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Abstract
Compressive sensing magnetic resonance imaging (CS-MRI) accelerates data
acquisition by reconstructing high-quality images from a limited set of k-space
samples. To solve this ill-posed inverse problem, the plug-and-play (PnP)
framework integrates image priors using convolutional neural network (CNN)
denoisers. However, CNN denoisers often prioritize local details and may neg-
lect broader degradation effects, leading to visually plausible but structurally
inaccurate artifacts. Additionally, the theoretical convergence of PnP methods
remains a significant challenge. In this work, we propose a novel method,
Plug-And-pLAy 3D MRI recoNstruction, to bridge the gap between denoising
and MRI reconstruction. Our model employs the tensor tubal nuclear norm
(TNN) to capture intrinsic correlations in 3D MRI data. It also incorporates
two implicit regularizers. The first leverages CNN denoisers to exploit image
priors. The second, introduced here for the first time, is formulated as a CS-MRI
reconstruction subproblem and solved using a deep learning-based method to
preserve global spatial structure. We solve the proposed model using the altern-
ating direction method of multipliers. We extend existing theoretical results to
prove the algorithm’s convergence to a fixed point under reasonable assump-
tions. Experiments on two datasets with three sampling masks show that our
method outperforms state-of-the-art MRI reconstruction methods. Ablation
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studies confirm that the TNN and the two implicit regularizers work together
to improve reconstruction quality.

Keywords: magnetic resonance imaging, compressive sensing,
deep neural networks, plug-and-play

1. Introduction

Magnetic resonance imaging (MRI) is an important technique for clinical diagnosis and
treatment. However, its effectiveness can be limited by various physiological and technical
constraints [33]. For instance, patients must remain still during the scan to avoid motion arti-
facts, which can distort Fourier measurements and degrade reconstruction quality. These chal-
lenges highlight the need for methods that can accelerate MRI acquisition while maintaining
high image quality. In recent years, compressive sensing MRI (CS-MRI) has emerged as a
highly effective solution to this problem [53].

CS-MRI aims to reconstruct high-quality MRI images from a limited amount of under-
sampled k-space data, i.e. data sampled at rates significantly below the Nyquist rate [14, 34]. To
address this ill-posed inverse problem, traditional model-based methods leverage prior know-
ledge of MRI data, such as sparsity in the gradient or wavelet domains [4, 8, 10, 35, 54, 58] or
nonlocal self-similarity [37, 39]. Meanwhile, deep learning-based methods have gained pop-
ularity in MRI reconstruction due to their ability to achieve high-quality results with short
testing times, albeit requiring massive amounts of training data [9, 16, 28, 43, 46, 53, 56].

For CS-MRI, traditional methods and deep learning approaches represent complementary
strengths and weaknesses. Traditional methods provide strong interpretability and generaliz-
ation capabilities, but their model representation is often limited by handcrafted regularizers
[19]. In contrast, deep (convolutional) neural networks can learn complex patterns from large
datasets and exhibit high model capacity. However, they often lack interpretability, and their
performance is heavily dependent on the quality and quantity of training data [60].

A promising way to combine the strengths of both paradigms is to unroll iterative optimiza-
tion algorithms into deep network architectures [15, 44, 50, 55, 61, 69]. This strategy leverages
the interpretability of traditional methods while harnessing the representational power of deep
learning. Another potential way is the plug-and-play (PnP) framework [29, 47, 62], which
offers flexibility by incorporating off-the-shelf denoising algorithms (denoisers) for solving
various image inverse problems. Using variable splitting techniques, such as the alternating
direction method of multipliers (ADMM) [5], the prior knowledge-related subproblem can be
formulated as a standard denoising task. This allows denoisers, such as the well-known BM3D
[13] and the deep learning-based FFDNet [64], to be seamlessly integrated as solution map-
pings. However, convergence analysis for PnP methods remains a significant challenge, often
requiring specific assumptions about the denoiser, such as the bounded denoiser assumption
[7, 42].

The PnP framework effectively combines traditional model-based approaches with data-
driven deep learning techniques, particularly through the use of convolutional neural net-
work (CNN) denoisers, achieving state-of-the-art performance in CS-MRI [17, 21, 45] (see
figure 1). Notably, the PnP framework is not limited to denoisers. With appropriate formula-
tions, other restoration algorithms, such as inpainting [57] and super-resolution [65], can also
be integrated.

In this work, we focus on 3D MRI reconstruction from limited k-space sampling. Figure 1
shows a 3Dmagnetic resonance (MR) image reconstructed from fully-sampled measurements,
with undersampling performed frontal-slice-wise using various sampling masks. First, we
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Figure 1. Reconstruction results and corresponding amplitude error images (log-
transformed after adding 1) for different methods under various sampling masks. The
sampling masks, from top to bottom, are Cartesian 1D (20×), Gaussian 2D (20×), and
radial (20×). From left to right, the columns show: the zero-filled data, results from
TRPA [21], ISTA-Net+(3D) [61], PALADIN, and the fully-sampled data, respectively.

leverage tensor low-rankness [23, 24, 27, 48, 66] to model frontal-slice coherence inMRI data,
employing the tensor tubal nuclear norm (TNN). Then, following previous PnP methods, we
introduce an implicit regularizer for plugging in a pretrained deep denoiser. Additionally, we
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propose a novel implicit regularizer and formulate its subproblem as a CS-MRI reconstruc-
tion subproblem rather than a denoising problem. This allows us to use off-the-shelf CS-MRI
reconstruction algorithms (reconstructors) as solution mappings. For example, deep networks
like ISTA-Net+ [61] can serve as reconstructors. Our model is optimized using the ADMM
algotithm. We extend existing theoretical results to prove the algorithm converges to a fixed
point under reasonable assumptions. Like previous PnP methods, our approach combines the
interpretability of model-based techniques with the high representation capacity of deep learn-
ing. This flexibility offers three key advantages:

• Superior reconstruction performance: As shown in figure 1, our method outperforms
TRPA [21], which uses only a denoiser. By combining a denoiser and a reconstructor, our
approach achieves better results. TRPA struggles to recover low-frequency structural inform-
ation, while ISTA-Net+(3D) handles structure better but struggles with fine details. Our
method restores both global structures and fine details effectively.

• Theoretical convergence guarantees: We prove the theoretical convergence of our
algorithm, addressing a key challenge in PnP methods. This enhances the reliability of our
approach, especially for medical data. As shown in the third row of figure 1 (radial mask),
our method produces more convincing results.

• Flexibility and practicality: Our method is highly flexible. It can use advanced deep net-
works as reconstructors or denoisers, improving performance. It also allows reconstructors
and denoisers trained on 2D data to be applied to 3D MRI reconstruction. Additionally, our
method even allows using the reconstructor trained on natural images, which are much more
convenient to access. Our method also adapts to varying noise levels.

The rest of this paper is organized as follows. Section 2 provides the basic mathematical pre-
liminaries. Our method is presented in section 3. Section 4 provides the convergence analysis
of Plug-And-pLAy 3D MRI recoNstruction (PALADIN). Section 5 illustrates experimental
results. Conclusions and limitations are shown in section 6.

2. Preliminaries

2.1. Notations and tensor basics

In this paper, boldface lowercase letters, e.g. x, are used to denote vectors, boldface uppercase
letters, e.g. X, are used to denote matrices, boldface calligraphic letters, e.g. X , are used to
denote tensors or operators. The kth frontal slice of a tensor X ∈ Cn1×n2×n3 is denoted as X (:
, :,k) (or briefly X [:: k]) for k= 1,2, · · · ,n3. The tensor Frobenius norm of a third-order tensor

X ∈ Cn1×n2×n3 is defined as ∥X∥F :=
√∑

ijkX 2
ijk. For a matrix X ∈ Cn1×n2 , its matrix nuclear

norm is denoted as ∥X∥∗ =
∑min{n1,n2}

i=1 σi(X), where σi(X) is the ith largest singular value of
X. The operator vec(·) rearranges a matrix X ∈ Cn1×n2 or a tensor X ∈ Cn1×n2×n3 into a vector
x ∈ Cn1n2×1 or x ∈ Cn1n2n3×1 in the lexicographic order, respectively. Its inverse operation is
denoted as vec−1(·). The apostrophe ( ′s) will be used to denote the plural form of a variable,
such as b′s referring to the plural of b.

In the following, we introduce very basic definitions for the TNN. Interested readers can
refer to [26, 27, 31, 67] for the comprehensive mathematical framework.

Definition 1 (Circular convolution). Let a and b are two vectors of the size n1 and n2. Define
the L-point circular convolution of a and b as c= a⊛b= [

∑L−1
m=0b(m)a((n−m))L]RL, where

L⩾max[N1,N2], L is the circular convolution interval length, RL is a rectangular sequence,
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and a((n−m))L can be regarded as the result of periodic continuation after cyclic shift of a
[41].

Definition 2 (Tensor–tensor-product (t-prod) [27]). The tensor–tensor-product (t-prod)Z =
X ∗Y of X ∈ Cn1×n2×n3 and Y ∈ Cn2×n4×n3 is a tensor of the size n1 × n4 × n3, where the
(i, j)th tube C is given by Z(i, j, :) =

∑n2
k=1X (i,k, :)⊛Y(k, j, :), where ⊛ denotes the circular

convolution between two tubes of the same size.

Definition 3 (Special tensors [27]). X ∈Cn1×n2×n3 is used to denote the Fourier trans-
formed (along the third mode) tensor of X ∈Cn1×n2×n3 . The conjugate transpose of a tensor
X ∈Cn1×n2×n3 is XH ∈ Cn1×n2×n3 , which is obtained by conjugate transposing each of the
frontal slices of X and then reversing the order of transposed frontal slices through n3. The
identity tensor I ∈ Cn1×n1×n3 is the tensor whose first frontal slice is the n1 × n1 identity mat-
rix, and whose other frontal slices are all zeros. A tensorQ∈ Cn1×n1×n3 is an orthogonal tensor
if it satisfies QH ∗Q=Q∗QH = I. A tensor X is called f -diagonal if each frontal slice is a
diagonal matrix.

Theorem 1 (Tensor-singular value decomposition (t-SVD) [27]). For X ∈Cn1×n2×n3 , the t-
SVD of X is given by

X = U ∗S ∗VH (1)

where U ∈ Cn1 ×n1 ×n3 and V ∈ Cn2 ×n2 ×n3 are orthogonal tensors, and S ∈ Rn1 ×n2 ×n3 is an
f-diagonal tensor.

Definition 4 (Tensor tubal nuclear norm (TNN) [67]). The TNN of a tensor X ∈ Cn1 ×n2 ×n3 ,
denoted as ∥X∥TNN, is defined as

∥X∥TNN ≜
n3∑
i=1

∥X (:, :, i)∥∗. (2)

2.2. Observation model

In this work, we consider the compressive sensing of 3D MRI and formulate the observation
model of 3D CS-MRI. Let X ∈ Cn1×n2×n3 denotes the 3D MR image. For the kth frontal slice
X (:, :,k) (k= 1,2, · · · ,n3), the undersampling in the k-space can be formulated as

S ◦F (X (:, :,k)) = bk,

where F is the Fourier transform operation, S is the undersampling operation, S ◦F is the
composition of the two operators, bk is the observed measurements. Using the vectorization
of X (:, :,k), the above observation model is equivalent to

SFvec((X (:, :,k)) = bk, (3)

where F ∈ Cn1×n2 is the 2D discrete Fourier transform (DFT) matrix and the S is sampled from
the rows of an identity matrix according to the sampling strategy. For simplicity, we briefly
denote the observation model for the whole X as

A(X ) = b, (4)

where A denotes the Fourier transform and undersampling operation and b is concatenated
from bk

′s (k= 1,2, · · · ,n3).
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3. Proposed method

Based on the observation model of 3D CS-MRI in (4), we consider that the slices in 3D MRI
data are inner-related. We simultaneously introduce the TNN, reconstructor, and denoiser to
establish our model. Then, we utilize the ADMM [5] algorithm to optimize the model and
theoretically establish convergence of the algorithm, which is important and challenging.

3.1. Proposed algorithm PALADIN

Our model is formulated as:

minXλ∥X∥TNN +Φ(X )+Ψ(X )+
ρ

2
∥A(X )−b∥2F+

γ

2
∥X∥2F, (5)

whereX ∈ Cn1×n2×n3 is the underlying 3DMR image,Φ(·) andΨ(·) are implicit regularizers,
ρ
2 ∥A(X )−b∥2F is the data fidelity term, γ

2 ∥X∥2F is a Tikhonov regularizer, ρ is a trade-off
parameter, and λ,γ are the regularization parameters. As shown in figure 1, the slices of a 3D
MR image are inner correlated and we resort to minimizing the ∥X∥TNN to utilize this. Those
two implicit regularizers are formulated to plug in denoisers and reconstructors, respectively.

Then, as it is difficult to directly optimize (5), we resort to ADMM [5]. First, to decouple
three terms in the objective function, we introduce three auxiliary variables and then address
the following optimization problem,

minX ,Y,Z,W λ∥Z∥TNN +Φ(X )+Ψ(W)+
ρ

2
∥A(Y)−b∥2F+

γ

2
∥Y∥2F

s.t. A(X ) =A(Y) ,Z = Y,W = Y.
(6)

It is notable that (5) is not mathematically equivalent to (6) as the constraint A(X ) =A(Y)
only requires the auxiliary variable X to match Y after undersampling in the k-space. We can
see in the following, that this enables us to formulate the X subproblem as a typical CS-MRI
reconstruction problem.

The augmented Lagrangian function of (5) is:

L(X ,Y,Z,W,Λ) =λ∥Z∥TNN +Φ(X )+Ψ(W)+
ρ

2
∥A(Y)−b∥2F+

γ

2
∥Y∥2F

+
β1

2
∥A(X )−A(Y)+

Λ1

β1
∥2F+

β2

2
∥Z −Y+

Λ2

β2
∥2F

+
β2

2
∥W −Y+

Λ3

β2
∥2F,

(7)

where Λi
′s (i = 1,2,3) are Lagrangian multipliers and βi

′s (i = 1,2) are non-negative penalty
parameters. Then, our ADMM algorithm iteratively updates each variable by solving corres-
ponding subproblems.

3.1.1. Z-subproblem. Z is updated via solving the following problem:

Z t+1 = argmin
Z

(
λ∥Z∥TNN +

β2

2
∥Z −Y t+

Λt
2

β2
∥2F
)
.

(8)
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Consider the t-SVD ofY t− Λt
2

β as USVH. We utilize the t-SVT [31, 67], which is implemented
by applying thresholding operations on the singular values derived from the SVD of a tensor,
solving the closed-form solution of the Z-subproblem, denoted as:

Z t+1 = t−SVT

(
Y t− Λt

2

β2

)
= U ∗D ∗VH, (9)

where D is an f -diagonal tensor with each frontal slice in the Fourier domain defined as
D(i, i,k) = max{S(i, i,k)− λn3

β2
,0}.

3.1.2. X -subproblem. X is updated by solving

X k+1 = argmin
X

(
Φ(X )+

β1

2
∥A(X )− b̂∥2F

)
, (10)

where b̂=A(Y t)− Λt
1

β1
. We can see that (10) is a typical CS-MRI reconstruction problem,

whereΦ(X ) is the prior term and the second term is the data fidelity term with the degradation
A. Thus, we can directly utilize off-the-shelf CS-MRI algorithms to solve (10), and obtain the
updating of X as

X t+1 = Reconstructor
(
b̂
)
. (11)

Alternatively, as many state-of-the-art CS-MRI methods are originally designed for 2D MR
images, we can slice-wisely update X as

X t+1 (:, :,k) = Reconstructor
(
b̂k
)
(k= 1,2, · · · ,n3) , (12)

where b̂k is the kth component of b̂ related to the kth frontal slice of the 3D MR image.

3.1.3. W-subproblem. W is updated as:

W t+1 = argmin
W

(
Ψ(W)+

β2

2
∥W −

(
Y t− Λt

3

β2

)
∥2F
)
. (13)

(13) is a typical denoising problem and we can feed Y t− Λt
3

β2
into a denoiser as:

W t+1 = Denoiserσ

(
Y t− Λt

3

β2

)
. (14)

3.1.4. Y-subproblem. Next, the Y-subproblem is a least squares problem as follows:

Y t+1=argmin
Y

(
β1

2
∥A
(
X t+1

)
−A(Y)+

Λt
1

β1
∥2F+

β2

2
∥Z t+1−Y+

Λt
2

β2
∥2F+

γ

2
∥Y∥2F

+
β2

2

∥∥∥∥W t+1−Y +
Λt
3

β2

∥∥∥∥2
F

+
ρ

2
∥A(Y)−b∥2F

)
.

(15)
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Considering the separability of the Frobenius norm, we can solve (15) slice-wisely. First, we
denote xt+1

k = vec(X t+1(:, :,k)), zt+1
k = vec(Z t+1(:, :,k)), yk = vec(Y t+1(:, :,k)), wt+1

k =
vec(W t+1(:, :,k)), µt

k = vec
(
Λt

2(:, :,k)
)
, and ν tk = vec

(
Λt

3(:, :,k)
)
. We compute the deriv-

ative of (15) and let it be 0. Recalling (3), we have

−β1F
HSH

(
SFxt+1

i −SFyk+

(
Λt

1

)
k

β1

)
−β2

(
zt+1
k − yk+

µt
k

β2

)
−β2

(
wt+1
k − yk+

ν tk
β2

)
+ ρFHSH (SFyk−bk)+γyk = 0,

(16)

where bk is the same as bk in (3), and
(
Λt

2

)
k
indicates the component of Λt

2 related to the kth

frontal slice. Then, we update yt+1
k as

yk+1
k =

(
(β1 + ρ)FHSHSF+(2β2 + γ)I

)−1

×
(
FHSH

(
β1SFx

t+1
k +

(
Λt

1

)
k
+ ρbk

)
+β2z

t+1
k +β2w

t+1
k +µt

k+ν tk
)
.

(17)

In (17), the corresponding computation, Y is slice-wisely updated as

Y t+1 (:, :, i) = vec−1
(
yt+1
i

)
. (18)

3.1.5. Multipliers. The multipliers are updated as:
Λt+1
1 = Λt

1 +β1
(
A
(
X t+1

)
−A

(
Y t+1

))
Λt+1
2 = Λt

2 +β2
(
Z t+1 −Y t+1

)
Λt+1
3 = Λt

3 +β2
(
W t+1 −Y t+1

)
.

(19)

To ensure the reconstructed image maintains symmetry in the Fourier domain, we introduce
a post-processing step where the result is transformed back to k-space. In this step, we sym-
metrically cover the sampled points and then transform the data back to the image domain to
obtain the final result. This post-processing step is reasonable because the symmetry in the
Fourier domain is crucial for accurate image reconstruction. By addressing any asymmetries
in k-space, we can diminish artifacts, leading to more reliable and clinically useful results.

3.2. Comparison with other PnP frameworks

In traditional PnP frameworks, the choice of denoiser critically impacts both efficiency
and accuracy in solving inverse problems. Commonly used denoisers include BM3D [13],
FFDNet [64], and DnCNN [63]. Non-deep learning denoisers like BM3D offer strong inter-
pretability [25, 68], while deep learning-based denoisers (e.g. FFDNet and DnCNN) achieve
superior performance by leveraging large-scale training data [2, 49, 62, 68]. However, deep
denoisers often lack interpretability, limiting their reliability in medical imaging. Traditional
PnP frameworks relying solely on denoisers [11, 21, 40] often yield suboptimal reconstruc-
tions. This is because denoising primarily focuses on local detail restoration, frequently
neglecting global structural information. As shown in figure 1, such methods may fail to
recover critical anatomical structures, leading to diagnostically unreliable results. In contrast,
PALADIN introduces a novel combination of the reconstructor and the denoiser, leveraging
their complementary strengths: the denoiser restores fine local details, while the reconstructor

8
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Algorithm 1. Proposed algorithm PALADIN.

Input: Y,S,ρ,β1,β2,λ,γ,k, t= 0
1: Y0 = SFX
2: Λ0

i
′s = 0(i = 1,2,3)

3: while t< k do
4: Update Z t+1 using (9)
5: Update X t+1 using (11)
6: Update W t+1 using (14)
7: Update Y t+1 using (17) and (18)
8: Update Λt+1

i
′
s (i = 1,2,3) using (19)

9: t = t+ 1
10: end while
Output: Y

preserves global structural integrity. This dual-regularization approach addresses the limita-
tions of traditional PnP frameworks, achieving both high reconstruction quality and improved
reliability for medical applications.

4. Convergence analysis of PALADIN

In this section, we present the fixed-point analysis of algorithm 1. Since the outline of the con-
vergence analysis is similar to the method in [42], we begin by reformulating our optimization
problem into a similar formulation as presented in [42] in section 4.1. Building upon this, we
introduce the key assumptions for our proof and discuss their reasonableness in section 4.2.
Then, section 4.3 provides the detailed proof of the main theorem. To facilitate the under-
standing of our proof, section 4.3 consists of (i) the roadmap of our proof and the relationship
between the assumption and the key step of the proof, (ii) the necessary lemmas, and (iii) the
detailed proof.

4.1. Problem reformulation

Firstly, the original model can be equivalently converted to:

minx,y,z,wλ∥z∥TNN +Ψ(w)+Φ(x)+
ρ

2
∥Ay−b∥2F+

γ

2
∥y∥2F

s.t.

Axz
w

=

Ayy
y

 , (20)

where A denotes the composition of sub-sampling and Fourier transform, i.e, A= SF in (3),
and x, y, z and w denote the vectorization of X , Y , Z and W in (6), respectively.

9
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Denoting c=

xz
w

, m=

yy
y

 , and h(c) =
∥∥∥∥∥∥
 Φ(x)
λ∥z∥TNN
Ψ(w)

∥∥∥∥∥∥
1

, we convert (20) into the fol-

lowing equation:

minc,mh(c)+ f(m)

s.t. A1c= A1m,
(21)

where A1 =

A I
I

, and f(·) is a scalar-valued function satisfying:
f(m) =

ρ

2

∥∥A[0 I 0
]
m−b

∥∥2
F
+

γ

2

∥∥[0 I 0
]
m
∥∥2
F
=

ρ

2
∥Ay−b∥2F+

γ

2
∥y∥2F. (22)

We denote the Λ̂=


Λ1
β1
Λ2
β2
Λ3
β2

, where Λi(i = 1,2,3) is the vectorization of Λi(i = 1,2,3) and

β =

β1

β2

β2

 where β1 and β2 are the vectors containing repetitive βi(i = 1,2) and have the

same dimension as the Ay and y, respectively. The augmented Lagrangian function of (21) is:

L
(
c,m,Λ̂

)
=h(c)+

1
2

∥∥∥√β⊙
(
A1c−A1m+Λ̂

)∥∥∥2
F
+ f(m) , (23)

where ⊙ denotes Hadamard product.
The ADMM algorithm can be used to solve the above optimization problem, and we can

show the iteration of the variables:

ct+1=argmin
c

(
h(c)+

1
2

∥∥∥√β⊙
(
A1c−A1mt+Λ̂

t)∥∥∥2
F

)
mt+1=argmin

m

(
f(m)+

1
2

∥∥∥√β⊙
(
A1m−A1ct−Λ̂

t)∥∥∥2
F

)
Λ̂
t+1

=Λ̂
t
+A1ct+1 −A1mt+1.

(24)

We denote the B =

H Proxλg

Dσ

. According to the PNP-ADMM [42], we can equi-

valently write (24) as 
ct+1 = B

(
A1mt− Λ̂t

)
mt+1 = Proxρf

(
A1ct+ Λ̂

t)
Λ̂
t+1

= Λ̂
t
+
(
A1ct+1 −A1mt+1

)
,

(25)

where the Proxλg denotes the t-SVT operator in (9), Dσ is the denoiser in the denoising sub-
problem, andH is the reconstructor in the reconstructing subproblem. If our PNP-ADMMcon-
verges to a fixed-point, we denote the (m∗,Λi

∗(i = 1,2,3)) as a fixed point of PNP-ADMM.

10
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Then we have: 
m∗ = B

(
A1m∗ − Λ̂∗

)
m∗ = Proxρf

(
A1m∗ + Λ̂

∗)
.

(26)

If we let ct =mt =m∗ and Λt
i =Λ∗

i (i = 1,2,3) in our PNP-ADMM, we get ct+1 =mt+1 =
m∗ andΛt+1

i =Λt
i =Λ∗

i (i = 1,2,3). We let ut = A1mt+Λt and convert (25) into the follow-
ing equation: 

mt+1/2 = Proxρf (ut)

mt+1 = B
(
2A1mt+1/2 −ut

)
ut+1 = ut+A1mt+1 −A1mt+1/2.

(27)

We call the above method PnP Douglas–Rachford splitting (PNP-DRS). Similarly, if z∗ is a
fixed point of PNP-DRS, we have:{

m∗ = Proxρf (u∗)

m∗ = B (2A1m∗ −u∗) .
(28)

We can equivalently write (27) as:
mt+1/2 = Proxρf (ut)

mt+1 = B
(
2A1mt+1/2 −ut

)
ut+1 = ut+A1B

(
2A1mt+1/2 −ut

)
−A1Proxρf (ut) .

(29)

Therefore, the iteration of u can be written as below:

ut+1 =
1
2
ut+

1
2
(2A1Proxρf−I)(2A1B−I)ut. (30)

We write the matrix A1 as the operator A1, and denote the A1B = B1. Then we have:

ut+1 = T (ut) , (31)

where T = 1
2I + 1

2 (2A1Proxρf−I)(2B1 −I).

4.2. Key assumption and main theorem

If we only use a denoiser, the convergence analysis of PALADIN conforms to theorem 3 in [42]
and the road map of our analysis also largely follows the line in [42]. However, the main
difference between our method and typical PnP methods makes our analysis more difficult, as
we need additional assumptions and verify their reasonability,

We assume B1 =

AH
Proxλg

Dσ

 : Rd → Rd satisfies

∥(B1 −I)(x)− (B1−I)(y)∥2 ⩽ ϵ2∥x− y∥2, (A) (32)

11
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for all x,y ∈ Rd for some ϵ⩾ 0. Since B1 is a block-diagonal operator, if each of the three
corresponding operators individually satisfies the assumption, then the entire operator B1 will
also satisfy the assumption. Firstly, for small values of λ, Proxλg will be close to identity oper-
ator. Secondly, the operator Dσ will also approximate identity for small σ. Similarly, when a
reconstructor is trained well, theAH is also close to the identity. Next, we specifically analyze
the reasonability of Proxλg satisfying the assumption. Because a t-SVT operator is utilized as
an effective approach to solve the proximal operator, we can write:

Proxλg (X ) = t−SVT(X ) = U ∗D ∗VH.

The U ∗S ∗VH denotes the t-SVD of X , and D is an f -diagonal tensor determined by
D(i, i,k) =max{Ŝ(i, i,k)−λ,0}, where Ŝ is the Fourier transformed tensor of S along the
third mode. By the lemma 3.19 in [27], we can directly write:

∥X∥2F = ∥U ∗S ∗VH∥2F = ∥S∥2F =

∥∥∥∥∥∥∥∥

S(1)

S(2)

· · ·
S(n3)


∥∥∥∥∥∥∥∥
2

F

, (33)

where S(i)(i = 1,2,3, . . .,n3) denote the ith frontal slice of S. Similarly, we denote the Fn as
a DFT matrix and write as:

∥X∥2F =

∥∥∥∥∥∥∥∥Fn3 ⊗I


X(1)

X(2)

· · ·
X(n3)

F∗
n3 ⊗I

∥∥∥∥∥∥∥∥
2

F

. (34)

Due to the unitary invariance of Frobenius norm, we have that ∥X̂ ∥2F = n3∥X∥2F where X̂
denotes the Fourier-transformed tensor of X along the third mode. Then, we can write:

∥X∥2F =
1
n3

∥∥∥∥∥∥∥∥

X̂(1)

X̂(2)

· · ·
X̂(n3)


∥∥∥∥∥∥∥∥
2

F

=
1
n3

∥∥∥∥∥∥∥∥

Ŝ(1)

Ŝ(2)

· · ·
Ŝ(n3)


∥∥∥∥∥∥∥∥
2

F

. (35)

We write the singular values of all X̂(i)
′s as σ̂1 ⩾ σ̂2 ⩾ · · ·⩾ σ̂k > σ̂k+1 = 0, then we have:

1
n3

∥∥∥∥∥∥∥∥

Ŝ(1)

Ŝ(2)

· · ·
Ŝ(n3)


∥∥∥∥∥∥∥∥
2

F

=
1
n3

∥∥∥∥∥∥∥∥∥∥


σ̂1

σ̂2

σ̂3

· · ·
σ̂k


∥∥∥∥∥∥∥∥∥∥

2

F

. (36)

Since Proxλg(X ) = t−SVT(X ), we can directly write:

∥Proxλg (X )∥2F =
1
n3

∥∥∥∥∥∥∥∥∥∥∥∥


σ̂1 −λ

· · ·
σ̂k1 −λ

0
· · ·

0



∥∥∥∥∥∥∥∥∥∥∥∥

2

F

(37)

12
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and

∥(Proxλg−I)(X )∥2F =
1
n3

∥∥∥∥∥∥∥∥∥∥∥∥


−λ

· · ·
−λ

−σ̂k1+1

· · ·
−σ̂k



∥∥∥∥∥∥∥∥∥∥∥∥

2

F

, (38)

where k1 denotes the count of non-zero singular values of X . Based on (38), we reshape the X
and Y into the vector x and y, then we can substitute the 2-norm of the vector for the Frobenius
norm of the tensor. Therefore, we can write:

∥(Proxλg−I)(x)∥2 =
1
n3

√√√√k1λ2 +
k∑

i=k1+1

(σ̂x
i )

2
,and

∥(Proxλg−I)(y)∥2 =
1
n3

√√√√l1λ2 +
l∑

i=l1+1

(
σ̂y
i

)2
.

(39)

Similarly, we can directly write:

∥x∥2 =

√√√√ k∑
i=1

(σx
i )

2
, ∥y∥2 =

√√√√ l∑
i=1

(
σy
i

)2
. (40)

According to the triangle inequality, we can write:

ϵ2∥x−y∥22 ⩾ ϵ2 (∥x∥2−∥y∥2)2 ,

∥(Proxλg−I)(x)−(Proxλg−I)(y)∥22⩽(∥(Proxλg−I)(x)∥2 + ∥(Proxλg−I)(y)∥2)2 .
(41)

Therefore, if the λ , {σx
i }(i = 1,2, · · · ,k) and {σy

i }(i = 1,2, · · · , l) satisfy the below inequal-
ity: √√√√k1λ2+

k∑
i=k1+1

(σ̂x
i )

2
+

√√√√l1λ2+
l∑

i=l1+1

(
σ̂y
i

)22

⩽n32ϵ2

√√√√ k∑

i=1

(σx
i )

2−

√√√√ l∑
i=1

(
σy
i

)22

,

(42)

the Assumption (A) will be true.

Theorem 2 (Convergence of PALADIN). Assume that B1 satisfies assumption (A) for some
ϵ⩾ 0. f in (21) is γ-strongly convex and differentiable. Then

T =
1
2
I +

1
2

(
2A1Proxρf−I

)
(2B1 −I) (43)

13
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satisfies

∥T x−T y∥⩽ 1+ ϵ+ ϵγ1 + 2ϵ2γ1
1+ γ1 + 2ϵγ1

∥x− y∥

for all x,y ∈ Rd. The coefficient is less than 1 if

ϵ

(1+ ϵ− 2ϵ2)
< γ1, ϵ < 1.

4.3. Proof for theorem

4.3.1. The roadmap for proof. Following [42], we validate the nonexpansiveness of the
iterative updating, i.e. the operator T in (43), to obtain the fixed-point convergence. To analyze
the property of T , we analyze the the averagedness of its two key components. Thus, we need
to prove: {

(i) the averagedness of operator (2A1Proxρf−I) ,
(ii) the averagedness of operator (2B1 −I) .

The averagedness of operator (2B1 −I) relies on the aforementioned Assumption (A). Then,
after validating the averagedness of those operators, we prove the nonexpansiveness of T ,
yielding the fixed-point convergence of our algorithm.

4.3.2. Necessary lemmas. Before verifying these conditions, we first give the required
lemmas of the proof.

Lemma 1 (proposition 4.35 of [3]). T : Rd → Rd is θ-averaged if and only if

∥T (x)−T (y)∥2 +(1− 2θ)∥x− y∥2 ⩽ 2(1− θ)⟨T (x)−T (y) ,x− y⟩ (44)

for all x,y ∈ Rd.

Lemma 2 (proposition 5.4 of [18]). If f is γ-strongly convex, closed, and proper, then

−(2Proxρf−I)

is nonexpansive and 1
1+γ1

-averaged.

Lemma 3 ([42]). B1 : Rd → Rd satisfies Assumption (A) if and only if

1
1+ ϵ

(B1) (45)

is nonexpansive and ϵ
1+ϵ -averaged.

Lemma 4 ([42]). B1 : Rd → Rd satisfies Assumption (A) if and only if

1
1+ 2ϵ

(2B1 −I) (46)

is nonexpansive and 2ϵ
1+2ϵ -averaged.

Lemma 5 ([42]). Let T : Rd → Rd.−T is θ-averaged if and only if T ◦ (−I) is θ-averaged.

Lemma 6 ([12, 36]). .Assume T1 : Rd → Rd and T2 : Rd → Rd are θ1 and θ2-averaged,
respectively. Then T1T2 is θ1+θ2−2θ1θ2

1−θ1θ2
-averaged.

14
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4.3.3. Proof of theorem 2.

Proof. By lemma 2,

−(2Proxρf−I)

is 1
1+ργ -averaged, and this implies

(2Proxρf−I) ◦ (−I)

is also 1
1+ργ -averaged, by lemma 5. By lemma 2, we have that the Proxρf is maximally mono-

tone and strongly monotone. We assume that A1 Proxρf is also maximally monotone and γ1-
strongly monotone. Since A1 is a linear operator that preserves the monotonicity of Proxρf,
the assumption is reasonable. Consequently, the operator(

2A1Proxρf−I
)
◦ (−I)

is also non-expansive and 1
1+γ1

-averaged.

By lemma 4, 1
1+2ϵ (2B1 −I) is 2ϵ

1+2ϵ -averaged. Therefore,

1
1+ 2ϵ

(2A1Proxρf−I)(2B1 −I) ◦ (−I)

is 1+2ϵγ1
1+γ1+2ϵγ1

-averaged by lemma 6, and this implies

− 1
1+ 2ϵ

(2A1Proxρf−I)(2B1 −I)

is also 1+2ϵγ1
1+γ1+2ϵγ1

-averaged, by lemma 5. Applying the concept of averagedness, we have:

(
2A1Proxρf−I

)
(2B1 −I) =−(1+ 2ϵ)

(
γ1

1+ γ1 + 2ϵγ1
I +

1+ 2ϵγ1
1+ γ1 + 2ϵγ1

R
)
, (47)

where R is a nonexpansive operator. Substituting this into our operator T , we obtain:

T =
1
2
I− 1

2
(1+ 2ϵ)

(
γ1

1+ γ1 + 2ϵγ1
I +

1+ 2ϵγ1
1+ γ1 + 2ϵγ1

R
)

=
1

2(1+ γ1 + 2ϵγ1)︸ ︷︷ ︸
A

I − (1+ 2ϵγ1)(1+ 2ϵ)
2(1+ γ1 + 2ϵγ1)︸ ︷︷ ︸

B

R,
(48)

where define the coefficients A and B for simplicity. Clearly, A> 0 and B> 0. Then we can
write:

∥T x−T y∥2 =A2∥x− y∥2 +B2∥R(x)−R(y)∥2 − 2⟨A(x− y) ,B(R(x)−R(y))⟩

⩽A2

(
1+

1
δ

)
∥x− y∥2 +B2 (1+ δ)∥R(x)−R(y)∥2

⩽
(
A2

(
1+

1
δ

)
+B2 (1+ δ)

)
∥x− y∥2

(49)
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for any δ > 0. The first line results from substituting (48). The second line is derived by apply-
ingYoung’s inequality to the inner product. The third line is derived from the nonexpansiveness
of R.Lastly, using basic calculus, we find that

min
δ>0

{
A2

(
1+

1
δ

)
+B2 (1+ δ)

}
= (A+B)2 .

According to the above, we get

∥T x−T y∥2 ⩽ (A+B)2 ∥x− y∥2 =
(
1+ ϵ+ ϵγ1 + 2ϵ2γ1

1+ γ1 + 2ϵγ1

)2

∥x− y∥2. (50)

The constraints on γ1 and ϵ follow from elementary algebraic manipulations.

5. Numerical experiments

This section presents a comparison of our method with the following CS-MRI reconstruc-
tion methods: (1) DCCNN [43], a deep cascade of convolutional neural networks for MRI
reconstruction, (2) SSLMRI [22], a self-supervised learning method for MRI reconstruction
with a parallel network training framework, (3) LPD-Net [1], a deep neural network designed
by unrolling a primal-dual algorithm, (4) ISTA-Net+ [61], a deep neural network designed
by unrolling the ISTA algorithm, (5) ISTA-Net+(3D) [61], an 3D version of ISTA-Net+ with
adopting the 3D separable convolutions [38] for 3DMRI datamodified by us, (6) HQSNet [52],
a deep neural network designed by unrolling a half-quadratic splitting algorithm, and (7)
TRPA [21], a truncated residual based PnP ADMM algorithm for MRI reconstruction. Our
Plug-And-pLAy 3D MRI recoNstruction method is named PALADIN.

5.1. Data sets

The widely used Information eXtraction from Images (IXI) data set is used in this study. The
information about IXI data set can be found from the website5. We conduct our experiments
using T2-weightedMRI images of the brain. All the deep neural networkmethods are retrained
on this data set. For all 2D deep neural network methods, the train set consists of 15 subjects.
For ISTA-Net+(3D), the train set consists of 200 subjects. This is accomplished by regarding
every continuous 16 images of one subject as a cubic volume. The test set includes 10 subjects,
each with a 3DMR image sized at 256× 256× 128. Meanwhile, as shown in figure 2, we con-
sider three types of commonly used undersampling masks, i.e. the Gaussian 2D, the Cartesian
1D, and the radial masks. That is, the compressive sensing measurements are obtained by (3)
with a selected mask across 128 frontal slices. We select three acceleration rates, i.e. 5×, 10×,
and 20×. The NYU fastMRI data set is also used in this study [59]. The train set of 2D deep
neural network consists of 100 subjects. The train set of ISTA-Net+(3D) consists of 625 sub-
jects. The test set includes 8 subjects, each with a 3D MR image sized at 320× 320× 32. For
the fastMRI data set, we used the Cartesian 1D mask and selected three acceleration rates, i.e.
5×, 10×, and 20×. Prior to the undersampling process, all data sets were normalized to the
interval of [0,1].

In our experiment, we employed our modified pretrained ISTA-Net+(3D) [61] as the recon-
structor for experiments. We adopt the DRUNet [62] as the denoiser and fine tune it on MR

5 http://brain-development.org/ixi-dataset/.
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Figure 2. Examples of undersampling masks used in this study. White pixels indicate
sampling points. Left: the Gaussian 2D mask. Middle: the Cartesian 1D mask. Right:
the radial mask.

Table 1. Quantitative results by different methods on MR images with the Gaussian 2D
mask. The best values are highlighted by bolder fonts.

Acceleration rate 5× 10× 20×
Method PSNR SSIM PSNR SSIM PSNR SSIM

Observed 33.95 0.9471 30.55 0.9000 28.19 0.8372
DCCNN 45.09 0.9942 38.33 0.9780 32.79 0.9422
HQSNet 46.06 0.9962 38.30 0.9833 32.67 0.9498
ISTA-Net+ 45.31 0.9956 38.38 0.9816 32.87 0.9459
ISTA-Net+ (3D) 45.56 0.9958 38.99 0.9842 33.90 0.9563
LPD-Net 45.45 0.9957 39.29 0.9852 33.06 0.9495
SSLMRI 41.42 0.9885 37.61 0.9783 33.14 0.9480
TRPA 46.31 0.9962 39.47 0.9839 33.34 0.9468
PALADIN 46.93 0.9967 40.42 0.9884 36.04 0.9716

images in the training set. We evaluate the quality of our results by using two quantitative
metrics: the peak signal-to-noise ratio (PSNR) and the structural similarity index (SSIM) [51].
The training processes are conducted on the platform of CentOS and Pytorch with an Intel
Xeon Gold 6326 CPU and an Nvidia A100 GPU while the testing is conducted on the same
platform with a RTX 3090 GPU.

5.2. Results with the Gaussian 2D mask on IXI data set

Table 1 shows the PSNR and SSIM values obtained using different methods with the Gaussian
2Dmask and sampling at different acceleration rates. Our method shows superior performance
compared to all other methods across all acceleration rates. Meanwhile, as the acceleration
rate increases, the advantages of PALADIN become more evident. For example, while the
PSNR value of PALADIN is only 0.62dB higher than TRPA at an acceleration rate of 5×,
our PALADIN outperforms TRPA by 2.70dB at the acceleration rate of 20×. Figure 3 shows
the visual results with the Gaussian 2D mask and acceleration rates of 5×,10× and 20×,
respectively. As shown in the enlarged areas of the results at the acceleration rate of 20×, our
method generates a excellent result that is very close to the original fully-sampled data. In the
enlarged areas of figure 3, we can see that our method generates reliable results while obvious
artifacts can be found from results by some deep learning methods, such as LPD-Net.
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Figure 3. Reconstructed results with the Gaussian 2D mask. The acceleration rate from
top to bottom are 5×,10× and 20× respectively.

5.2.1. Results with the Cartesian 1D mask on IXI data set. Table 2 presents a comparison of
the results obtained through Cartesian 1D sampling. It is evident from the table that obtaining
good results and indicators throughCartesian 1D sampling is comparatively difficult. However,
our proposed method achieves a significant advantage in Cartesian 1D sampling. Specifically,
our method yields a PSNR and SSIM that are 5.55 dB and 0.0608 higher, respectively, than
ISTA-Net+(3D) for an accelerated rate of 10×. Figure 4 shows the visual results with the
Cartesian 1D mask and acceleration rates of 5×,10× and 20×, respectively. Because the
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Table 2. Quantitative results by different methods on MR images with Cartesian 1D
mask. The best values are highlighted by bolder fonts.

Acceleration rate 5× 10× 20×
Method PSNR SSIM PSNR SSIM PSNR SSIM

Observed 28.04 0.8392 24.83 0.7582 22.84 0.6967
DCCNN 37.21 0.9753 28.05 0.8210 22.65 0.7409
HQSNet 36.71 0.9767 28.27 0.8725 23.52 0.7903
ISTA-Net+ 35.72 0.9699 28.28 0.8899 23.64 0.7842
ISTA-Net+(3D) 36.45 0.9741 28.70 0.8960 24.58 0.8121
LPDNet 35.73 0.9692 26.94 0.8570 22.11 0.7416
SSLMRI 35.71 0.9691 28.24 0.8904 23.80 0.7860
TRPA 37.78 0.9798 28.21 0.8894 23.76 0.7707
PALADIN 40.24 0.9877 34.25 0.9568 27.16 0.8666

Cartesian 1D mask largely damages the overall structure of the image, the reconstruction res-
ults tend to lose the important structure information. Nonetheless, our method effectively pre-
serves the overall structure, as shown in figure 4. In contrast, all other comparing methods
suffer from a significant loss of the image’s spatial structure.

5.3. Results with the radial mask on IXI data set

Table 3 presents a comparison of the results obtained through radial sampling. Similarly, we
can see that our method can obtain the best values. For example, our PALADIN yields an
average PSNR value that is 1.95 dB higher than HQSNet at three acceleration rates. Figure 5
exhibits the visual results with the radial mask and acceleration rates of 5×, 10× and 20×,
respectively. We can see that our results are closer to the original fully-sampled data than the
comparing methods at different acceleration rates. Our method successfully recovers detailed
textures with minimal artifacts. In the enlarged areas of figure 5, we can see that our method
yields excellent results even at an acceleration rate of 20×.

5.4. Results on fastMRI data set

Table 4 presents a comparison of the results on the fastMRI data set with the Cartesian mask
at different acceleration rates. In particular, as the acceleration rate increases, our method
gains greater advantages over competing methods. Specifically, our method yields a PSNR
and SSIM that are 1.52 dB and 0.0249 higher, respectively, than LPDNet for an accelerated
rate of 20×. Figure 6 shows up the visual quality of results with the Cartesian 1D mask at
acceleration rates of 5×, 10× and 20×, respectively. We can see that PALADIN can gener-
ate most closest results to the original fully-sampled data. The enlarged regions reveal that our
method produces clearer details, whereas other methods, such as LPDNet, exhibit significant
artifacts. For example, as shown in figure 6, we can observe that our method not only reduces
artifacts but also improves image details.

5.5. Discussions

5.5.1. Parameter analysis and convergence. As we will discuss in the subsequent section,
one limitation of our method is that we need to manually tune parameters in our model.
Fortunately, we find that our method is not sensitive to parameters. To validate this, we test our
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Figure 4. Reconstructed results with the Cartesian 1D mask. The acceleration rate from
top to bottom are 5×,10× and 20× respectively.

PALADIN with different parameters in our model, i.e. λ, β1, and β2. We conducted experi-
ments with the Gaussian 2D mask at the acceleration rate of 5×. We first acquire an optimal
combination of parameters by manually tuning the parameters. During parameter analysis
experiment, one parameter is varying while the other parameters are maintained at optimal val-
ues. Figure 7 illustrates the PSNR and SSIM values of results by PALADIN with the different
parameters. We observe that the performance of our PALADIN remains stable across different

20



Inverse Problems 41 (2025) 035014 J-M Wu et al

Table 3. Quantitative results by different methods on MR images with the radial mask.
The best values are highlighted by bolder fonts.

Acceleration rate 5× 10× 20×
Method PSNR SSIM PSNR SSIM PSNR SSIM

Observed 31.63 0.8810 28.00 0.7962 25.16 0.7143
DCCNN 44.51 0.9934 37.31 0.9696 31.05 0.8982
HQSNet 44.22 0.9950 37.81 0.9812 31.64 0.9304
ISTA-Net+ 44.65 0.9950 37.76 0.9799 31.17 0.9279
ISTA-Net+(3D) 45.06 0.9956 38.31 0.9815 32.01 0.9384
LPDNet 45.17 0.9952 37.77 0.9796 31.51 0.9288
SSLMRI 41.58 0.9887 37.31 0.9769 30.83 0.9201
TRPA 45.44 0.9958 38.50 0.9823 31.83 0.9325
PALADIN 45.88 0.9962 39.51 0.9849 34.13 0.9560

parameter settings.Meanwhile, we also illustrate the relative changes of each variable concern-
ing iterations in this experimental setting in figure 7, and the empirical convergence behavior
of our method can be found.

5.5.2. Robustness of PALADIN. To test the robustness of different methods against noise,
we evaluated all methods on MRI data corrupted by additive white Gaussian noise (with the
standard deviation σ = 5, 10, and 15) and Poisson noise (with the SNR= 20, 15, and 10). The
quantitative results are summarized in tables 5 and 6. We observe that deep learning methods
trained on noise-free data exhibit significant performance degradation under increasing noise
levels. Our PALADIN demonstrates superior robustness, particularly under high noise. For
Gaussian noise with σ= 15, PALADIN achieves a PSNR of 33.41 dB and SSIM of 0.9320,
outperforming the second-best method (TRPA: PSNR = 30.73 dB) by 2.68 dB. Similarly,
under Poisson noise with SNR= 10, PALADIN maintains high reconstruction quality (PSNR
= 34.30 dB, SSIM = 0.9529), surpassing ISTANet+(3D) and SSLMRI by 4.91 dB and 3.97
dB, respectively. This advantage stems from PALADIN’s unique design, which integrates a
CNN denoiser for local detail restoration and an MRI reconstructor for global structure pre-
servation. In contrast, other methods struggle under high noise. For example, HQSNet’s SSIM
drops to 0.7418 at σ= 15, and DCCNN’s PSNR falls to 27.44 dB under the same conditions.
While ISTANet+(3D) shows better resilience than its 2D counterpart, it still underperforms
compared to PALADIN, particularly under extreme noise. These results highlight PALADIN’s
ability to maintain high reconstruction quality across diverse noise levels, making it a prom-
ising solution for real-world MRI applications where noise characteristics are highly variable.

5.5.3. Ablation study
Ablation study on regularizers As there are three regularizers in our model, it is essential to
test their distinct effects on the performance. We conduct experiments with the Cartesian 1D
mask and acceleration rates of 5×, 10×, and 20×, to test different degenerated versions of our
PALADIN. All combinations of three regularizers are considered. Then we also consider the
2D deep neural networks for the reconstructor, i.e. ISTA-Net+ [61] and ReconFormer [20],
of which ReconFormer is the latest state-of-the-art method. As shown in table 7, when ISTA-
Net+(3D) was plugged into our algorithm, it outperformed the insertion of 2D neural net-
works, i.e. PALADIN with ISTA-Net+. However, from the last three rows of table 7, we
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Figure 5. Reconstructed results with the radial mask. The acceleration rate from top to
bottom are 5×,10× and 20× respectively.

can see that our methods with different reconstructors all achieve better results than com-
pared methods in table 4. If we consider the ReconFormer for the reconstructor, which util-
izes the advanced vision transformer structure, our method can also acquire more excellent
performance.

From table 7, we can see that the reconstructor plays a dominant role in our method.
Meanwhile, the denoiser and the TNN also contribute to the superior performance of our
method. Specifically, the priors learned by the denoiser and reconstructor are not the same.
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Figure 6. Reconstructed results on fastMRI data set with the Cartesian 1D mask. The
acceleration rate from top to bottom are 5×,10× and 20× respectively.
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Table 4. Quantitative results by different methods on MR images of the fastMRI data
set with the Cartesian 1D mask. The best values are highlighted by bolder fonts .

Acceleration rate 5× 10× 20×
Method PSNR SSIM PSNR SSIM PSNR SSIM

Observed 31.16 0.8458 28.11 0.7694 24.88 0.6976
DCCNN 35.11 0.9159 31.65 0.8606 28.31 0.7811
HQSNet 35.20 0.9179 32.11 0.8715 28.58 0.7835
ISTA-Net+ 34.10 0.8962 30.18 0.8310 27.62 0.7518
ISTA-Net+(3D) 35.31 0.9180 31.66 0.8601 29.02 0.7978
LPDNet 34.84 0.9154 31.14 0.8529 29.07 0.8029
SSLMRI 31.61 0.8459 28.37 0.7717 26.04 0.7088
TRPA 33.92 0.8660 31.41 0.8143 28.86 0.7519
PALADIN 35.90 0.9269 32.60 0.8765 30.59 0.8278

Figure 7. The effect of the parameters β1, β2 and λ on the PALADIN and relative
changes of variables with respect to iterations.

Generally, denoising CNNs, e.g. the DRUNet utilized in our method, adopt the residual learn-
ing strategy of learning the noise from the noisy observation. Therefore, those denoising CNNs
concentrate more on the fine details to infer the noise, whose energy is lower than the image
signal. In contrast, the MRI reconstruction CNNs need to take the degradation of the under-
sampling into account. Thus, they might concentrate more on the image structures.

As analyzed above, in our method, the denoiser plays a refining role whereas the recon-
structor serves more for structural reconstruction. In figure 8, we can visually observe that
all functions appear to be complementary, as previously mentioned. Additionally, we can see
that the reconstructor can contribute more to global structural information, which reduces the
errors in the low-frequency parts.

Ablation study on training data sets In our method, the reconstructor and denoiser can be
trained on natural images. As MR images are relatively fewer than natural images, the training
set of natural images might consist of more contents, e.g. geometrical shapes, which would be
beneficial for MRI reconstructors to achieve good performance. Table 8 performs the results
with different training data sets. As we can see, our method could obtain good performance
with different training data sets.

Ablation study on low rank In our method, the low-rank regularizer can be replaced by other
alternatives. From table 9, we can see the results of PALADIN with different low-rank terms.
Although the effect is relatively minor, different low-rank terms can potentially influence the
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Table 5. Quantitative results of different methods on Gaussian noisy MR Images (with
the standard deviation σ = 5, 10, and 15) from the IXI data set with the Gaussian 2D
mask at the acceleration factor of 10×. The best values are highlighted by bolder fonts.

Noise-less Gaussian

Noise level σ = 0 σ = 5 σ = 10 σ = 15

Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Observed 32.43 0.9050 31.44 0.9035 30.74 0.8812 30.05 0.8499
DCCNN 40.07 0.9859 34.16 0.9072 30.33 0.7984 27.44 0.6796
HQSNet 40.06 0.9864 30.07 0.8799 27.96 0.8133 26.12 0.7418
ISTANet+ 39.91 0.9854 34.13 0.9499 28.62 0.8628 26.54 0.7795
ISTANet+(3D) 40.61 0.9875 35.12 0.9647 30.59 0.9120 27.99 0.8585
LPDNet 40.97 0.9882 32.09 0.9210 28.94 0.8451 26.66 0.7648
SSLMRI 39.28 0.9823 35.05 0.9594 30.91 0.9037 28.16 0.8376
TRPA 41.01 0.9870 35.72 0.9616 32.88 0.9081 30.73 0.8410
PALADIN 41.90 0.9905 37.88 0.9755 36.05 0.9598 33.41 0.9320

Table 6. Quantitative results of different methods on Poisson noisy MR Images (with
the signal-to-noise ratio (SNR)= 20, 15, and 10) from the IXI data set with the Gaussian
2D mask at the acceleration factor of 10×. The best values are highlighted by bolder
fonts.

Noise-less Poisson

Noise level SNR = +∞ SNR = 20 SNR = 15 SNR = 10

Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Observed 32.43 0.9050 31.95 0.9098 31.69 0.9055 31.06 0.8922
DCCNN 40.07 0.9859 35.48 0.9355 33.17 0.9042 29.32 0.8123
HQSNet 40.06 0.9864 30.46 0.9050 29.20 0.8858 26.97 0.8449
ISTANet+ 39.91 0.9854 36.95 0.9734 32.49 0.9377 27.82 0.8709
ISTANet+(3D) 40.61 0.9875 37.29 0.9768 33.28 0.9517 29.39 0.9072
LPDNet 40.97 0.9882 32.91 0.9482 30.91 0.9256 28.15 0.8833
SSLMRI 39.28 0.9823 36.92 0.9731 34.20 0.9563 30.33 0.9166
TRPA 41.01 0.9870 37.88 0.9792 34.94 0.9643 30.72 0.9228
PALADIN 41.90 0.9905 38.83 0.9809 36.65 0.9707 34.30 0.9529

results. In general, the application of SNN on low-rank terms tends to yield relatively better
results.

Ablation study on dimensional configuration (2D vs 3D) The 2D adaptation of PALADIN
demonstrates dimensional flexibility through three key modifications: (1) Replacement of
TNN with NN for intra-slice correlation modeling, (2) Integration of 2D reconstructor-
s/denoisers, and (3) Slice-wise independent processing of 3DMRI data. Quantitative results in
table 10 reveal that while 2D reconstruction maintains baseline effectiveness (PSNR = 35.90
dB at 5×), 3D reconstruction shows progressive advantages with increased acceleration rates.
The performance gap grows from +0.07 dB PSNR at 5× to +0.79 dB at 10× and +0.35 dB
at 20×, demonstrating TNN’s enhanced capability to leverage inter-slice correlations under
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Table 7. Quantitative results by different degenerated versions of our PALADIN on MR
images of the fastMRI data set with the Cartesian 1Dmask. The best and the second best
values are respectively highlighted by bolder fonts and underlines.

Acceleration rate 5× 10× 20×
TNN Reconstructor Denoiser PSNR SSIM PSNR SSIM PSNR SSIM

3 31.21 0.8464 28.10 0.7694 26.68 0.6976
3 ISTA-Net+ [61] 34.10 0.8962 30.18 0.8310 27.62 0.7518

3 31.31 0.8504 28.34 0.7754 25.05 0.7015
3 3 33.47 0.8942 30.97 0.8481 26.83 0.7481
3 3 ISTA-Net+ [61] 34.11 0.8963 30.20 0.8312 27.63 0.7529

3 ISTA-Net+ [61] 3 34.19 0.8987 30.38 0.8343 27.94 0.7619
3 3 ISTA-Net+ [61] 3 35.66 0.9220 32.03 0.8686 29.92 0.8068
3 3 ISTA-Net+(3D) [61] 3 35.90 0.9269 32.60 0.8765 30.59 0.8278
3 3 ReconFormer [20] 3 35.97 0.9277 33.39 0.8847 30.94 0.8379

severe undersampling. Figure 9 visualizes this trend across sampling patterns, showing 3D
reconstruction’s superior structural consistency in low-frequency regions.

6. Conclusions

In this work, we propose a novel PnP method for the reconstruction of 3D MR images from
limited sampling measurements in k-space. The innovation of our method is to simultaneously
utilize the tensor low-rankness, denoising algorithms, and MRI reconstruction algorithms, in
a unified way. Specifically, we formulate a 3DMR image reconstruction model with one TNN
and two implicit regularizers. Then, by introducing auxiliary variables, we iteratively solve
our model via the ADMM algorithm. The low-rank regularizer exploit the inner correlation
of tensor structure by utilizing the TNN. Two implicit regularizers related subproblems are
respectively formulated as a denoising problem and an MRI reconstruction problem. Thus,
under the PnP framework, we respectively plug in a CNN denoiser and deep learning based
MRI reconstructors. The three regularizers complement each other effectively, recovering both
the global structure and fine details within the image. In addition, we prove that the proposed
algorithm can converge to a fixed point under a certain assumption based on the fixed point the-
ory. Experiments are conducted with different undersampling masks at different acceleration
rates. Results illustrate that our method is superior to state-of-the-art methods quantitatively
and qualitatively. The ablation studies also demonstrate the high flexibility of our method.
Specifically, the ablation study on regularizers shows that our method can be plugged into the
most advanced reconstructors to obtain better performance. The ablation study on the train-
ing data set demonstrates that our method can utilize readily available 2D natural images to
achieve excellent performance. Although our method maintains some merits and yields good
performance, there is a limitation of our method that our method requires much more testing
time than the deep learning based method, as shown in table 11. The main reason is that we
need to run the denoiser and reconstructor in each iteration.
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Figure 8. Visual results by different degenerated versions of our PALADIN on MR
images, corresponding amplitude error of a middle slice between the results and fully-
sampled data with the Cartesian 1Dmask (the amplitude error was log-transformed after
adding 1).

Table 8. The comparison results of our methods on IXI data set with the Cartesian 1D
mask. ISTA-Net+ and DRUNet are trained on different types of dataset.

Acceleration rate 5× 10× 20×

Training data set

Reconstructor Denoiser PSNR SSIM PSNR SSIM PSNR SSIM

Natural images Natural images 38.54 0.9832 32.34 0.9401 24.70 0.8162
Natural images MR images 38.65 0.9822 32.30 0.9472 24.97 0.8062
MR images Natural images 38.45 0.9822 32.34 0.9410 24.29 0.7943
MR images MR images 38.36 0.9822 32.56 0.9452 24.75 0.8120
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Table 9. Quantitative results on MR images of the IXI data set with the Gaussian
2D mask. The different low rank terms are utilized in our method. The best and the
second best values are respectively highlighted by bolder fonts and underlines.

Acceleration rate 5× 10× 20×
Method PSNR SSIM PSNR SSIM PSNR SSIM

Observed 33.92 0.9563 30.55 0.9000 28.19 0.8372
TNN [67] 46.34 0.9962 40.20 0.9872 35.51 0.9677
NN [6] 46.27 0.9964 40.55 0.9882 35.54 0.9665
DCTNN [30] 46.39 0.9964 39.22 0.9870 34.70 0.9628
SNN [32] 46.56 0.9964 40.44 0.9878 35.65 0.9680

Table 10. Quantitative results on MR images of the fastMRI data set with the Cartesian
1D mask in 2D versus 3D reconstruction of our PALADIN.

Acceleration rate 5× 10× 20×
Dimensionality PSNR SSIM PSNR SSIM PSNR SSIM

2D reconstruction 35.90 0.9269 32.60 0.8765 30.59 0.8278
3D reconstruction 35.97 0.9277 33.39 0.8847 30.94 0.8379

Figure 9. Comparison of PSNR and SSIM for different acceleration rates of Cartesian
1D mask in 2D versus 3D MRI reconstructions. From left to right: the acceleration rate
of 5×, 10× and 20×.

Table 11. Averaged running time of different methods in seconds (s).

Method DCCNN HQSNet ISTA-Net+ ISTA-Net+(3D) LPDNet SSLMRI

Time (s) 4.55 3.22 1.00 1.01 3.02 3.91

Method TRPA PALADIN

Time (s) 837.50 545.23
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