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Abstract—Spectral super-resolution (SSR) from RGB images,
which involves reconstructing hyperspectral images (HSIs) from
color images, has recently received great attention. While con-
volutional neural network (CNN)-based methods have demon-
strated strong performance, they often overlook the self-similarity
across the spectral dimension of HSIs. Transformer-based ap-
proaches have addressed this limitation by leveraging self-
attention mechanisms to capture spectral correlations. However,
these methods encounter computational and memory overheads
that scale quadratically with the size of the HSIs. To overcome
these challenges, we introduce a novel Spectral-wise LOw-
Rank Attention (SLORA) mechanism that captures inter-spectral
consistency in a low-dimensional space, thereby reducing both
computational costs and model complexity. Additionally, we
propose a flow-based refinement module to enhance general-
ization and performance on unseen HSIs. Experimental results
from the NTIRE 2022 spectral reconstruction challenge and the
spectral snapshot compression imaging task datasets validate the
superiority of our method over state-of-the-art approaches.

Index Terms—Attention, transformer, spectral super-
resolution, spectral snapshot compression imaging.

I. INTRODUCTION

Hyperspectral images (HSIs) capture extensive spectral in-
formation from real-world scenes, valuable for applications
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like medical imaging, remote sensing, and object tracking
[1]-[3]. However, acquiring HSIs is time-consuming, par-
ticularly in dynamic scenarios where balancing spatial and
spectral resolutions is challenging. Spectral snapshot com-
pression imaging (SSCI) techniques like CASSI [4] compress
spectral data into a coded matrix but are costly and prone
to information loss [S]-[7]. Spectral super-resolution (SSR)
methods aim to reconstruct HSIs from RGB images without
hardware constraints but are limited by the ill-posed nature of
the problem, relying on hand-designed priors that often fall
short in real-world scenarios.

With the development of deep learning, many CNN-based
methods [8], [9] have shown promise in HSI reconstruction.
However, because the same substances have identical spec-
tral response characteristics, also reflected in the unity of
spectral vectors and the low-dimensional spectral structure
of HSIs, which had been characterized by utilizing low-rank
prior in many HSI-relevant methods [10], [11], these CNN-
based methods are insufficient to portray the inter-spectral
self-similarity and have limited ability to capture the long-
range dependence of HSI [12]. Recently, Transformer [13]
has been widely used in many fields due to the excellent
ability of the self-attention mechanism to characterize long-
range dependencies and complex features of data. Some SSR
methods [12], [14] have gained even better performances
by introducing the transformer structure. The core idea of
self-attention is calculating the affinity between features to
capture long-range dependencies, but as the size of the feature
map increases, the computing and memory overheads increase
quadratically. Additionally, self-attention only considers the
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Fig. 1. Architecture of our MSLAT, which follows the architecture of MST++
[12].
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relation between elements within a data sample and ignores
potential relationships between elements in different samples,
potentially limiting the ability and flexibility of self-attention
[15], which implies Transformer-based SSR methods overlook
the association among spectral vectors in different HSIs.

To address these challenges, we build on the MST++ frame-
work [12] and introduce Spectral-wise LOw-Rank Attention
(SLORA), which focuses on the low-dimensional structure
of inter-spectral consistency in attention keys and values,
rather than directly modeling inter-spectral relations. As shown
in Fig. 1, our Multi-stage Spectral Low-rAnk Transformer
(MSLAT) follows the MST++ architecture, replacing the key
module with the proposed SLAT block that incorporates
SLORA. SLORA extends extension-attention [15] by using
global memory units (W, W, Fig. 2b) shared across sam-
ples, with low-rank factor components added for efficiency
(Fig. 2c), similar to LoRA [16]. This significantly reduces
storage and computational costs while capturing inter-spectral
relationships. To address the potential loss of high-frequency
spatial details, we introduce a flow-based refinement module
(FRM) within a flow-based learning framework [17]-[20].
During refinement, the SLAT-based encoder parameters are
frozen, using its output as pseudo-labels, while the refinement
module, trained with a Gaussian distribution, maps input HSI
images into latent space to learn the conditional distribution
of clean HSIs.

Our contributions are as follows:

e We propose SLORA, a spectral-wise low-rank attention
mechanism that efficiently captures inter-spectral relationships
in HSIs while reducing computational costs and parameters.
Additionally, we introduce a flow-based refinement module
(FRM) that enhances network generalization and performance
on unseen HSIs, acting as a plug-and-play tool during test-
time training.

e Our method outperforms state-of-the-art approaches in
the NTIRE 2022 Spectral Reconstruction Challenge [21] with
fewer parameters and FLOPS in the SSCI task.

(a) Self-Attention [13] (b) External-Attention [15]

Fig. 2. Different attention mechanisms

(c) SLORA

II. METHOD

First, as illustrated in Fig. 1, our Multi-stage Spectral
Low-rAnk Transformer (MSLAT) takes RGB images as input
and outputs the corresponding HSIs. The architecture com-
prises three cascaded Spectral Low-rAnk Transformer (SLAT)
blocks. Initially, a 3-channel RGB image passes through a
3 x 3 convolutional layer to expand the output feature map to
31 channels, which is then fed into the SLAT blocks.

Each SLAT block features a U-shaped structure [22] that
captures multi-scale spatial features while reducing computa-
tional costs through upsampling and downsampling. It consists
of two 3 X 3 convolutional layers at the beginning and end,
two 4 x 4 convolutional layers (stride = 2) for downsampling
(DS), two 2 x 2 transposed convolutional layers (stride = 2)
for upsampling (US), two 1 x 1 convolutional layers, and
several Spectral Low-rAnk Blocks (SLAB) to model the low-
dimensional structure of inter-spectral consistency. Addition-
ally, three residual connections are incorporated to address
spatial information loss during downsampling and enhance
stability.

To efficiently capture inter-spectral relationships in hyper-
spectral images (HSIs) while reducing computational and
memory costs, we propose a novel attention mechanism called
Spectral-wise LOw-Rank Attention (SLORA), as shown in
Fig. 2. In SLORA, the key and value memory units (Wg, W)
from the entire training dataset, as used in external-attention
[15], are factorized into low-rank components: A, By and
A,, B,. Given an input feature map Fy, € R™*4 where n
is the sequence length and d is the representation dimension,
SLORA can be expressed as:

F = F;,W,, M = Norm(FA;B;,), Fou = MA,B,,

where W, ¢ R?*4 js the query parameter matrix, A, €
RX" and By € R™* are the low-rank components for the
key, and A, € R**" and B, € R"*? are for the value,
with » < min(s,d). The attention map is calculated by
the affinities between query vectors and the low-rank key
memory (AgByg), followed by generating a refined feature
map using the low-rank value memory (A B, ). This approach
effectively captures the low-dimensional structure of inter-
spectral relationships among various spectral vectors in HSIs
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TABLE I
QUANTITATIVE RESULTS BY DIFFERENT METHODS ON NTIRE 2022
SPECTRAL CHALLENGE (VALID). THE BEST AND THE SECOND BEST
VALUES ARE RESPECTIVELY HIGHLIGHTED BY RED AND BLUE COLORS.

Method MRAE| RMSE| PSNR1 Params(M)] FLOPs(G)J
AWAN [23] 0.2500 0.0367 31.22 4.04 270.61
HDNet [24]  0.2048 0.0317 32.13 2.66 173.81
HINet [25] 0.2032 0.0303 32.51 5.21 31.04
MIRNET [26] 0.1890 0.0274 33.29 3.75 42.95
Restormer [14] 0.1833  0.0274 33.40 15.11 93.77
MPRNET [27] 0.1817 0.0270 33.50 3.62 101.59
MST++ [12]  0.1645 0.0248 34.32 1.62 23.05
MSLAT 0.1620 0.0247 34.11 1.54 19.89
RMSLAT 0.1567 0.0245 34.68 1.85 40.21
TABLE 11

QUANTITATIVE RESULTS BY DIFFERENT METHODS ON 10 SCENES OF
CAVE SIMULATION DATASET. PSNR AND SSIM, PARAMS, FLOPS ARE
REPORTED. THE BEST AND THE SECOND BEST VALUES ARE
RESPECTIVELY HIGHLIGHTED BY RED AND BLUE COLORS.

Method PSNRT SSIM | Params(M)| FLOPs(G)|
A-Net [28] 28.53 0.841 62.64 117.98
DGSMP [29] 32.63 0.917 3.76 646.65
HDNet [24] 34.97 0.943 2.37 154.76
CST-L [30] 36.12 0.957 3.00 40.11
BIRNAT [31] 37.58 0.960 4.40 2122.66
DAUHST-9stg [32] 38.36 0.967 6.15 79.50
MSLAT 36.44 0.963 2.03 26.81
RMSLAT 37.12 0.965 2.34 46.76

while reducing memory usage and computational complexity.
The complexity of SLORA (O(nr(d+s))) is lower than that of
self-attention (O(n?d)). The multi-head mechanism is omitted
here for simplicity.

After training MSLAT, a flow-based refinement module
(FRM) is introduced to combine with MSLAT, constituting
a Refined Multi-stage Spectral Low-rAnk Transformer (RM-
SLAT), to enhance generalization and accuracy. This mod-
ule, FRM, inspired by the HIDFlowNet decoder, learns the
conditional distribution of hyperspectral images rather than a
deterministic mapping, its invertible design allows it to map
inputs into a latent space following a simple distribution (like
a Gaussian distribution) and recover them accurately. With
the employment of FRM, the refined output is ensured better
alignment with the expected distribution. For further details
on the architecture, please refer to HIDFlowNet [20].

III. EXPERIMENTS

a) Datasets: Two dominant hyperspectral image gener-
ation tasks: spectral super-resolution from RGB (RGB2HSI)
and spectral snapshot compression imaging (SSCI), are con-
sidered to validate the performance of the proposed method.
For RGB2HSI, we adopt NTIRE 2022 Spectral Reconstruction
Challenge dataset [21], which is divided into 900 training
RGB-HSI pairs, 50 validation RGB-HSI pairs, and 50 RGB-
HSI pairs for test (unavailable). Each HSI has a spatial
resolution of 482 x 512 and 31 spectral bands from 400nm
to 700nm. Since HSIs of the test set are not available, we
employ the validation set for evaluation.

For SSCI, we performed simulations using two publicly
available spectral datasets: CAVE [33] and KAIST [34]. The

CAVE dataset consists of 32 HSIs with a spatial size of
512 x 512 and 31 spectral bands. The KAIST dataset includes
30 HSIs with a spatial size of 2704 x 3376 with 31 spectral
bands. Following the experimental settings in previous works
[35]-[37], We used the CAVE dataset as a training set and
then extracted 10 scenes with a spatial size of 256 x 256 from
KAIST as a test set for testing. To match the wavelength range
of the real system, we selected 28 bands from 450 nm to 650
nm for the training and test data by spectral interpolation.

b) Implementation Details: We implemented the pro-
posed method MSLAT and RMSLAT in Pytorch and trained
the model with the Adam optimizer. The model was trained
400 times on a single RTX 3090 GPU using the Cosine
Annealing scheme. The initial learning rate was set to 4x10~%.
The batch size was set to 20. It is worth noting that the rank
r in SLORA is set to r = | ¢ 0.8], where ¢ is the number of
channels of the input feature. During the training of MSLAT,
MRAE loss function L, between the Groundtruth (GT) and the
output of MSLAT is employed, while during the refinement,
we freeze the parameter of MSLAT and plug FRM onto it,
then train FRM, denoted as fy, by minimizing the loss L,
defined as

Lie(X, D, 2) = M Li(X, £, H(2: D)) + ML (X,Y), (1)

where Aq, A2 are nonnegative parameters, f, L is the inverse
transforms of fy, and L,,; is the negative log-likelihood (NLL)
loss in [19]. When the test-time training is complete, the final
output is a weighted sum of the output from MSLAT and
FRM, with weighting factors of 0.8 and 0.2, respectively.

A. Comparisons with State-of-the-Art Methods

For RGB2HSI, we compared the proposed method with
various methods including [12], [14], [24]-[27], and the results
are shown in Table 1. Among them, AWAN is the winner of
the clean track of the NTIRE 2020 Spectral super-resolution
Challenge.HR Net is the winner of the real-world track of
the NTIRE 2020 Spectral super-resolution Challenge. MST++
is the first-place winner of the NTIRE 2022 Spectral super-
resolution Challenge. Restormer and MPRNet are advanced
network architectures in the field of image restoration. Fol-
lowing the NTIRE 2022 Spectral Reconstruction Challenge
setup, the metrics are calculated only within the central 226 x
256 region of each image. It is clear that the proposed method
achieves state-of-the-art performance with the lowest error and
computational cost.

For SSCI task, different methods including [24], [28]-[32]
are selected for comparison. Although RMSLAT does not out-
perform DAUHST-9stg [32] and BIRNAT [31], obviously the
proposed method has far fewer parameters and computational
complexity, which demonstrates that the proposed method
better balances performance and computational effort.

B. Ablation Study

To verify the effectiveness and impact of two components,
SLORA and FRM, adopted in this work, we first compare
MSLAT (integrating SLORA) with MST++ [12] (utilizing
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Fig. 3. Pseudo color images (constructed by three bands: R-25th G-15th B-10th) of results by different methods on HSIs (#901 and #907 in the NTIRE

2022 valid dataset).

TABLE III
ABLATION STUDY OF SLORA AND FRM. THE BEST VALUES ARE
RESPECTIVELY HIGHLIGHTED BY RED COLOR.

Attention MST++ MSLAT RMST++ RMSLAT

MRAET 0.1645 0.1620 0.1614  0.1567
PSNRT 3432 34.54 34.44 34.68
Params] 1.62 1.54 1.93 1.85

FLOPs| 2229 19.89 42.97 39.84

self-attention [13]), with both models trained on the RGB2HSI
task with the same scheme. We then examine the effect of
combining these two models with FRM. As shown in Table
II1, it is obvious that the SLORA-based model (MSLAT) out-
performs the SA-based model (MST++) with lower memory
requirements and computational complexity, demonstrating the

feasibility of SLORA. Moreover, introducing the FRM into
these models clearly enhances their performance, and the
proposed method (RMSLAT) surpasses the MST++ combined
with the FRM (RMST++), thus proving the flexibility and
efficacy of FRM.

CONCLUSION

In this work, we focus on spectral reconstruction tasks and
propose a novel spectral-wise low-rank attention (SLORA)
mechanism to depict inter-spectral consistency among various
HSIs with lower computational complexity and memory over-
heads. In addition, a flow-based refinement module (FRM) is
employed to further boost the generalization and performance.
Experiments compared with SOTA methods on the dataset
of NTIRE 2022 Spectral Reconstruction Challenge and SSCI
demonstrate the superiority of the proposed method.
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