, the first term in model (1)
is equivalent to 𝜆

∑𝑛3
𝑘=1 ‖𝐔

(𝑘)𝐻𝑓 ()(𝑘)𝐕(𝑘)
‖1. The unitary matrices 𝐔(𝑘)

and 𝐕(𝑘) obtained through t-SVD are derived directly from the data,
rather than being based on predefined paradigms. It is noteworthy that
𝐔(𝑘) and 𝐕(𝑘) can be respectively interpreted as row and column oper-
ations. The low-rankness of 𝑓 ()(𝑘) is directly related to the sparsity of
𝐒. Consequently, the objective of (1) is to find a sparse representation
with respect to singular vectors in 𝐔(𝑘) and 𝐕(𝑘).

Considering the superiority of representation learning in process-
ing high-dimensional data by reducing dimensionality and extracting
significant features, several methodologies have been proposed to en-
hance data representation efficiency. For instance, a hierarchical subnet
neural network based on progressive learning was introduced to op-
timize data representation [36]. Zhang et al. [37] further achieved a
robust representation by simultaneously considering low-dimensional
features and classifier models. Moreover, a technique utilizing subnets
to construct discriminative latent spaces was proposed to address the
challenges of loosely connected feature encoding [38]. In this work,
we consider to find a more compact representation by introducing
the convolutional kernels to replace the singular vectors. Specifically,
our motivations involve three key aspects. First, the frontal slices of
many real-world tensors, within the transform-based t-SVD framework,
are not strictly low-rank. Second, minimizing the 𝓁 norm of singular
1
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values in the transform domain (i.e., minimizing the transform-based
TNN) can indiscriminately shrink small singular values that are associ-
ated with intricate geometric features. Third, the convolution operation
ffectively replaces row and column operations and has been shown
o excel in extracting spatial features. Considering these factors, we
dopt convolution in place of 𝐔(𝑘)𝐻 and 𝐕(𝑘) within the transform-

based t-SVD framework. To start, we employ a fully connected neural
network (FCN) as the nonlinear transform, applied to both the forward
and backward transformations. In the transformed domain, convolution
operations are then used to replace the singular bases. Convolution is
adaptive to data and is believed to effectively extract spatial features

hile preserving intricate textures. Thus, our approach seeks to find a
ore compact representation in the (nonlinear) transform domain by
inimizing the representation coefficients with respect to the convo-

utional kernel. We refer to this transformation as the Self-Supervised
Convolutional Nonlinear Transform (SSCNT). All parameters in the FCN
and convolutional kernels can be inferred solely from the incomplete
observation in a self-supervised (or zero-shot learning) manner. As
llustrated in Fig. 1, which displays the accumulation energy (AccEgy)

ratio of singular values from previous transform-based TNN methods
nd the AccEgy ratio of our representation coefficients, our method
rovides a more compact representation of videos and multispectral
mages (MSI), evidenced by higher AccEgy values with fewer propor-
ional singular values (representation coefficients). This indicates that

SSCNT is capable of identifying a more compact representation, leading
to superior tensor completion results. The example shown in Fig. 1
demonstrates that our method, with a simple modification, significantly
utperforms the compared methods in terms of peak signal-to-noise
atio (PSNR). This validates that finding a more compact representation

is indeed beneficial for characterizing the inner structure of real-world
tensor data.

We summarize the contributions of this paper as follows:

• We present a self-supervised, nonlinear transform-based TNN de-
signed to effectively capture the intricate and nonlinear features
of multi-dimensional images. This framework leverages a non-
linear multilayer neural network combined with a convolutional
network to represent the transform. Crucially, the transform is
learned directly from the observed data through self-supervision,
eliminating the need for labeled datasets.

• Our approach enhances model capacity by generating more com-
pact representations, achieved by minimizing the 𝓁1 norm of
singular values in the transform domain. This technique replaces
the traditional singular value decomposition with convolutional
operations, streamlining the process while retaining performance.
Extensive experiments across various multi-dimensional inverse
problems demonstrate the clear superiority of our method com-
pared to existing state-of-the-art techniques.

The structure of this paper is presented as follows. In Section 2, an
ntroduction to tensors is provided, covering some basic background
nformation. Section 3 introduces the proposed method. Section 4 con-

tains the details of the experimental results. Lastly, concluding remarks
re provided in Section 5.

2. Notations and preliminaries

This section outlines the fundamental elements necessary to imple-
ent the proposed method. We start by introducing the basic tensor
otations, followed by an introduction to the t-SVD framework, which

was originally proposed in the Refs. [24,25,39,40]. We are reiterating
these concepts here for the convenience of the readers.

Floral letters, such as  , are employed to represent tensors, while
capital boldface letters, like 𝐗, are used for matrices. The i, j, kth
element of a third-order tensor  ∈ R𝑛1×𝑛2×𝑛3 is denoted by (𝑖, 𝑗 , 𝑘).
The ith frontal slice of  ∈ R𝑛1×𝑛2×𝑛3 is denoted by  (𝑖) ∈ R𝑛1×𝑛2 .
3 
Definition 1. Tensor–tensor Product (t-prod) [25]: The tensor–tensor
product of  ∈ R𝑛1×𝑛2×𝑛3 and  ∈ R𝑛2×𝑛4×𝑛3 , denoted as  =  ∗  ∈
R𝑛1×𝑛4×𝑛3 . The (i, j)th tube 𝐜𝑖𝑗∶ is defined as follows:

𝐜𝑖𝑗∶ = (𝑖, 𝑗 , ∶) =
𝑛2
∑

𝑘=1
(𝑖, 𝑘, ∶) ∗ (𝑘, 𝑗 , ∶), (2)

where ∗ denotes the circular convolution between two same-size tubes.
Since the convolution operation is equivalent to an element-wise

product in the Fourier domain, the t-prod between two tensors can
e efficiently computed by performing matrix multiplication on their
rontal slices after applying the DFT or FFT along the third mode.

Definition 2 (Conjugate Transpose [25]). The conjugate transpose of
 ∈ R𝑛1×𝑛2×𝑛3 , indicated as 𝐻 , is defined as follows: (𝐻 )(1) = ((1))𝐻
and (𝐻 )(𝑖) = ((𝑛3+2−𝑖))𝐻 (𝑖 = 2,… , 𝑛3).

Definition 3 (Identity Tensor [25]). The identity tensor  ∈ R𝑛1×𝑛1×𝑛3 is
 tensor that has the first frontal slice consisting of a 𝑛1 × 𝑛1 identity

matrix, while all other slices are filled with zeros.

Definition 4 (Orthogonal Tensor [25]). The tensor  is orthogonal if
 ∗ 𝐻 = 𝐻 ∗  = .

Definition 5 (F-diagonal Tensor [25]). The tensor  defined as f-
diagonal is characterized by the fact that every frontal slice (𝑖) is a
diagonal matrix.

Theorem 1 (T-SVD [24,25]). The tensor singular value decomposition
t-SVD) of a tensor  ∈ R𝑛1×𝑛2×𝑛3 is defined as follows:
 =  ∗  ∗ 𝐻 , (3)

where  ∈ R𝑛1×𝑛1×𝑛3 and  ∈ R𝑛2×𝑛2×𝑛3 are orthogonal tensors, and
 ∈ R𝑛1×𝑛2×𝑛3 is an f-diagonal tensor.

Definition 6 (Tensor Tubal-rank [39]). The t-SVD of a tensor  is given
by  ∗  ∗ 𝐻 , where  is a tensor of size 𝑛1 × 𝑛2 × 𝑛3. The tubal-rank
of , denoted as 𝑟𝑎𝑛𝑘𝑡(), is defined as the number of singular tubes
in the tensor  that are not equal to zero.

Definition 7 (Tensor Tubal Nuclear Norm (TNN) [41]). The tensor
nuclear norm of a tensor  ∈ R𝑛1×𝑛2×𝑛3 , represented by ‖‖TNN, is
defined as

‖‖TNN =
𝑛3
∑

𝑖=1
‖̃ (𝑖)

‖∗, (4)

where ̃ (𝑖) refers to the Fourier transformed tensor’s frontal slice.
As noted by Kernfeld et al.[29], the implementation of the tensor–

tensor product is not limited to the discrete Fourier transform, therefore
the tensor nuclear norm can also be defined in different transformed
domain [30,31,33–35].

3. Proposed method

This section presents the framework of the suggested nonlinear
ransform. By employing the developed transformation, we establish
n optimization model for restoring low-rank tensors.

3.1. Revisiting TNN and SSNT

Zhang et al. [39] developed a convex replacement of the tensor
tubal-rank, which they refer to as TNN. The formulation of the model
is as follows:
min


𝜆‖‖TNN, s.t. 𝛺 = 𝛺 , (5)
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Fig. 2. The procedure for recovering low-rank tensors using linear transform-based TNN [39], SSNT [35], and the proposed SSCNT.(a) Degradation Process: The process where the
sampling rate (SR) is 10%. (b) TNN Method: The TNN represents a standard linear transform-based approach for recovering low-rank tensors. (c) SSNT Method: The Self-Supervised
Nonlinear Transform (SSNT) approach. (d) SSCNT Method: The proposed Self-Supervised Convolutional Nonlinear Transform (SSCNT) method.
where  represents the incomplete observations and 𝛺 represents the
observed set. Considering that the nuclear norm of a tensor is defined
as the sum of the singular values of its frontal slices in the transformed
domain, and given that t-SVD can be viewed as operating after a
linear projection, it becomes necessary to employ alternative methods
to capture the nonlinear relationships between the first and second
dimensions of the tensor. For any tensor  , its nuclear norm can be
expressed as ∑

𝑘 𝐒(𝑘) = 𝐔(𝑘)𝐻 (𝑘)𝐕(𝑘). Therefore, model (5) can be
restated in the following manner:

min


𝐔(𝑘)𝐻𝐔(𝑘)=𝐈,𝐕(𝑘)𝐻𝐕(𝑘)=𝐈

𝜆
𝑛3
∑

𝑘=1
‖𝐔(𝑘)𝐻 ̃ (𝑘)𝐕(𝑘)

‖1, s.t. 𝛺 = 𝛺 . (6)

Luo et al. [35] proposed using the fully connected layer of nonlinear
mode-3 (𝑁 𝑜𝐹 𝐶3) being the unit of Self-Supervised Nonlinear Transform
(SSNT). A single 𝑁 𝑜𝐹 𝐶3 layer can be represented as

𝑤𝑖() = 𝜎1( ×3 𝐖𝑖), (7)

where ×3 indicates the mode-3 tensor-matrix product e.g.,  ×3 𝐀 =
fo1d3(𝐀 × unfo1d3()), where f old3(⋅) is the mode-3 folding operator
that transforms a matrix of size R𝑛3×𝑛1𝑛2 into a tensor of size R𝑛1×𝑛2×𝑛3 .
Similarly, the mode-3 unfolding operator unf old3(⋅) is used to transform
a tensor of size R𝑛1×𝑛2×𝑛3 into a matrix of size R𝑛3×𝑛1𝑛2 . 𝜎1 represents the
nonlinear activation function LeakyReLU [42], while 𝐖𝑖 is the trainable
matrix in the linear weighting operations layer.

Luo et al. [35] have constructed the SSNT by stacking two layers of
𝑁 𝑜𝐹 𝐶3 to represent the subspace accurately. The SSNT is a mapping
function 𝑓 ∶ R𝑛1×𝑛2×𝑛3 → R𝑛1×𝑛2×𝑛̃3 , which can be represented as

𝑓 () = 𝑤2◦𝑤1(), (8)

where ◦ represents the composition of functions. We can use 𝛩𝑓 to
denote the learnable parameters in 𝑓 . Similarly, the inverse transform
𝑔 ∶ R𝑛1×𝑛2×𝑛̃3 → R𝑛1×𝑛2×𝑛3 can be represented as
𝑔() = 𝑤4◦𝑤3(), (9)

4 
with its learnable parameters denoted as 𝛩𝑔 . Based on above, for
the observed data  ∈ R𝑛1×𝑛2×𝑛3 , the SSNT optimization model for
recovering low-rank tensors can be formulated as

min
𝛩𝑓 ,𝛩𝑔

𝐔(𝐾)𝐻𝐔(𝐾)=𝐈,𝐕(𝐾)𝐻𝐕(𝐾)=𝐈

𝜆
𝑛̃3
∑

𝑘=1
‖𝐔(𝑘)𝐻𝑓 ()𝐕(𝑘)

‖1 + 𝐿(𝑔(𝑓 ()),), (10)

where 𝐿( ,) is the fidelity term, measuring the distance between the
output after degradation and the observation.

3.2. SSCNT for low-rank tensor recovery

To improve the precision of nonlinear transformations, we propose
a novel method called SSCNT, which leverages a combination of multi-
layer neural networks and convolutional networks for transformation
creation. As illustrated in Fig. 2, the SSCNT approach is compared
against traditional linear transform-based TNN and SSNT for low-rank
tensor recovery. This comparative analysis demonstrates the effective-
ness of the proposed SSCNT in enhancing the accuracy of low-rank
tensor reconstruction.

In this context, we replace 𝐔(𝑘)𝐻 and 𝐕(𝑘) in model (10) with
convolution operations. The proposed SSCNT features a hierarchical
structure that includes linear weights, nonlinear transformations, and
nonlinear activation functions. Specifically, we introduce the linear
weighting operation (ConR) layer as a crucial component of SSCNT. A
single ConR layer is formulated as follows:

𝑣𝑖() = 𝜎2( ⊛ 𝐤), 𝑖 = 1, 2, 3, 4, (11)

where 𝜎2 is used to represent the nonlinear activation function ReLu,
𝐤 stands for the convolution kernel, and ⊛ is used to represents the 2-
D spatial convolution operation. Our approach aligns with traditional
TNN methodologies by employing a neural network on mode-3 to
analyze interactions among frontal slices.

To capture the nonlinear relationships between the first and second
dimensions, we stack two ConR layers to construct the proposed SSCNT
ℎ1 ∶ R𝑛1×𝑛2×𝑛̃3 → R𝑛1×𝑛2×𝑛4 , which is designed as
ℎ1() = 𝑣2◦𝑣1(), (12)
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with 𝛩ℎ1 denoting learnable parameters in ℎ1. Similarly, we stack
two ConR layers to construct the inverse transform ℎ2 ∶ R𝑛1×𝑛2×𝑛4 →

R𝑛1×𝑛2×𝑛̃3 , which is designed as

ℎ2() = 𝑣4◦𝑣3(), (13)

with 𝛩ℎ2 denoting the learnable parameters in ℎ2.
Furthermore, although the data generally exhibits low-dimensional

characteristics, missing observations necessitate transforming the data
into a lower-dimensional space to effectively utilize its structure. When
the properties of the lower-dimensional space are accurately captured,
the reconstructed image will demonstrate improved filling effects af-
ter inverse projection. However, subspace characterization faces two
primary challenges: first, the incomplete data complicates the identifi-
cation of an appropriate lower-dimensional space; second, the subspace
obtained via t-SVD transformation may lack sufficient compactness.
Moreover, the unitary matrices 𝐔(𝑘) and 𝐕(𝑘), as row and column oper-
ations, are unnecessary and restrictive in promoting sparsity in model
(10). Therefore, by substituting the linear projection with nonlinear
convolution, convolution is employed as the projection operator to
replace 𝐔(𝑘) and 𝐕(𝑘).

As discussed above, given the observed data  ∈ R𝑛1×𝑛2×𝑛3 , the
roposed framework for recovering low-rank tensors is defined by the
ollowing optimization problem

min
𝑓 ,𝛩𝑔 ,𝛩ℎ1 ,𝛩ℎ2 ,

𝜆
𝑛4
∑

𝑘=1
‖ℎ1(𝑓 ())‖1 + 𝐿(𝛷(),), (14)

where 𝛷 represents the sequential composition of 𝑔 , ℎ2, ℎ1, and 𝑓 , i.e.,

𝛷() = 𝑔
(

ℎ2
(

ℎ1 (𝑓 ())
))

.

In this optimization problem, the fidelity term for tensor completion is
ormulated as

𝐿( ,) = ‖ ⊙ ( − )‖2𝐹 , (15)

where  ∈ R𝑛1×𝑛2×𝑛3 is a 0–1 weighting tensor, with entries set to 1
or observed elements and 0 for unobserved elements.

We use the adaptive moment estimation (Adam) [43] to optimize
(14) with all parameters in 𝑓 , ℎ1, ℎ2, and 𝑔 randomly initialized. To
obtain a better initial guess of  , we use the simple linear interpolation
ntroduced in [34]. The pseudocode is summarized in Algorithm 1.

To assess the efficiency of our algorithm, we analyze its computa-
tional complexity. Given a 3rd-order tensor  ∈ R𝑛1×𝑛2×𝑛3 , the third
imension is first transformed by the function 𝑓 , resulting in 𝑛̃3, and
hen further transformed by the function 𝑔 to produce 𝑛4. The time and
pace complexities in each iteration can be broken down into following
omponents:

• For the functions 𝑓 and 𝑔 that contain fully connected layers, the
time complexity is 𝑂(𝑛1𝑛2𝑛3) and 𝑂(𝑛1𝑛2𝑛̃3), respectively, while
the space complexity is 𝑂(𝑛1𝑛2 + 𝑛1𝑛3 + 𝑛2𝑛3) and 𝑂(𝑛1𝑛2 + 𝑛1𝑛̃3 +
𝑛2𝑛̃3), respectively.

• For the functions ℎ1 and ℎ2 that contain convolutional layers, both
the time complexity and space complexity are 𝑂(𝑛1𝑛2𝑛̃3𝑛4) and
𝑂(𝑛1𝑛2(𝑛̃3 + 𝑛4)), respectively.

Overall, the total time complexity of our algorithm is 𝑂(𝑛1𝑛2(𝑛3 + 𝑛̃3 +
𝑛̃3𝑛4)), and the total space complexity is 𝑂(𝑛1𝑛2(𝑛̃3+𝑛4+ 1) + (𝑛1+𝑛2)(𝑛3+
𝑛̃3)).

The proposed approach offers a more compact representation com-
pared to existing transform-based TNN methods. Insights drawn from
Fig. 1 (left side) demonstrate that our SSCNT method results in a higher
concentration of energy within the transformed tensor, as opposed
o conventional linear transform-based TNN techniques. This concen-

tration suggests that our method achieves a sparser representation.
Specifically, as indicated by the auxiliary dashed lines, our method
requires a smaller proportion of singular values to capture 98.5% of
the total energy in the data, compared to other methods. Consequently,
5 
our approach is expected to deliver a more accurate tensor low tubal-
ank approximation while offering a more flexible representation. This
ignificant improvement is a key contribution and serves as the driving
orce behind our proposed method.

Algorithm 1 SSCNT for Tensor Completion
1: Input: The observed tensor  with the support of observed entries

𝛺; trade-off parameters 𝜆; maximum iteration number 𝑡max.
2: Initialization: 0 = Init () ⊳ Linear interpolation

𝛩0
𝑓 , 𝛩0

𝑔 , 𝛩0
ℎ1

and 𝛩0
ℎ2

are randomly initialized. ⊳
Kaiming initialization

3: 𝑡 = 0;
4: while 𝑡 < 𝑡max do
5: 𝑡 = 𝑡 + 1;
6: Update  𝑡, 𝛩𝑡

𝑓 , 𝛩𝑡
𝑔 , 𝛩𝑡

ℎ1
and 𝛩𝑡

ℎ2
by minimizing (14) via Adam;

7: end while
8: Output: The recovered tensor 𝛷( 𝑡), where 𝛷 represent the com-

position of 𝑔 , ℎ2, ℎ1, and 𝑓 , with the parameters 𝛩𝑡
𝑔 , 𝛩𝑡

ℎ2
, 𝛩𝑡

ℎ1
, and

𝛩𝑡
𝑓 , respectively .

3.3. Implementation

We emphasize that the proposed SSCNT is trained exclusively using
he observed data in a fully self-supervised manner. As a result, there
s no need for additional training data or the conventional division of
ata into training and testing sets. A critical aspect of our network’s
tructure is the integration of both linear and convolutional layers.
or the linear layer, we employ the efficient strategy given in [35] .

In specific, each 𝑁 𝑜𝐹 𝐶3 is composed of a fully connected network,1
whereas each proposed 𝐶 𝑜𝑛𝑅 is composed of a convolution block.2
Further, let us consider  ∈ R𝑛1×𝑛2×𝑛̃3 as an example to demonstrate
the convolutional layer. In order to leverage the inherent nonlinear
haracteristics of real data, we design a nonlinear mapping to the
ransformed data. The 2-D spatial convolution layer is executed by
onvolving each individual frontal slice  (𝑖) with various 3 × 3 × 1
ilters (in total 𝑛̃3 filters). This process produces a feature map of size
1 × 𝑛2 × 𝑛4, which effectively captures the local spatial correlation
f the data. In the proposed method, we set 𝜆 = 𝑁 × 10−7, where
= 𝑛1 × 𝑛2 × 𝑛3, 𝑛̃3 = 2𝑛3, and 𝑛4 = 90 and 250 for the CAVE and

ideo datasets, respectively. To optimize the process, we employ the
dam optimizer, with termination based on a stopping criterion defined
s a maximum number of iterations, 𝑡𝑚𝑎𝑥 = 7000. Given the non-convex
ature of model (14), the initialization of 0 in Eq. (8) holds significant

importance. Hence, 0 is set to the result of the initialization function
Init(). For tensor completion, the initialization function Init(⋅) refers
to the linear interpolation method given in [34]. This method offers
an optimal initialization while also minimizing time consumption. All
experiments were conducted on the platform of Windows 11 with an
Intel(R) Core i5-9400f CPU, and RTX 3090 GPU with 64 GB RAM, and
the quantitative metrics were computed on Matlab 2021b.

4. Experiments

4.1. Experimental settings

We employ two traditional datasets to evaluate the effectiveness of
the suggested methods, namely the Columbia multispectral database
CAVE3) dataset and video dataset.4 We evaluate all methods on dif-

ferent datasets using a range of sample rates (SRs): 5%, 10%, 15%,

1 nn.Linear(⋅) in Pytorch.
2 nn.Conv2d(⋅) in Pytorch.
3 http://www.cs.columbia.edu/CAVE/databases/multispectral.
4 http://trace.eas.asu.edu/yuv/.

http://www.cs.columbia.edu/CAVE/databases/multispectral
http://trace.eas.asu.edu/yuv/
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Fig. 3. The PSNR, SSIM, and SAM values representing the restored outcomes are derived from various techniques applied to the CAVE dataset with a 10% SR.
20%, and 25%. Before the experiment, the pixel values of all datasets
have been normalized to a range of [0, 1] band-by-band. In addition,
we employ three quantitative evaluation indicators: peak signal-to-
noise ratio (PSNR), structural similarity (SSIM) [44], and spectral angle
mapper (SAM) [45]. Higher PSNR and SSIM values indicate superior
quality, while lower SAM values signify a narrower spectral angle
between the original data and the restored outcome.

To assess the effectiveness of the proposed SSCNT, we compare
it with seven recent and state-of-the-art TC methods. These methods
6 
include HaLRTC [46], a specialized algorithm for tensor filling, as well
as various linear transform-based approaches. The following methods
are referenced: TNN [47], TWTC [48] (a decomposition method that
initiates with the structure of an analytical diagram), t-CTV [49] (a
low-rank and smooth tensor recovery method), SSNT [35] (a Self-
Supervised Nonlinear Transform-Based Tensor Nuclear Norm method),
FTNN [33] (where the TNN induced by framelet transform), and
HLRTF [50] (which embedded a DNN as a nonlinear transform into
the t-SVD framework). The authors have either published the codes
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Table 1
The PSNR, SSIM, and SAM values of the recovered results are obtained by different methods on MSI data. The red, blue, and green colors stand for the best,
second best, and third best values, respectively.

Data SR 0.05 0.1 0.15 0.2 0.25 Time

Metric PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM (s)

𝐹 𝑙 𝑜𝑤𝑒𝑟𝑠

Observed 13.473 0.381 – 13.976 0.392 – 14.224 0.421 – 14.487 0.448 – 14.767 0.473 – –
HaLRTC [46] 20.863 0.672 34.885 26.268 0.798 23.512 29.635 0.870 15.747 31.880 0.906 12.325 33.586 0.928 10.445 36

TNN [39] 25.585 0.686 25.089 33.688 0.884 13.600 37.019 0.936 10.039 39.154 0.957 8.123 40.993 0.970 6.793 208
FTNN [33] 34.708 0.942 5.905 39.746 0.978 3.907 43.256 0.988 3.065 45.740 0.993 2.550 47.724 0.995 2.217 432
SSNT [35] 34.282 0.914 13.989 38.481 0.960 8.193 41.890 0.980 4.373 44.423 0.987 3.493 45.751 0.991 3.025 245

HLRTF [50] 36.137 0.932 7.909 39.959 0.965 6.164 42.769 0.982 4.804 44.310 0.984 4.145 45.801 0.989 3.518 72
TWTC [48] 31.082 0.866 23.218 34.068 0.917 18.355 36.001 0.938 15.554 37.452 0.951 13.351 38.701 0.959 11.687 –
t-CTV [49] 33.234 0.927 7.638 37.679 0.966 5.565 40.643 0.980 4.522 42.814 0.987 3.858 44.592 0.990 3.391 313

Ours 40.526 0.987 3.925 45.411 0.991 2.763 46.983 0.994 2.481 48.226 0.995 2.313 48.788 0.995 2.221 243

𝐵 𝑒𝑎𝑑 𝑠

Observed 13.182 0.143 – 14.292 0.178 – 14.545 0.214 – 14.808 0.250 – 15.088 0.285 – –
HaLRTC [46] 16.575 0.451 33.509 19.204 0.563 26.854 21.944 0.691 20.341 24.241 0.783 15.849 26.217 0.846 12.765 24

TNN [39] 19.744 0.402 31.019 24.775 0.649 20.447 28.232 0.786 14.944 30.407 0.855 11.963 32.021 0.893 10.125 218
FTNN [33] 25.164 0.807 11.267 29.377 0.922 6.974 32.498 0.960 5.043 34.836 0.976 3.924 36.955 0.985 3.209 396
SSNT [35] 26.099 0.782 16.724 30.573 0.908 10.069 33.644 0.947 6.808 35.563 0.964 5.288 37.424 0.975 4.171 238

HLRTF [50] 26.497 0.722 15.409 31.770 0.900 8.189 34.806 0.950 5.772 36.597 0.965 4.480 37.740 0.973 4.338 72
TWTC [48] 24.058 0.741 21.383 26.734 0.846 16.469 28.561 0.893 13.638 29.909 0.919 11.650 31.066 0.935 10.198 –
t-CTV [49] 25.511 0.803 12.791 29.226 0.894 9.185 31.641 0.935 7.273 33.495 0.956 6.021 35.067 0.968 5.169 317

Ours 31.428 0.942 5.814 35.277 0.974 4.114 37.520 0.984 3.432 38.903 0.988 3.090 40.542 0.992 2.429 242

𝐵 𝑎𝑙 𝑙 𝑜𝑜𝑛𝑠

Observed 13.281 0.125 – 13.737 0.161 – 13.986 0.188 – 14.246 0.212 – 14.527 0.233 – –
HaLRTC [46] 24.870 0.869 16.494 29.952 0.929 11.985 32.492 0.951 9.398 34.370 0.963 7.730 35.868 0.970 6.590 36

TNN [39] 30.374 0.846 11.350 39.249 0.963 5.308 42.618 0.980 3.803 45.014 0.987 3.032 46.808 0.991 2.575 190
FTNN [33] 41.215 0.984 2.600 45.929 0.993 1.882 48.282 0.995 1.699 50.309 0.996 1.412 51.497 0.997 1.281 485
SSNT [35] 37.119 0.938 7.922 41.643 0.974 4.193 43.910 0.983 3.285 46.119 0.989 2.577 47.332 0.991 2.419 235

HLRTF [50] 40.322 0.981 4.018 43.396 0.988 3.051 46.518 0.992 2.625 47.819 0.994 2.249 48.710 0.994 2.171 72
TWTC [48] 34.400 0.922 9.205 37.275 0.948 7.298 39.044 0.957 6.248 40.296 0.963 5.536 41.419 0.966 4.980 –
t-CTV [49] 39.585 0.983 3.239 44.164 0.992 2.409 46.765 0.994 1.997 48.657 0.996 1.748 50.127 0.996 1.586 307

Ours 46.233 0.992 2.242 49.163 0.995 1.832 50.257 0.996 1.679 50.533 0.996 1.565 51.869 0.997 1.445 242

𝐹 𝑒𝑎𝑡ℎ𝑒𝑟𝑠

Observed 12.872 0.207 – 13.361 0.236 – 13.613 0.273 – 13.878 0.308 – 14.154 0.341 – –
HaLRTC [46] 20.013 0.674 30.737 25.150 0.811 17.526 29.440 0.878 12.058 30.876 0.915 9.290 32.682 0.936 7.750 32

TNN [39] 24.908 0.700 18.897 33.385 0.898 9.353 36.424 0.942 6.911 38.399 0.960 5.611 40.129 0.971 4.739 206
FTNN [33] 32.131 0.926 8.959 37.664 0.972 4.493 41.353 0.985 3.091 44.142 0.991 2.412 46.389 0.994 1.988 230
SSNT [35] 32.237 0.906 11.834 37.331 0.960 6.193 40.391 0.977 4.138 42.734 0.984 3.347 44.489 0.988 2.695 243

HLRTF [50] 34.759 0.937 5.833 38.721 0.968 4.486 41.798 0.983 3.300 43.587 0.988 2.815 44.699 0.990 2.590 72
TWTC [48] 28.514 0.820 21.583 31.190 0.880 17.386 32.946 0.908 14.765 34.348 0.925 12.746 35.504 0.936 11.180 –
t-CTV [49] 31.357 0.928 6.203 35.792 0.965 4.490 38.614 0.978 3.610 40.781 0.985 3.069 42.550 0.989 2.678 310

Ours 40.069 0.978 3.163 44.385 0.990 2.367 46.576 0.994 2.045 47.805 0.995 1.845 48.594 0.996 1.757 242
i
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of comparison methods or acquired them from the corresponding
homepages.

4.2. MSIs dataset

In this section, we assess the effectiveness of the proposed method
y comparing it with other tensor completion techniques on the CAVE

dataset. The CAVE dataset contains 32 Multispectral Images (MSIs),
ach with an initial data size of 512 × 512 × 31. The collection has

a highly intricate structure and contains detailed texture information.
In Fig. 3, the PSNR, SSIM, and SAM values of the restored results

obtained through various techniques on the MSIs with a SR of 10%
are displayed. It is apparent that the proposed method (highlighted by
the red columns) consistently attains the highest and second-highest
values across all data points, confirming the superior performance of
the proposed methods.

The numerical results of the completion of the MSIs are presented
in Table 1. These results demonstrate that the proposed SSCNT outper-
orms other approaches in terms of PSNR and SSIM values, highlighting
ts superior accuracy in recovering low-rank tensors. Moreover, SSCNT
chieves exceptional SAM values, further showcasing its ability to
ffectively leverage the correlation along the third mode. Fig. 4 displays
isual illustrations of the outcomes for tensor completion. To enhance

the visualization, two specific local areas are selected and magnified
beneath each image. Due to page limits, in Fig. 4, we only present
the visual results on two scenarios for images (Beads and Watercolors)
rom the CAVE dataset. It is evident that SSCNT outperforms other
7 
approaches in image recovery. The proposed method excels in spa-
tial domain recovery, particularly as demonstrated by the results on
Beads. This improvement is attributed to the nonlinear convolution,
which provides a more accurate representation of low-dimensional
space.

To evaluate the performance of our method under more challeng-
ng structural missing patterns, we considered two specific patterns:
ne involving oblique lines for image (Balloons) and another with a

flower-like structure for image (Flowers). As illustrated in Fig. 5, our
method successfully addresses these complex cases, demonstrating its
robustness in scenarios with structural pixel removal.

4.3. Video dataset

Within this section, we choose three distinct videos to conduct addi-
tional validation of the proposed strategies, namely, ‘‘Akiyo’’,
‘‘Carphone’’, and ‘‘Foreman’’. The dimensions of all the data are
144 × 176 × 100.

To conduct further validation of the proposed methods. Quantita-
ive assessment results of different methods applied to video datasets
nder various SRs are displayed in Table 2. It is evident that SSCNT

consistently delivers the highest and second-highest results in most
cases. Meanwhile, to evaluate the efficacy of SSCNT on video datasets,
the restoration outcomes of different approaches on the ‘‘Carphone’’
nd ‘‘Foreman’’ are presented in Fig. 6. It is evident that SSCNT per-

forms admirably in terms of spatial details when compared to other
pproaches. In addition, the proposed method enhances the clarity of

spatial features and textures.
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Fig. 4. Pseudo color images (composed of the 35th, 15th, and fifth bands) of recovered results and corresponding residual errors by different methods on MSI Beads and Watercolors
with SR = 10%.
4.4. Discussions

To confirm the effectiveness of nonlinearity in the proposed SS-
CNT, ablation studies are carried out to evaluate the performance
of several comparable solvers, including the proposed SSCNT, SSCNT
with different nonlinear activation functions, SSCNT without any non-
linear activation functions and SSCNT without nonlinear transforma-
tions. Table 3 presents the quantitative evaluation outcomes of various
8 
techniques on MSI Toy with SR = 10%. Referring to Table 3, it is clear
that the utilization of nonlinear activation functions leads to a sub-
stantial enhancement in overall performance, attributable to the strong
modeling capabilities of nonlinearity. Additionally, using SSCNT with
the ReLU activation function yields superior performance compared to
other nonlinear activation functions such as LeakyReLU, PReLU, and
ReLU6. Consequently, ReLU is selected as the activation function in SS-
CNT across all our experiments. Meanwhile, we can observe that SSCNT
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Fig. 5. The recovered results by different methods for tensor completion on Balloons and Flowers with structure missing patterns.
Table 2
The PSNR, SSIM, and SAM values of the recovered results are obtained by different methods on videos. The red, blue, and green colors stand for
the best, second best, and third best values, respectively.

Data SR 0.05 0.1 0.15 0.2 0.25 Time

Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM (s)

𝐴𝑘𝑖𝑦𝑜

Observed 6.609 0.012 6.845 0.019 7.091 0.025 7.359 0.031 7.632 0.038 –
HaLRTC [46] 22.063 0.729 25.170 0.820 27.090 0.869 28.450 0.900 29.631 0.920 9

TNN [39] 19.356 0.576 31.302 0.929 33.589 0.955 35.340 0.968 36.780 0.976 50
FTNN [33] 29.026 0.904 31.989 0.952 34.326 0.971 36.353 0.981 38.004 0.987 262
SSNT [35] 29.871 0.935 32.362 0.961 34.641 0.974 36.568 0.982 38.269 0.986 52

HLRTF [50] 30.942 0.932 34.307 0.967 36.172 0.977 37.933 0.983 39.278 0.987 19
TWTC [48] 26.994 0.848 28.850 0.904 30.234 0.931 31.376 0.948 32.317 0.959 –
t-CTV [49] 30.505 0.929 30.429 0.932 32.934 0.958 35.039 0.973 36.713 0.980 75

Ours 32.010 0.954 34.547 0.972 36.051 0.982 38.013 0.987 39.540 0.990 110

𝐶 𝑎𝑟𝑝ℎ𝑜𝑛𝑒

Observed 6.398 0.013 6.633 0.022 6.878 0.029 7.140 0.037 7.424 0.045 –
HaLRTC [46] 19.651 0.635 22.619 0.738 24.544 0.797 25.945 0.836 27.099 0.864 10

TNN [39] 19.395 0.423 26.390 0.763 28.357 0.822 29.486 0.853 30.459 0.875 48
FTNN [33] 26.458 0.826 28.936 0.890 30.637 0.919 31.964 0.928 33.220 0.940 291
SSNT [35] 25.834 0.765 27.330 0.808 28.209 0.827 29.192 0.851 30.171 0.869 49

HLRTF [50] 25.953 0.723 28.577 0.816 30.080 0.853 31.148 0.875 32.230 0.897 19
TWTC [48] 25.500 0.809 27.364 0.871 28.630 0.902 29.600 0.921 30.465 0.934 –
t-CTV [49] 25.174 0.810 28.516 0.880 30.395 0.911 31.635 0.917 32.724 0.929 77

Ours 27.869 0.843 29.744 0.877 31.201 0.901 32.213 0.937 33.280 0.947 109

𝐹 𝑜𝑟𝑒𝑚𝑎𝑛

Observed 3.813 0.006 4.049 0.009 4.299 0.013 4.560 0.017 4.840 0.021 –
HaLRTC [46] 17.680 0.474 19.869 0.560 21.596 0.642 23.049 0.710 24.261 0.761 8

TNN [39] 12.998 0.154 22.356 0.531 25.233 0.680 26.700 0.743 27.879 0.787 46
FTNN [33] 23.916 0.692 26.460 0.796 28.270 0.857 29.819 0.892 31.155 0.917 270
SSNT [35] 21.854 0.506 23.286 0.575 24.096 0.615 24.585 0.639 25.289 0.668 48

HLRTF [50] 21.066 0.397 23.457 0.529 24.628 0.590 26.419 0.684 28.207 0.763 18
TWTC [48] 23.673 0.720 25.623 0.815 26.983 0.862 28.082 0.890 29.025 0.910 –
t-CTV [49] 23.377 0.718 26.355 0.809 28.056 0.853 29.343 0.881 30.538 0.904 75

Ours 24.491 0.667 26.513 0.798 28.271 0.807 29.840 0.882 31.241 0.906 109
9 
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Fig. 6. Visualization of the recovery results and corresponding residual errors from various methods on video dataset with a 10% SR. From top to bottom: the 15th frame of
Carphone, and 73th frame of Foreman, respectively.
(ReLu) considerably outperforms SSCNT (Linear), which reveals that
nonlinear transformations is more effective to represent the third-order
tensor in our framework.

Additionally, to explore the effectiveness of convolutions used to
reconstruct images in the proposed method, we perform experiments
to analyze the performance of convolutional kernels with varying sizes
and the number of convolution layers. The outcomes are presented in
the middle and lower section of Table 3. When the parameter 𝑝 is at its
lowest value, increasing 𝑝 can improve the numerical results. However,
as the value of 𝑝 continues to increase, the numerical outcomes fail
10 
to meet our expectations. A potential explanation is that as the size
of the convolution kernel increases, it becomes capable of capturing
larger receptive fields, leading to a better understanding of the overall
structure of the input data. However, when the convolution kernel
becomes excessively large, it may overlook certain details and local
characteristics, thereby diminishing the network’s nonlinearity and its
ability to express features. But the best result is achieved when the
parameter 𝑞 is at its lowest value. The possible reason is that as the
number of convolutional layers increases, the complexity of the model
also increases and after each convolutional layer, the feature map
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Table 3
The quantitative results for tensor completion on MSI Toy with SR=0.1. The red, blue, a
green colors stand for the best, second best, and third best values, respectively. The upp
ection of the table compares various activation functions employed in the convolution
ayer, where Linear denotes the substitution of the 𝑓 and 𝑔 with a linear transformatio
nd Null indicates the SSCNT model without the functions 𝑓 and 𝑔. The middle secti
xamines the impact of different convolutional kernel sizes, where Conv(𝑝) represen
he size of the convolutional kernels used in the SSCNT reconstruction process. The low

section assesses the influence of the number of convolutional layers 𝑞, with 𝑞 = 0 indicati
SSCNT without convolutional components.

Method PSNR SSIM SAM Time

Nonlinearity

Null 33.796 0.900 15.026 359
ReLu 44.723 0.992 3.192 356

LeakyReLu 43.529 0.991 3.631 363
PReLu 42.527 0.988 3.822 452
ReLu6 44.542 0.992 3.275 375
Linear 42.701 0.989 4.275 236

SSCNT

Conv (1) 33.268 0.987 4.501 379
Conv (2) 44.097 0.992 3.332 366
Conv (3) 44.723 0.992 3.192 356
Conv (4) 44.817 0.993 3.311 361
Conv (5) 43.906 0.991 3.544 363

Hierarchy

𝑞 = 0 37.935 0.964 7.618 246
𝑞 = 1 44.732 0.992 3.192 356
𝑞 = 2 44.623 0.992 3.307 451
𝑞 = 3 43.939 0.988 3.566 640
𝑞 = 4 43.215 0.981 3.701 791
𝑞 = 5 42.688 0.972 3.801 993

undergoes downsampling, which can result in some information loss.
Excessive layers may lead to the loss of critical information, making it
ifficult for the network to capture important features.

5. Conclusion

This paper proposes a self-supervised TNN that utilizes convolu-
tional nonlinear transformations. Specifically, a basis with a greater
model capacity is utilized to generate a more condensed representation
by substituting the singular value decomposition process with a con-
volution to minimize the 𝓁1 norm of singular values in the transform
domain. In this way, the proposed method enables a more compact
representation of real-world tensor data. Consequently, it proves to
be highly effective in addressing tensor completion problems. Compre-
hensive experiments illustrate that the proposed method outperforms
state-of-the-art methods in terms of performance.
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