
Enhancing the Adversarial Robustness via Manifold Projection

Zhiting Li, Shibai Yin, Tai-Xiang Jiang*, Yexun Hu, Jia-Mian Wu, Guowei Yang, Guisong Liu
School of Computing and Artificial Intelligence, Southwestern University of Finance and Economics, Chengdu, P.R.China

Kash Institute of Electronics and Information Industry, Kash, P.R.China
Engineering Research Center of Intelligent Finance, Ministry of Education, Chengdu, P.R.China

Abstract

Deep learning has been widely applied to various aspects
of computer vision, but the emergence of adversarial attacks
raises concerns about its reliability. Adversarial training (AT)
is one of the most effective defense methods, which incor-
porates adversarial examples into the training data. However,
AT is typically employed in a discriminative learning man-
ner, i.e., learning the mapping (conditional probability) from
samples to labels, it essentially reinforces this mapping with-
out considering the underlying data distribution. It is notable
that adversarial examples often deviate from the distribution
of normal (clean) samples. Therefore, building upon exist-
ing adversarial defense schemes, we propose to further ex-
ploit the distribution of normal samples, partly from the gen-
erative learning perspective, resulting in a novel robustness
enhancement paradigm. We train a simple autoencoder (AE)
autoregressively on normal samples to learn their prior distri-
bution, effectively serving as an image manifold. This AE is
then used as a manifold projection operator to incorporate the
distribution information of normal samples. Specifically, we
organically integrate the pretrained AE into the training pro-
cess of both AT and adversarial distillation (AD), a method
aiming at improving the robustness of small models with low
capacity. Since the AE captures the distribution of normal
samples, it can adaptively pull adversarial examples closer to
the normal sample manifold, weakening the attack strength
of adversarial samples and easing the learning of mappings
from adversarial samples to correct labels. From the Pearson
correlation coefficient (PCC) between the statistics on nor-
mal and adversarial examples, it’s validated that the AE in-
deed pulls adversarial samples closer to normal samples. Ex-
tensive experiments illustrate that our proposed adversarial
defense paradigm significantly improves the robustness com-
pared with previous state-of-the-art AT and AD methods.

1 Introduction
Currently, deep neural networks (DNNs) have achieved
tremendous success in the field of computer vision (He
et al. 2016; Simonyan and Zisserman 2015; Tan and Le
2019; Liu et al. 2021). However, adversarial attacks against
DNNs pose significant security threats (Goodfellow, Shlens,
and Szegedy 2015; Moosavi-Dezfooli, Fawzi, and Frossard
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2016; Zhao, Dua, and Singh 2018; Xiao et al. 2018; Pour-
saeed et al. 2018; Dia, Barshan, and Babanezhad 2019; Liu
et al. 2022), particularly in fields such as autonomous driv-
ing and facial recognition (Kong et al. 2020; Sun et al. 2022;
Zheng et al. 2024; Li et al. 2023). These attacks exploit the
vulnerabilities of DNNs by introducing perturbations that
are imperceptible to humans but can drastically alter the
model’s predictions.

Adversarial training (AT) has emerged as one of the most
effective defense methods against such attacks (Goodfellow,
Shlens, and Szegedy 2015; Madry et al. 2018; Wong, Rice,
and Kolter 2020; Andriushchenko and Flammarion 2020).
AT incorporates adversarial examples into the training data
to enhance the model’s robustness. However, AT is typically
employed in a discriminative learning manner, focusing on
learning the mapping (conditional probability) from sam-
ples to labels (Ng and Jordan 2001; Krizhevsky, Sutskever,
and Hinton 2012; He et al. 2016; Sandler et al. 2018). This
approach primarily aims to reinforce the mapping from in-
put samples to their corresponding labels, without consid-
ering the underlying distribution of normal samples. Con-
sequently, AT often requires high-capacity models, making
it less suitable for edge computing scenarios where compu-
tational resources are limited (Madry et al. 2018; Xie and
Yuille 2020; Zhang et al. 2021).

To address the limitations of AT, adversarial distillation
(AD) has been proposed, where robustness is distilled from
an adversarially pretrained model (teacher model) to a stu-
dent model in a teacher-student architecture (Goldblum et al.
2020; Zi et al. 2021; Huang et al. 2023). AD aims to im-
prove the robustness of small, low-capacity models. How-
ever, existing AD methods are limited to aligning the pre-
diction outputs of teacher and student models, neglecting the
underlying data distribution. If there is a significant capacity
gap between the teacher and student models or the teacher
model’s performance is suboptimal, the effectiveness of ad-
versarial distillation may be compromised (Cho and Hariha-
ran 2019; Huang et al. 2022). Both AT and AD reinforce the
sample-to-label mapping without considering the underly-
ing data distribution. Moreover, adversarial examples often
deviate from the distribution of normal samples, leading to
suboptimal robustness (Pang et al. 2022; Yu, Chen, and Gan
2023).

In this paper, we propose a novel adversarial defense
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paradigm by integrating manifold projection via an autoen-
coder (AE) into existing AT and AD methods. To achieve
this, we train the AE autoregressively on normal samples to
learn their prior distribution. The pretrained AE then serves
as a manifold projection operator, incorporating the distri-
bution information of normal samples into the training pro-
cess of AT and AD methods. By capturing the prior distribu-
tion of normal samples, our approach integrates aspects of
generative learning into the adversarial defense framework.
This enables the AE to adaptively pull adversarial examples
closer to the manifold of clean examples, weakening their
attack strength and easing the learning of mappings from ad-
versarial samples to correct labels. This approach allows us
to train more robust models for AT, which can then be used
as teacher models. For AD, the manifold projection enables
better knowledge distillation from larger teacher models to
smaller student models, overcoming the capacity gap and
enhancing the adversarial robustness of student models.

Our main contributions can be summarized as:
• We propose a novel adversarial defense paradigm that

exploits the distribution of normal samples. We train an au-
toencoder on normal samples, to learn this distribution. It
can be found that integrating the manifold projection via this
AE into adversarial defense methods makes adversarial ex-
amples approach the manifold of clean examples.
•We use this pretrained AE as a manifold projection op-

erator and organically integrate it into the training process
of both adversarial training (AT) and adversarial distillation
(AD) methods. For AT with the manifold projection, the ro-
bustness of the model is significantly enhanced. For AD with
the manifold projection, the student models can more effec-
tively inherit the adversarial robustness from teacher mod-
els. Through this, we propose novel AT and AD methods.
• Extensive experiments illustrate that our proposed ad-

versarial defense paradigm significantly improves the ro-
bustness compared with previous state-of-the-art AT and AD
methods. Through extensive ablation experiments, we vali-
date the effectiveness of the AE and also discover its benefits
in terms of robust fairness and resistance to transfer-based
attacks.

2 Related Work
Research has illustrated that DNNs are vulnerable to ad-
versarial attacks (Goodfellow, Shlens, and Szegedy 2015;
Ilyas et al. 2018; Mahmood, Mahmood, and Van Dijk 2021).
Various adversarial defense methods have been developed
to mitigate these vulnerabilities, with adversarial training
(AT) and adversarial distillation (AD) being two of the most
prominent approaches. This section provides an overview of
adversarial attacks, AT, and AD methods.

2.1 Adversarial Attacks
Adversarial attacks can be broadly categorized into two
main types: white-box and black-box attacks. In white-box
attacks, attackers exploit gradient information from the tar-
get models to craft adversarial examples. Prominent meth-
ods include the Fast Gradient Sign Method (FGSM) (Good-
fellow, Shlens, and Szegedy 2015), Projected Gradient De-
scent (PGD) (Madry et al. 2018), Carlini-Wagner attacks

(CW) (Carlini and Wagner 2017), and AutoAttack (AA)
(Croce and Hein 2020). In contrast, black-box attacks either
transfer adversarial examples from surrogate models (Paper-
not, McDaniel, and Goodfellow 2016; Tramèr et al. 2017;
Wang et al. 2023) or rely on querying the target model to
identify vulnerabilities (Ilyas et al. 2018; Brendel, Rauber,
and Bethge 2018; Guo et al. 2019).

2.2 Adversarial Training
Adversarial training (AT) is one of the most effective de-
fenses against adversarial attacks. It strengthens model ro-
bustness by incorporating adversarial examples during train-
ing. Initially introduced with FGSM (Goodfellow, Shlens,
and Szegedy 2015), AT was later enhanced by PGD-AT
(Madry et al. 2018), which uses iterative PGD-generated ad-
versarial examples. TRADES (Zhang et al. 2019) further re-
fined AT by balancing robustness and clean accuracy.

For a typical image classification task, assuming the in-
put data point (xi, yi) follows the joint data distribution
pd(xi, yi), the PGD-AT objective can be formulated as:

Epd(x) `(F (x
∗), pd(y|x)), (1)

where pd(y|x) represents the ground-true labels commonly
provided by the dataset, F (·) denoted the model parameter-
ized by θF , ` refers to the Cross-Entropy (CE) loss, a stan-
dard choice in supervised learning, and x∗, the result ob-
tained from the inner optimization, is obtained as

x∗ = x+ arg max
‖δ‖p≤ε

`(F (x+ δ), pd(y|x)), (2)

with δ being the perturbation contained by the Lp-norm ε.

2.3 Adversarial Distillation
Adversarial Distillation (AD) extends knowledge distillation
(KD) (Hinton, Vinyals, and Dean 2015) to enhance the ro-
bustness of smaller models by transferring knowledge from
larger and more robust teacher models. Unlike KD, AD pri-
oritizes both clean accuracy and adversarial robustness. Ad-
versarial Robust Distillation (ARD) (Goldblum et al. 2020)
combines AT with KD as:
Epd(x) [(1−α)`(S(x), pd(y|x))+ατ

2KL(Sτ (x∗), T τ (x))],

where, T (·) and S(·) represent teacher and student models,
parameterized by θT and θS , respectively, KL(· , ·) denotes
the Kullback-Leibler divergence, τ is the softmax tempera-
ture, and x∗ comes from Eq. (2) with F (·) replaced by S(·).

RSLAD (Zi et al. 2021) improves ARD by generating ad-
versarial examples using robust soft labels from the teacher
model. Introspective Adversarial Distillation (IAD) (Zhu
et al. 2022) addresses the issue of unreliable teacher mod-
els at specific data points. Adaptive Adversarial Distillation
(AdaAD) (Huang et al. 2023) further enhances AD by dy-
namically aligning student and teacher predictions, with the
inner optimization formulated as:

x∗ = x+ arg max
‖δ‖p≤ε

KL(S(x+ δ), T (x+ δ)), (3)

and the overall objective is
Epd(x) [(1− α)KL(S(x), T (x)) + αKL(S(x∗), T (x∗))].

AdaAD is currently among the most effective AD methods
for adversarial defense.
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Figure 1: (a) A symbolic illustration showing how the manifold projection, implemented through an autoencoder, can “correct”
adversarial examples (red squares) by pulling them toward clean examples (green squares) within a clean sample manifold. (b)
The inner optimization process for PGD-AT (AE), where the autoencoder projects adversarial examples closer to the manifold
of clean examples within training. (c) The inner optimization process for AdaAD (AE), illustrating how both student and teacher
models interact with the autoencoder to improve robustness during adversarial distillation.

3 Methodology
Reforming adversarial examples via autoencoders (AEs) for
robustness can be traced back to MagNet (Meng and Chen
2017), where the AE merely acts as an image pre-processor.
In this work, we propose to organically integrate manifold
projection via AEs into existing Adversarial Training (AT)
and Adversarial Distillation (AD) methods, resulting in a
novel robustness enhancement paradigm. We begin by in-
troducing the concept of manifold projection via an autoen-
coder and then illustrate how it can be effectively incorpo-
rated into AT and AD methods.

3.1 Manifold Projection via Autoencoder
We train the autoencoder M : Xtrain → Xtrain to minimize
reconstruction error autoregressively on the clean training
dataset Xtrain. The loss function is defined using the simple
mean squared error as:

L(Xtrain) = 1/|Xtrain|
∑

x∈Xtrain‖x− M(x)‖2. (4)

The AE is expected to weaken the attack strength of adver-
sarial samples by pulling them close to the normal samples.
Then, we integrate the pretrained AE into the training pro-
cess of both AT and AD, as shown in Fig. 1-(b) and (c).

To delve deeper into the impact of integrating mani-
fold projection on model robustness, we conducted a statis-
tic analysis using 1,000 mini-batches from the CIFAR-100
training set. The inner optimization results are obtained dur-
ing the training process and the adversarial examples are
generated under a PGD-10 attack for both PGD-AT and
AdaAD, with and without manifold projection. We then cal-
culate the mean statistics from the final batch normaliza-
tion layer of ResNet18 for each batch. To quantify distri-
butional differences from clean examples, we compute the
Pearson correlation coefficient (PCC) between the statistics
of clean examples and those of both inner optimization re-
sults and adversarial examples. Fig. 2 presents the frequency
histograms of distributional differences across 1,000 mini-
batches for PGD-AT with and without manifold projection.
The frequency histograms for the AD method AdaAD with

ep
oc

h-
30

ep
oc

h-
80

ep
oc

h-
10

9

Figure 2: Frequency histograms of the PCC between batch
normalization (BN) statistics for clean and adversarial im-
ages. Higher PCC values indicate smaller distributional dif-
ferences relative to clean images. The histograms in the first
column illustrate the distributional differences in the mean
statistics from the inner optimization results of the model,
while the second column shows the distributional differ-
ences of adversarial examples generated by the PGD attack.

and without manifold projection are provided in Supplemen-
tary Material (SM)1.

For PGD-AT with manifold projection, it can be observed
that the PCC values between clean and adversarial example
statistics generated by the PGD attack gradually approach 1.
This suggests that the manifold projection pulls adversarial

1https://github.com/TaiXiangJiang/Enhancing-the-Adversarial-
Robustness-via-Manifold-Projection/
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examples more closely with the clean sample manifold. Fig.
1-(a) symbolically visualizes this alignment in a 3-D sam-
ple space. Consequently, manifold projection significantly
weakens the attack strength of adversarial examples, mak-
ing it easier to learn mappings from adversarial examples to
correct labels.

To further conceptualize this effect, consider a metaphor:
the model is like a martial artist, and adversarial examples
are opponents exploiting the artist’s weaknesses. Traditional
adversarial training is akin to the artist training specifically
to counter these attacks. The manifold projection acts as a
shield, enhancing the artist’s defense. By integrating this
projection into the defense strategy, we create a scenario
where the artist trains specifically against spear-wielding op-
ponents (adversarial examples) using the shield (manifold
projection). Once the opponents lose their spear, their at-
tacks can be easily deflected. Thus, PGD-AT with manifold
projection produces a more robust model, which can also
serve as a teacher model in AD.

3.2 AT with Manifold Projection
In this part, we use PGD-AT as an example to introduce how
to integrate manifold projection into adversarial training. We
propose incorporating manifold projection into the robust
framework of PGD-AT, with the autoencoder M positioned
as a crucial, yet subtle, component preceding the model.

The autoencoder M is trained by minimizing Eq. (4) and is
used to perform the manifold projection. Once M is trained,
adversarial examples are generated during the inner opti-
mization phase of AT. Mathematically, given a model F (·),
parameterized by θF , an input x, and a perturbation size
ε, the inner optimization aims to find the “support” point
x∗ nearing the neighborhood of x. This point maximizes
the prediction discrepancy between the classifier and the
ground-truth labels under the manifold projection and is for-
mulated as:

x∗ = x+ arg max
‖δ‖p≤ε

`(F (M(x+ δ)), pd(y|x)). (5)

The Cross-Entropy loss is adopted to measure the dis-
crepancy between the model’s output probabilities and the
ground-truth labels. Similar to traditional AT methods, a
projected gradient descent strategy is employed to obtain the
“support” point x∗ for training. Subsequently, the outer opti-
mization then seeks to minimize the upper bound of the pre-
diction discrepancy under the manifold projection, defined
as:

argmin
θF

`(F (M(x∗)), pd(y|x)). (6)

Fig. 1-(b) illustrates the inner optimization process of
PGD-AT with the manifold projection. As discussed in Sect.
3.1, the manifold projection can significantly weaken the at-
tack strength of adversarial samples generated by adversarial
attacks.

3.3 AD with Manifold Projection
In this part, we use AdaAD as an example to introduce ad-
versarial distillation with manifold projection. AdaAD aims
to reduce the prediction discrepancy between student and

teacher models by achieving the highest degree of point-
to-point alignment. However, Cho and Hariharan (Cho and
Hariharan 2019) found that the student often struggles to
fully mimic the teacher, indicating a mismatch between their
capacities. Therefore, an exact match via KL divergence
may be overly ambitious and challenging, given the model
capacity discrepancy between student and teacher models
(Huang et al. 2022). Integrating the manifold projection into
the AdaAD method can enhance the distillation process and
improve the student model’s learning ability, as described
in SM. Fig. 1-(c) exhibits the inner optimization process of
AdaAD with manifold projection.

To begin with, we train the autoencoder M(·) on the clean
samples where the loss function is calculated by Eq. (4).
Then, as detailed in Sect. 3.2, we obtain the robust teacher
model T (·) by adversarial training with the manifold projec-
tion. Given a student model S(·) parameterized by θS , an in-
put x, and a perturbation size ε, our inner optimization seeks
to find x∗ within the neighborhood of x, which maximizes
the prediction discrepancy between the student and teacher
models with the manifold projection. This optimization can
be formulated as
x∗ = x+ arg max

‖δ‖p≤ε
KL(S(M(x+ δ)), T (M(x+ δ))), (7)

Then, the outer optimization is to minimize the upper bound
of prediction discrepancy with the manifold projection to
perform adversarial distillation, defined as

argmin
θS

[(1− α)KL(S(M(x)), T (M(x)))+

αKL(S(M(x∗)), T (M(x∗)))].
(8)

We hypothesize that the teacher model, with its larger
model capacity compared to the student model, will generate
more informative adversarial examples that are challenging
for the student model. Therefore, we propose ‘Difficult Ad-
versarial Distillation’ (DAD) which uses the teacher model’s
adversarial examples as the searching result x∗ of the inner
optimization. The searching result x∗ is formulated as

x∗ = x+ arg max
‖δ‖p≤ε

KL(T (M(x+ δ)), T (M(x))). (9)

Meanwhile, the outer optimization of DAD remains un-
changed as defined in Eq. (8), aiming to enforce the student
model to learn from the teacher model’s difficult adversarial
examples. Considering that the adversarial robustness of the
student model generally arises very slightly in the latter half
of the training epochs, we recommend combining DAD in
the training every ten batches of data to further enhance the
robustness of the student model.

3.4 Preventive and Remedial Measures
Both adversarial training and distillation with manifold pro-
jection, as depicted in Sect. 3.2 and Sect. 3.3, have a no-
table limitation: the autoencoder must remain undetected by
the adversary. If the autoencoder is detected, the adversary
would “wield a spear” and target both the autoencoder and
the classifier as a combined unit to generate adversarial ex-
amples, significantly weakening the autoencoder’s effective-
ness. Therefore, preventive and remedial measures are es-
sential.
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Layer Operations # Kernel Kernel Size
1 Convolutional (Sigmoid) 3 3 × 3
2 Convolutional (Sigmoid) 3 3 × 3
3 Convolutional (Sigmoid) 3 3 × 3

Table 1: The autoencoder architecture used for CIFAR-10
and CIFAR-100 datasets.

Preventive Measure We diversify our defense by creating a
large number of autoencoders with random initialization as
an interference group. We randomly select one of these au-
toencoders for subsequent training, while the others serve to
interfere with the adversary. Assuming the adversary cannot
predict which autoencoder we will select, and that success-
ful adversarial examples trained on one autoencoder have
a low probability of succeeding on others, the adversary
would need to train their adversarial examples to be effec-
tive against all autoencoders in the interference group.
Remedial Measure We create a reserve group of autoen-
coders trained on the same clean dataset as the selected
autoencoder. If the adversary discovers the chosen autoen-
coder, we can replace it with the best-performing autoen-
coder from the reserve group, without retraining the classi-
fier.

By implementing both preventive and remedial measures,
we ensure that we have sufficient time to update the autoen-
coder and classifier while maintaining the original robust-
ness as much as possible, even if the adversary discovers
the autoencoder. Although these measures are engineering-
oriented, as we will show in the experimental part, they are
implementation-friendly and effective, thereby significantly
enhancing the practicality of our paradigm.

4 Experimental Evaluations
Experimental Setup We evaluate the effectiveness of our
proposed adversarial defense paradigm using three bench-
mark image datasets: CIFAR-10, CIFAR-1002 (Alex 2009),
and Tiny ImageNet (Le and Yang 2015). In all cases, the
image pixel values are normalized to the range [0,1]. Our
approach integrates manifold projection via an autoencoder
into the robust paradigms of two common adversarial train-
ing (AT) methods—PGD-AT and TRADES—and several
representative adversarial distillation (AD) methods, includ-
ing ARD, RSLAD, and AdaAD, as well as a knowledge dis-
tillation (KD) method. The architecture of the autoencoder
used for CIFAR-10 and CIFAR-100 is detailed in Table 1.
For Tiny ImageNet, we employ a simplified U-Net (Ron-
neberger, Fischer, and Brox 2015) consisting of one down-
sampling and one upsampling block as the autoencoder. Our
methods are compared against the original versions that do
not utilize manifold projection. The details of the student
and teacher networks are available in SM.
Implementation Details The networks are trained using the
Stochastic Gradient Descent (SGD) optimizer with an initial
learning rate of 0.1, momentum of 0.9, and weight decay of
5× 10−4. Unless otherwise specified, for PGD-AT, we train

2Results on CIFAR-100 are provided in SM.

for 110 epochs, reducing the learning rate by a factor of 10
at the 100th and 105th epochs. For TRADES3 and the other
AD methods, we train for 200 epochs, with learning rate re-
ductions at the 100th and 150th epochs. The inner optimiza-
tion involves 10 iterations with a step size of 2/255, and
the total perturbation bound ε = 8/255 under the L∞ con-
straint. For CIFAR-10, the distillation temperature τ is set
to 30 in all distillation methods, with α = 5/6 in RSLAD,
and α = 1.0 in KD, ARD, and AdaAD. For CIFAR-100 and
Tiny ImageNet, we set τ = 5 in all distillation methods, with
α = 0.95 in KD, α = 5/6 in RSLAD, and α = 1.0 in
ARD and AdaAD. The α = 0.95 in the ARD with manifold
projection for CIFAR-100 differs from the baseline method
ARD; aside from this, the parameters in our proposed meth-
ods strictly follow the settings of their respective baseline
methods.
Evaluation Metrics We assess performance using two met-
rics: natural (clean) accuracy on normal test samples and ro-
bust accuracy on adversarial test samples. Four representa-
tive adversarial attacks are considered: FGSM, PGD, CW2

(constrained by the `2 norm), and AutoAttack (AA). The
maximum perturbation for evaluation is set as ε = 8/255 for
all datasets, and the balance constant in CW is set to 0.1, fol-
lowing (Huang et al. 2023). Unless stated otherwise, results
are reported from the checkpoint with the highest PGD-10
accuracy.

4.1 Results on CIFAR-10 and Tiny ImageNet

Tables 2 and 3 respectively present the recognition accuracy
of models trained using our proposed AT and AD methods
with manifold projection, alongside their original counter-
parts, under various adversarial attacks. The results indicate
that all of our methods significantly outperform the origi-
nal AT and AD approaches across all attack types. Notably,
our methods with manifold projection show the most sub-
stantial improvements under the AutoAttack (AA), which
is recognized as the most powerful among the four evalu-
ated attacks. For instance, our proposed PGD-AT (AE) and
AdaAD (AE) achieve improvements of up to 33.75% and
34.00% on CIFAR-10, respectively. These findings affirm
that integrating manifold projection via an autoencoder into
the existing AT and AD paradigms is both effective and
broadly applicable for enhancing model robustness. Addi-
tionally, since AA includes query-based attacks, the signif-
icant improvements in robust accuracy under AA suggest
that our methods with manifold projection maintain reliabil-
ity even when confronted with query-based attacks. Further-
more, integrating manifold projection into AD methods re-
duces the robustness gap between teacher and student mod-
els, thereby accelerating the distillation process and enhanc-
ing the student model’s learning capability. Specifically, for
AdaAD (AE) on CIFAR-10, the gap in AA accuracy be-
tween ResNet-18 and WRN-34-20 decreases from 6.58% to
0.66%.

3For Tiny ImageNet, we train for 110 epochs in TRADES with
and without manifold projection.

455



Model ResNet-18 MobileNetV2
Method Clean FGSM PGD CW AA Clean FGSM PGD CW AA
PGD-AT (Madry et al. 2018) 83.75 58.72 53.51 77.77 48.45 77.42 53.46 49.66 72.53 44.34
PGD-AT (AE) 82.34 79.21 82.19 82.31 82.20 75.18 72.26 74.22 75.08 74.69
4 -1.41 +20.49 +28.68 +4.54 +33.75 -2.24 +18.80 +24.56 +2.55 +30.35
TRADES (Zhang et al. 2019) 83.03 59.11 53.60 76.99 49.82 80.03 55.28 51.05 75.59 46.34
TRADES (AE) 81.78 79.63 81.41 81.77 81.78 78.04 75.22 77.06 78.02 77.59
4 -1.25 +20.52 +27.81 +4.78 +31.96 -1.99 +19.94 +26.01 +2.43 +31.25
KD 87.82 41.24 9.39 67.31 1.86 72.78 19.90 2.74 17.77 0.05
KD (AE) 88.46 64.52 68.10 87.39 77.74 84.92 60.20 74.46 84.00 79.35
4 +0.64 +23.28 +58.71 +20.08 +75.88 +12.14 +40.30 +71.72 +66.23 +79.30
ARD (Goldblum et al. 2020) 83.35 59.25 54.56 78.60 49.83 80.27 56.14 52.42 76.09 47.74
ARD (AE) 83.24 79.74 82.80 83.10 82.95 82.06 79.19 81.39 82.00 81.75
4 -0.11 +20.49 +28.24 +4.50 +33.12 +1.79 +23.05 +28.97 +5.91 +34.01
RSLAD (Zi et al. 2021) 84.08 59.74 54.76 79.19 49.92 81.67 56.19 52.10 76.67 46.95
RSLAD (AE) 84.27 80.70 83.70 84.2 84.03 82.82 79.16 81.85 82.73 82.54
4 +0.19 +20.96 +28.94 +5.01 +34.11 +1.15 +22.97 +29.75 +6.06 +35.59
AdaAD (Huang et al. 2023) 85.45 61.03 56.50 81.22 51.15 84.05 57.87 53.31 79.56 48.14
AdaAD (AE) 85.27 82.45 85.06 85.25 85.15 84.36 81.05 83.48 84.32 84.08
4 -0.18 +21.42 +28.56 +4.03 +34.00 +0.31 +23.18 +30.17 +4.76 +35.94

Table 2: Model robustness measured by classification accuracy (%) under various adversarial attacks on the CIFAR-10 dataset.
The highest accuracy for each scenario is boldfaced, while the second-highest (suboptimal) results are underlined.

Model ResNet-18 MobileNetV2
Method Clean FGSM PGD CW AA Clean FGSM PGD CW AA
PGD-AT (Madry et al. 2018) 50.19 26.56 24.34 45.57 19.18 38.93 20.47 19.08 35.14 13.73
PGD-AT (AE) 50.10 30.93 29.80 49.77 33.68 38.70 23.43 22.84 38.34 26.16
4 -0.09 +4.37 +5.46 +4.20 +14.50 -0.23 +2.96 +3.76 +3.20 +12.43
TRADES (Zhang et al. 2019) 50.74 25.60 23.93 45.66 17.97 42.90 19.93 18.82 38.18 13.30
TRADES (AE) 50.79 30.17 29.35 50.15 33.88 42.76 23.42 22.72 42.32 26.78
4 +0.05 +4.57 +5.42 +4.49 +15.91 -0.14 +3.49 +3.90 +4.14 +13.48
RSLAD (Zi et al. 2021) 48.80 26.89 24.26 44.27 18.74 46.01 25.84 23.76 41.96 17.63
RSLAD (AE) 48.16 30.76 30.00 47.77 33.41 46.02 29.27 28.59 45.68 31.49
4 -0.64 +3.87 +5.74 +3.50 +14.67 +0.01 +3.43 +4.83 +3.72 +13.86
AdaAD (Huang et al. 2023) 53.73 29.39 26.77 48.81 21.36 50.50 25.11 22.50 45.47 17.29
AdaAD (AE) 53.58 33.45 32.35 53.09 36.51 50.63 29.67 28.79 50.05 32.99
4 -0.15 +4.06 +5.58 +4.28 +15.15 +0.13 +4.56 +6.29 +4.58 +15.70

Table 3: Model robustness measured by classification accuracy (%) under various adversarial attacks on the Tiny ImageNet
dataset. The highest accuracy for each scenario is boldfaced, while the second-highest (suboptimal) results are underlined.

4.2 Discussions

In this section, we further explore the effectiveness of our
proposed methods with manifold projection from additional
perspectives, such as model robust fairness, resistance to
transfer-based attacks, and comparison with adversarial pu-
rification approaches. Due to space constraints, some discus-
sions are included in SM.
Model Robust Fairness Although AT and AD methods
have achieved notable robustness, a significant disparity in
class-wise robustness remains in adversarially trained mod-
els, with certain classes demonstrating strong robustness
while others are notably vulnerable. This disparity raises
concerns regarding robustness fairness. Following Li and

Liu (Li and Liu 2023), we evaluate robust fairness using av-
erage natural accuracy, average robust accuracy, worst-class
natural accuracy, and worst-class robust accuracy for some
AT and AD methods with and without manifold projection,
as shown in Table 4. From Table 4, our methods consis-
tently improve both average robustness and worst-class ro-
bustness compared to the original approaches, particularly
against PGD and AA attacks. Notably, the improvement in
worst-class robustness surpasses that of average robustness,
especially against AA. These observations suggest that our
methods explicitly address the disparity in class-wise robust-
ness and enhance robust fairness.
Evaluation on Transfer-based Attacks We also evaluate
whether our proposed methods with manifold projection,
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Method Clean PGD AA
ResNet-18 Avg Worst Avg Worst Avg Worst
TRADES 83.03 64.40 53.60 25.10 49.82 19.50
with AE 81.78 62.80 81.41 62.00 81.78 62.80
4 -1.25 -1.60 +27.81 +36.90 +31.96 +43.30
AdaAD 85.45 70.60 56.50 30.50 51.15 22.10
with AE 85.27 70.60 85.06 71.10 85.15 70.70
4 -0.18 0 +28.56 +40.60 +34.00 +48.60

Table 4: Model robust fairness, measured by classifica-
tion accuracy (%) under various attacks on the CIFAR-10
dataset. “Avg” and “Worst” denote the average accuracy and
the worst-class accuracy, respectively.

Surrogate ResNet-34 VGG-16
Method PGD CW AA PGD CW AA
PGD-AT (110) 61.27 82.23 61.94 63.50 83.36 67.36
with AE 61.13 81.69 63.96 62.13 82.08 66.61
PGD-AT (200) 61.13 82.13 62.79 63.26 82.91 67.71
with AE 63.46 82.74 68.02 65.31 83.22 71.09
RSLAD 63.65 82.85 66.17 65.76 83.80 70.90
with AE 64.08 83.72 67.80 66.05 84.09 71.64
AE + DAD 64.02 84.04 67.72 66.13 84.45 71.78
AdaAD 64.27 84.41 66.94 67.20 85.13 72.82
with AE 64.24 84.60 68.23 66.42 85.14 72.81
AE + DAD 64.32 85.14 68.33 67.03 85.51 73.19

Table 5: Classification accuracy (%) under transfer-based
black-box attacks for ResNet-18 models trained by AT and
AD methods with and without the manifold projection, and
their variants over CIFAR-10. PGD-AT (110) and PGD-AT
(200) are abbreviations of 110 epochs PGD-AT and 200
epochs PGD-AT. DAD stands for difficult adversarial dis-
tillation, a variation where more challenging adversarial ex-
amples generated by the teacher model are used to improve
the student model’s robustness.

along with their variants, effectively resist transfer-based at-
tacks. Following the methodology of Huang et al. (Huang
et al. 2023), we train two surrogate models with different
architectures—ResNet-34 and VGG-16—using the PGD-
AT method with early stopping. We then generate adver-
sarial examples using these surrogate models to assess the
effectiveness of the ResNet-18 model trained with our pro-
posed methods.

As exhibited in Table 5, extending the number of train-
ing epochs does not improve robustness against transfer-
based attacks for the original PGD-AT method. In con-
trast, our proposed PGD-AT (AE) significantly enhances
model robustness, increasing AA accuracy from 63.96% to
68.02% when tested against the ResNet-34 surrogate model
and from 66.61% to 71.09% against the VGG-16 surrogate
model. Moreover, when combined with DAD, our proposed
RSLAD (AE) and AdaAD (AE) outperform their original
methods in most scenarios. Therefore, our proposed AT and
AD methods with manifold projection are effective in miti-

Model WideResNet-28-10 WideResNet-70-16
Method PGD AA PGD AA
DiffPure 46.84 63.60 51.13 66.06
RE-DiffPure 55.82 70.47 56.88 70.31
PGD-AT (AE) 84.66 84.88 84.02 85.08

Table 6: Comparison with DiffPure and RE-DiffPure under
various adversarial attacks on the CIFAR-10 dataset.

gating transfer-based attacks.
Comparison with Adversarial Purification Adversarial
purification, first introduced in Defense-GAN (Samangouei,
Kabkab, and Chellappa 2018), is a defense strategy that uti-
lizes generative models to remove adversarial perturbations.
Building on this concept, Nie et al. (Nie et al. 2022) pro-
posed DiffPure, which leverages diffusion models for ad-
versarial purification. RE-DiffPure (Lee and Kim 2023) im-
proves the robustness of DiffPure by incorporating a gradual
noise-scheduling strategy. We compare our proposed PGD-
AT (AE) with DiffPure and RE-DiffPure on CIFAR-10. As
exhibited in Table 6, the robustness of models trained with
PGD-AT (AE) significantly outperforms that of both Diff-
Pure and RE-DiffPure. Our method differs from those ap-
proaches in that the autoencoder is fully integrated into the
adversarial training process, directly enhancing the model’s
learning of robust features. In contrast, DiffPure and simi-
lar methods apply purification post-training. This key differ-
ence allows our method to achieve superior robustness.

5 Conclusion

In this paper, we proposed a novel adversarial defense
paradigm by integrating manifold projection via an autoen-
coder into the robust frameworks of existing Adversarial
Training (AT) and Adversarial Distillation (AD) methods.
The manifold projection aligns adversarial samples with
the manifold of clean examples, thereby weakening attack
strength and simplifying the learning process from adver-
sarial samples to correct labels. Additionally, incorporating
manifold projection into AD methods facilitates the distilla-
tion process, reducing the complexity of transferring robust-
ness from teacher to student models. Extensive experiments
on three benchmark datasets demonstrate that our proposed
AT and AD methods with manifold projection significantly
outperform previous state-of-the-art methods across various
adversarial attacks, highlighting the effectiveness and versa-
tility of our approach in enhancing model robustness.

Limitation A key limitation of our method is the need to
keep the autoencoder undetected by adversaries, as detec-
tion could undermine its effectiveness. To address this, we
proposed preventive measures such as diversifying defenses
with randomly initialized autoencoders and remedial mea-
sures like maintaining a reserve of autoencoders for quick
replacement if necessary. These strategies ensure that our
approach remains robust and practical, even against adap-
tive adversaries.
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