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 A B S T R A C T

Stock movement prediction is a difficult task in the field of financial technology due to non-stationary 
dynamics and complex market interdependencies. Most of the existing research is based on deep neural 
networks, which lack interpretability. An interpretable prediction method helps uncover the mystery of the 
underlying operating mechanism of the securities market. In this work, we propose a model-guided method 
with interpretable homogeneous–heterogeneous processing for stock movement prediction. Specifically, based 
on that the correlations among the entities in the market are homogeneous within a short period, we unroll 
the iterative algorithm for solving the tensor robust principal component analysis (TRPCA) to separate the 
homogeneous and heterogeneous patterns from multiview data. Then, a specialized tensor-based attention for 
homogeneous and heterogeneous feature extraction is designed, and embedded in long short-term memory 
(LSTM) for better prediction. Experiments on real datasets show our model’s superiority over state-of-the-art 
stock forecast methods.
1. Introduction

The stock market stands as one of the most influential financial 
markets, and predicting market movements is an extremely attractive 
topic for traders and investors. However, in real-world scenarios, the 
dynamics of the stock market is highly stochastic. It is challenging to 
track stock movements to avoid as much risk as possible and make 
optimal investment decisions. To improve prediction accuracy, ma-
chine learning [1] and deep learning techniques [2,3] are increasingly 
emerging in both academic research and industry.

Many factors contribute to the volatility of the stock market, and the 
main factors include the state of the economy, the policy environment, 
traders’ expectations, and the mood of the online media. Therefore, it is 
quite difficult to predict the trend of stock volatility. Previously, schol-
ars concentrated on studying technical indicator modality and utilizing 
the information obtained from feature mining for forecasting [4]. With 
the rise of the Internet, scholars have found that social media sentiment 
also has an impact on stock market volatility and have studied it as a 
new modality [5].

The accuracy of stock movements forecasting relies on various 
market information and poses a multi-modal learning challenge. Feng 
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et al. [6] observed that integrating stock price and news information 
can help improve stock prediction. Cheng et al. [7] designed a graph 
neural network to predict financial time series, which preserves in-
formative market information as inputs, including stock prices, news 
information and relations in KG. Ma et al. [8] developed a fusion model 
that demonstrated enhanced prediction performance by incorporating 
multiple sources of market information. Wang et al. [9] introduced an 
innovative stock correlation representation approach using the tensor 
format, leveraging a tensor robust principal component analysis (TR-
PCA) model to seamlessly integrate multi-modal and multi-temporal 
market data. Additionally, existing methods based on multi-modal data 
utilized the homogeneity of such data for prediction [10]. In the field of 
stock movement prediction, homogeneous patterns refer to consistent 
and predictable behaviors or trends observed across multiple stocks 
or time periods. These patterns exhibit similarities in their move-
ment dynamics, suggesting a high degree of coherence in the market 
(Coherence can be well captured by the low-rankness). Conversely, 
heterogeneous patterns describe diverse and irregular behaviors, where 
stocks or time periods exhibit distinct and non-uniform movement char-
acteristics. Heterogeneous patterns often reflect complex interactions 
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Fig. 1. Sparse noise removal results by TPRCA [19] and our TRPCA unrolling network on the multi-spectral image stuffed toys.12
and external influences, making them more challenging to predict. 
The above papers focus on the homogeneous part of the multimodal 
information, which is used for prediction. Each company in the market 
possesses idiosyncratic information, considered as heterogeneous data 
that complements the homogeneous information.

However, the usage of heterogeneous information is also impor-
tant [11], which is viewed as complement of the homogeneous in-
formation. Therefore, the rational and effective combination of both 
homogeneous and heterogeneous information in multi-modal data is 
crucial for stock prediction.

Previous work usually splices features from different information 
sources into a single feature vector, while this approach ignores the 
interactions between various information sources [12]. To take advan-
tage of possible correlations between different stocks, Felix et al. [13] 
represented the textual data through a matrix and used a sparse matrix 
factorization method to extract the correlation between the stock price 
and the textual data and used it for prediction. Ritika et al. [14] 
represented the NASDAQ dataset using matrices, then use principal 
component analysis for dimensionality reduction, and then fed the 
reduced data into an artificial neural network (ANN) for prediction. 
The natural properties of the tensor, which can represent data of arbi-
trary dimensions and well represent the intrinsic connections of data, 
make the tensor an ideal tool for processing and representing complex 
data [15,16]. Considering the effectiveness of tensors in fusing mul-
tidimensional data, some studies have attempted to use tensor-based 
approaches for modeling to preserve as much information as possible. 
Li et al. [17] used a tensor format to represent the raw stock data in 
different modes and subsequently augmented the underlying relation-
ships inherent in the data through the tucker decomposition. Although 
the intrinsic connection of different modal information is considered 
through tensor format in [17,18], the inherent connection of different 
stocks is ignored, to solve this problem, Zhang et al. [11] proposed 
a method based on coupling matrix and tensor decomposition, which 
adopts the tensor format to fuse social media, historical quantitative 
data as a way to study their common impact on stock price movements.

While tensor-based methods are more effective and interpretable, 
they also suffer from some issues. Many tensor-based methods main-
tains two-stage, the tensor representation part, which involves tensor 
optimization and computations to mine the multi-linear correlations, 
and the prediction part, which is generally a nonlinear deep neural 
network. This prevents them from an end-to-end training and results 
in low efficiency.

In this work, we unroll a TRPCA algorithm to build the model-
guided deep neural network (HHS) as the backbone of the framework. 
Then, a homogeneous and heterogeneous self-attention is designed to 
seamlessly handle the low-rank (homogeneous) and sparse (heteroge-
neous) patterns separated from the HHS module. Thus, our method 

1 https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio.
2 Structural Similarity Index [20].
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can well handle homogeneous and heterogeneous patterns in multi-
modal tensor data with good effectiveness and interpretability. More 
specifically, we first design an attention-like correlation extraction 
module to extract the correlation among different companies across 
different modalities. Then, we design a homogeneous–heterogeneous 
separating network by unrolling an iterative alternating direction mul-
tiplication method (ADMM) algorithm, which is initially established 
for solving the TRPCA problem [19]. The network modules, includ-
ing the low-rank thresholding part, the sparse thresholding part, and 
the multiplier updating part, are strictly consistent with the opti-
mization algorithm. A toy example in Fig.  1 shows that an unrolling 
network is able to perform better than the corresponding optimiza-
tion algorithm. Finally, we design an LSTM with the Homogeneous–
Heterogeneous Self-Attention Mechanism (HHSAM), which comprises 
three key modules: Feature Map Block (FMB), Heterogeneous infor-
mation Diagonal Embedding (HDE) and Homogeneous–Heterogeneous 
Self-attention (HHSA), to handle the low-rank (homogeneous) and 
sparse (heterogeneous) features separated from the TRPCA module.

The principal contributions of this research can be summarized as 
follows.

• With a view to extract the homogeneous and heterogeneous 
pattern of the multiview data, we unroll the iterative algorithm 
designed for TRPCA into a deep neural network. The network 
structure and modules are consistent with the iterative algo-
rithm with good interpretability. Thus, homogeneous information 
is reliably extracted in the tensor low-rank component, while 
heterogeneous information is captured in the sparse component.

• Following the model-driven homogeneous–heterogeneous separa-
tion part, we present a novel homogeneous–heterogeneous atten-
tion block that can utilize company-wise heterogeneous similarity 
as well as homogeneous particularity, therefore yielding better 
prediction results.

• Experiments on the CSI 500, Nasdaq and FTSE 100 data sets 
indicate that our approach outperforms existing state-of-the-art 
methods. Investment simulations reveal that our approach attains 
the highest annual return rate, standing at 27.24%.

The rest of this paper is given below. Section 2 provides a review 
of the relevant literature on stock movement prediction and the un-
rolling network. Section 3 provides the basic notations and revisits the 
TRPCA model and the corresponding optimization algorithm. Section 4 
presents the model architecture. Section 5 showcases the experimental 
results. Subsequently, Section 6 is dedicated to an in-depth discussion. 
Lastly, conclusions are provided in Section 7.

2. Related work

2.1. Stock movement prediction

The autoregressive integrated moving average (ARIMA) model [21] 
and the generalized autoregressive conditional heteroskedasticity

https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
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(GARCH) model [22], based on traditional econometric models, have 
been extensively utilized in time series analysis in the field of eco-
nomics and finance. However, various commonly used prediction mod-
els and methods based on traditional statistical methods, due to the 
constraints of their own linear structure, have affected the further 
improvement of prediction accuracy for time series data, and often 
cannot achieve satisfactory results in practical applications.

The rise of deep learning technology allows stock prediction to 
better deal with these problems. Currently, deep learning-based stock 
prediction methods have also become one of the hot spots in stock 
prediction research [23,24]. Various prevalent deep learning archi-
tectures encompass convolutional neural networks (CNNs), recurrent 
neural networks (RNNs), long short-term memory networks (LSTMs), 
and the Transformer model, etc. Specifically, RNN and its variant 
networks have demonstrated commendable performance in forecasting 
stock trends, as they can capture potential chaotic time series dynamics.

As a special variant of RNN, LSTM learns temporal patterns through 
feedback connections within the neural network, overcoming the prob-
lem of gradient disappearance or explosion caused by RNN. For in-
stance, Li et al. [25] incorporated both quantitative indicators and 
news sentiments extracted from sentiment dictionaries into an LSTM-
based model to predict stock prices in the Hong Kong market. In 
addition, recently popular transformer-based architectures [26] can 
handle distance dependence in sequences, but their large number of 
parameters and complex structure aggravate the black-box problem 
in deep learning, leading to difficulties in interpreting during the 
decision-making process.

Besides, the mentioned publications presented some shortcomings. 
Since the acquisition and processing of market data requires a lot of 
time and resources, the quality and stability of the data also need to be 
guaranteed. The black-box nature of deep learning models makes its 
prediction outcomes difficult to interpret and understand, which poses 
certain challenges to research. Essentially, the uniqueness of financial 
trading requires robust predictive results and revealing mechanisms of 
stock movements, rather than just a winning accuracy number.

2.2. Model-driven learning via unrolling

The application of algorithm unrolling – a methodology that con-
verts iterative optimization processes into interpretable neural
architectures – remains an emerging frontier in stock price forecast-
ing. Unlike conventional deep learning models, algorithm unrolling 
explicitly retains mathematical connections to classical financial the-
ories while leveraging data-driven learning capabilities. This hybrid 
approach systematically unfolds iterative algorithms (e.g., gradient-
based optimizers, sparse recovery methods) into layered networks, 
enabling end-to-end training with built-in domain constraints.

As early as 2010, Gregor and LeCun et al. [27] were inspired by 
the iterative shrinkage and thresholding algorithm (ISTA) and proposed 
the first deep expansion-based framework, LISTA, which expanded the 
ISTA algorithm into a non-linear sparse coding feedforward network. 
Based on LISTA, scholars have proposed some image super-resolution 
networks based on sparse coding [28]. In recent years, depth-unfolding 
strategies have flourished in the field of image processing, including 
front-and-back background separation, image denoising, and image 
enhancement. For example, Yang et al. [29] expanded the iterative pro-
cess of the ADMM algorithm into a novel deep network and achieved 
superior performance in the MRI compressed sensing task. In the lit-
erature, Zhang et al. [30] introduced ISTA-Net, a deep network built 
upon the ISTA expansion, using nonlinear transformation to solve 
the proximal mapping related to the sparsity-induced regularizer. A 
large number of experiments have shown that ISTA-Net advances in 
compressed sensing reconstruction.

In financial contexts, unrolling offers unique advantages for mod-
eling non-stationary market dynamics, particularly in terms of inter-
pretability. Its modular design allows for the direct integration of 
3 
volatility-aware priors into network layers, ensuring that the model’s 
decisions are grounded in interpretable financial principles. Early stud-
ies demonstrate its potential in multi-scale feature extraction from 
noisy market data while maintaining computational tractability. Al-
though still underexplored compared to mainstream black-box models, 
unrolling frameworks show promise in balancing performance with 
traceable reasoning, a critical consideration for risk-sensitive financial 
applications.

Interpretability remains a critical challenge in stock prediction 
research, as current deep learning approaches that demonstrate su-
perior predictive performance typically exhibit opaque ‘‘black-box’’ 
characteristics. While several studies have attempted to address this 
issue through different methodological perspectives, comprehensive 
model interpretability has yet to be achieved. Previous work has 
made progress in understanding different aspects of the problem, Hu 
et al. [31] conducted empirical analyses of attention weights within 
textual corpora to evaluate the relative importance of financial news 
articles. Subsequent work by Dang et al. [32] developed a multimodal 
neural architecture designed to filter news content relevant for stock 
market forecasting. More recently, Li et al. [33] proposed an innovative 
Prediction-Explanation Network (PEN) that aligns textual information 
with pricing data streams through joint representation learning. The 
PEN framework employs a salient vector mechanism to capture text-
price correlations, enabling identification of potentially influential 
news content that can subsequently provide explanatory rationales for 
observed price movements.

Overall, the unrolling strategy combines good performance with a 
high degree of interpretability, which makes it not only capable of 
achieving efficient and accurate results when dealing with complex 
problems, but also provides researchers and developers with clear ideas 
and a basis for decision-making.

3. Revisiting tensor robust principal component analysis

First, we summarize the core tensor algebra conventions essential 
to our methodology. Throughout this paper, we use  to denote a 
tensor, 𝐗 to denote a matrix and 𝑿 to denote a vector. Key operational 
constructs—including the tensor-tensor product (t-product) and tensor 
nuclear norm(‖ ⋅ ‖TNN) are contextually introduced here to guide the 
technical narrative, with their formal mathematical definitions rigor-
ously derived in Appendix  A. The t-SVD framework, the mathematical 
foundation of our approach, originates from [34,35] and has received 
tremendous attention in recent years. Theoretical guarantees for sepa-
rating the low-rank tensor from sparse corruptions, namely the tensor 
robust principal component analysis (TRPCA), are established in [19]. 
Wang et al. combining the TRPCA model with an attention-based LSTM 
for stock movements prediction [9].

Lu et al. [19] proposed a tensor robust principal component analysis 
(TRPCA) model based on the tensor nuclear norm (TNN) derived from 
the t-SVD framework, aiming to exactly separate the low-rank tensor 
structure and sparse outliers from high-dimensional data. Given a 
tensor  , the formulation of the model is as follows. 
min
,

‖‖TNN + 𝜆‖ ‖1

s.t.  =  + 
(1)

where  and  , respectively, represent the low-rank component and the 
sparse component, 𝜆 represents a non-negative parameter, ‖⋅‖1 denotes 
the 𝓁1 norm, and ‖ ⋅ ‖TNN denotes the tensor nuclear norm.

The above problem (1) can be efficiently solved using the ADMM 
algorithm [36], which decomposes the original problem into tractable 
sub-problems while ensuring constraint satisfaction. First, we construct 
the augmented Lagrangian function: 

𝐿𝛽 (,  ,) = ‖‖TNN + 𝜆 ‖ ‖1 + ⟨, −  −  ⟩ +
𝛽
2
‖ −  −  ‖

2
𝐹 ,

(2)
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where  denotes the Lagrange multiplier, and 𝛽 > 0 is the penalty 
parameter.

After that, the ADMM alternately updates {,  } as follows. 
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(𝑘+1) = argmin
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𝛽
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‖

‖

‖

‖
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‖

‖

‖

‖

2

𝐹
(3)

 (𝑘+1) = argmin


𝜆‖ ‖1 +
𝛽
2
‖

‖

‖

‖

 − (𝑘+1) −  + (𝑘)

𝛽
‖

‖

‖

‖

2

𝐹
(4)

(𝑘+1) = (𝑘) + 𝛽
(

 − (𝑘+1) −  (𝑘+1)) (5)

The complete implementation workflow, including initialization 
and termination criteria, is formally described in Algorithm 1. The 
detailed explanation of Algorithm 1 can be seen in Appendix  B.

Algorithm 1 ADMM iterations for tensor RPCA
Input: The observed tensor  ,,  ,
Initialization: The error threshold 𝜂, 𝜂 ; the Lagrangian parameter 

𝛽; the non-negative parameter 𝜆.
1: while 𝜂 > 1 × 10−6 and 𝜂 > 1 × 10−6 do
2:  Decompose the tensor 𝑘 into  ∗  ∗ 𝐻  via t-SVD
3:  Update 𝑘+1 via 𝑘 =  ∗ Shrink 1

𝛽
() ∗ 𝐻 ;

4:  Update  𝑘+1 via  𝑘+1 = Shrink 𝜆
𝛽
( − 𝑘+1 + 𝑘

𝛽 );

5:  Update 𝑘+1 via 𝑘+1 = 𝑘 + 𝛽( − 𝑘+1 −  𝑘+1)
6:  Update 𝜂= ‖𝑘+1−𝑘+1×10−10‖2

‖𝑘−1+1×10−10‖2

7:  Update 𝜂 = ‖ 𝑘+1− 𝑘+1×10−10‖2
‖ 𝑘−1+1×10−10‖2

8: end while
Output: The tensor 𝑘+1,  𝑘+1,𝑘+1.

Theorem 4.1 in [19] provides a mathematical guarantee that the 
low-rank component and the sparse component can be exactly sepa-
rated into  and  , respectively, under certain conditions, via Algo-
rithm 1. The basic assumption in [19] is that the low-rank part satisfies 
the tensor incoherent condition. Generally speaking, this assumption 
holds when the low-rank part is not sparse and the sparse part is not 
low-rank.

Based on this theoretical foundation, Wang et al. [9] presents 
systematic empirical evidence demonstrating that higher-order tensor 
representations constructed from multidimensional financial market 
datasets exhibit prominent low-rank structural characteristics. By ap-
plying the TRPCA framework to analyze these financial tensors, [9] 
reveals that the original tensor can be effectively decomposed into a 
superposition structure comprising low-rank principal components and 
sparse noise elements.

This theoretical–empirical synergy not only reinforces TRPCA’s
methodological robustness but also substantiates its applicability in 
processing complex financial datasets.

4. Model-guided stock movements prediction with homogeneous–
heterogeneous processing

Fig.  2 is an overview of our model. First, the Attention-like Homo-
geneous Correlation Extraction Module (AHCE) extracts homogeneous 
information from the original tensor for subsequent fusion. Then the 
model-guided deep neural network (HHS) (i.e., the expanded net-
work based on the TRPCA algorithm) based on the TRPCA algorithm 
divides the original stock data into homogeneous pattern and heteroge-
neous pattern. The initially separated homogeneity and heterogeneity 
patterns are further utilized by the homogeneous–heterogeneous self-
attention mechanism (HHSAM) to generate features that represent 
stock prediction information.
4 
4.1. Attention-like homogeneous correlation extraction module

In this section, we integrate multimodal stock market information 
into a tensor format, preserving their internal structure. In the securities 
market, the relationship computed along different modes can be viewed 
as a projection of the true relationship of the individual firms within 
the market in different modalities. At the same time, for a short period 
of time, we can view this relationship as homogeneous [9].

Consider a market scenario where there are 𝑁 stocks being traded 
over a time frame of 𝑇  consecutive trading days, each stock has 𝑚
information modalities (i.e., time mode and basic mode), and each 
mode has 𝑑𝑚 features (such as opening price and closing price). We 
represent the data of each stock in certain mode every day with a vector 
𝒙 whose dimension is 𝑑 × 1, where 𝑑 represents the number of features 
in this mode. That is, all stock information under this mode can be 
represented by a matrix 𝐀 of size 𝑁 × 𝑑. Along the first dimension of 
𝐀, the sum of the outer products of the features of the current stock 
and the other stocks is computed, expanded to a one-dimensional array, 
and used as the 𝑖𝑡ℎ row of the matrix 𝐁. The resulting matrix 𝐁 is of size 
𝑁×𝑑2. With the outer product operation described above, points in the 
original stock feature space can be mapped to a new feature space. In 
this new space, each dimension represents a combinatorial interaction 
between the original features of different stocks. An initial similarity 
matrix 𝐂 = 𝐁⋅𝐁𝐻  can be approximated by computing the dot product of 
each row (representing the features of a stock) and each column (also 
representing the features of a stock) in 𝐁. Therefore, the information 
under all 𝑚 modes forms a tensor  of size (𝑚 × 𝑇 ,𝑁,𝑁). The above is 
the original data processing process.

In a short period of time, the relationships between different compa-
nies can be regarded as homogeneous, so the homogeneous correlations 
can be extracted first. In the attention mechanism, the dot product 𝐐 ⋅
𝐊𝑇  measures the similarity between the query vector and the key vector 
in the feature space, which is similar to the correlation coefficient used 
in statistics to measure the correlation between two variables. Inspired 
by this, we introduce a novel attention-like mechanism to model both 
intra-modality information and inter-modality interconnectivity. By 
modeling both intra-modality and intermodality relations, we aim to 
capture the joint effects of input modalities while preserving modality-
specific features. The computation of the attention-like value is detailed 
below: 
𝐐𝐶 = 𝐖𝑄 ⋅ (𝑖), (6)

𝐊𝐶 = 𝐖𝐾 ⋅ (𝑖), (7)

 (𝑖) = Attn(𝐐𝐶 ,𝐊𝐶 ) =
𝐐𝐶 ⋅𝐊𝑇

𝐶
𝜆

, (8)

where 𝜆 is a learnable parameter with an initial value of 1, 𝑖 = 1,… , 𝑛1.
Considering the homogeneity between companies in a short period 

of time, AHCE is used to capture the homogeneity in the initial data. 
In this module, we believe that the homogeneous pattern obtained is 
not ‘‘pure’’, that is, it contains a small amount of heterogeneous infor-
mation, which also provides conditions for the subsequent separation 
of homogeneous and heterogeneous patterns.

4.2. Model-guided separation of homogeneous and heterogeneous pattern 
module

In the context of predicting the trend of fluctuation in the stock 
market, we believe that the stock data have low-rank characteristics. 
This inspires us to use a lower-dimensional approach to effectively ap-
proximate the representation of data and use fewer features to describe 
most of the fluctuations in the original stock data without considering 
too much redundant information, thus improving the efficiency of 
prediction.
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Fig. 2. The overview of the proposed model, including tensor-based feature extraction module (AHCE), model-guided separation of homogeneous–heterogeneous pattern module 
(HHS) and homogeneous–heterogeneous self-attention mechanism (HHSAM).
From a technical standpoint, homogeneous patterns can be asso-
ciated with the low-rank component in the context of TRPCA, which 
captures the underlying stable and coherent trends in the data. On 
the other hand, heterogeneous patterns describe diverse and irregular 
behaviors, where stocks or time periods exhibit distinct and non-
uniform movement characteristics. These heterogeneous patterns often 
reflect complex interactions and external influences, making them more 
challenging to predict. In TRPCA, these heterogeneous patterns can 
be attributed to the noise component, which represents the irregular 
and unpredictable fluctuations in the data. The separation of these 
two components through TRPCA provides a powerful framework for 
analyzing and predicting stock movements by distinguishing between 
stable trends and volatile noises.

Assuming that the homogeneity pattern records obtained through 
the AHCE module are  , it can be decomposed into  =  +  , where 
 is the low-rank component and   is the sparse component. In order 
to better separate homogeneous pattern and heterogeneous pattern of 
stocks, we use the tensor principal component analysis model as shown 
in (1) to decompose.

The above problem (1) can be solved using the ADMM algorithm, 
but it will take at least dozens of iterations to obtain a satisfactory 
solution. Meanwhile, setting hyperparameters, such as 𝜆, is challeng-
ing. Therefore, in this study, instead of using a fixed paradigm for 
iterative solutions by learning from the data itself, i.e., by constructing 
interpretable networks (HHS) instead of the original numerical iterative 
solution.

In order to design the HHS, we start by mapping the ADMM itera-
tion process onto a data flow graph. As illustrated in the upper middle 
part of Fig.  3, the graph comprises nodes representing the three oper-
ations of the ADMM algorithm and directed edges indicating the data 
flow between these operations. These operations can be summarized as 
low-rank layers, sparse layers, and multiplier update layers. The general 
framework is built by sequentially connecting each layer. Next, we will 
discuss them in details.

Low-rank Layer (𝑘): Before performing tensor decomposition, 
we first perform the Fourier transform on the data. The essence of 
the Fourier transform is a linear transformation, so we use a fully 
connected layer instead of the Fourier transform. By the definition of 
t-SVD, it follows that the 𝑘th frontal slice of the transformed tensor 
 (𝑘) =  (𝑘) (𝑘) (𝑘)𝐻 . Furthermore, because the minimization of is 
equivalent to the minimization of ∑𝑛3

𝑘=1 ‖𝐔
(𝑘)𝐻𝑓 ()(𝑘)𝐕(𝑘)

‖1. The uni-
tary matrices 𝐔(𝑘) and 𝐕(𝑘) (𝑘 = 1, 2,… , 𝑛3) based on t-SVD are directly 
learned from the data, rather than relying on fixed paradigms. They 
correspond to the row and column operations respectively. To improve 
the low-rank representation of the transformed tensors, we utilize a 
multilayer convolutional neural network with nonlinear characteristics 
to encapsulate the transformation, enhancing the expressiveness of the 
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neural network-driven process. Specifically, the motivations involve 
two points: (i) the convolution operation can effectively replace the row 
and column operations. (ii) Following the t-SVD transformation, the 
intricate features associated with small singular values are not reliably 
preserved. Taking into account the factors mentioned above, we use 
convolution instead of 𝐔𝐻  and 𝐕. After the transformation, the system 
maintains its ability to adapt to data and effectively extract features.

The low-rank layer structure designed according to the above pro-
cess is depicted in Fig.  3. In line with the traditional TNN approach, 
we start by employing the neural network in mode-3 to investigate the 
connections between frontal sections. Likewise, the inverse transform 
is performed along mode-3. Meanwhile, to describe the non-linear 
connection between the first and second dimensions, we stack ConRCon 
layers (i.e. energy concentration). By employing nonlinear modeling 
within the low-rank layer, minimizing the TRPCA-based TNN enables 
the acquisition of a lower-rank tensor , thereby leading to a superior 
low-rank representation.

Sparse Layer ( 𝑘): The contraction operator is essentially a nonlin-
ear function, and this layer uses the ReLu function instead of the sparse 
term update process formula, and the output of this layer at stage 𝑘th is 
specified as:  𝑘 = max

(

𝜆
𝛽 , − 𝑘 + 𝑘−1

𝛽

)

, where 𝛽, 𝜆 are all learnable 
parameters with an initial value of 0.01.

Multiplier Update Layer (𝑘): This layer is defined by the La-
grange multiplier update process. The output of this layer at stage 𝑘
is expressed as 𝑘 = 𝑘−1 + 𝛽( − 𝑘 −  𝑘), the network designation 
of this layer strictly follows the formula.

The iterative solution process of our proposed modules and algo-
rithms is highly consistent and highly interpretable. The output of 
the HHS is the low-rank component and the sparse component of 
the original data, which represent homogeneous pattern and hetero-
geneous pattern, respectively. Next, we consider further extracting the 
predictive features in the homogeneous and heterogeneous patterns.

4.3. Homogeneous–heterogeneous-self-attention for prediction

In Section 4.2, the raw data are separated into homogeneous and 
heterogeneous patterns through the HHS module. In previous studies, 
scholars have focused on the market information embedded in the 
homogeneous pattern while ignoring the heterogeneous pattern. There-
fore, we propose the HHSAM to further capture the special information 
in the heterogeneous pattern, which can improve the performance of 
the forecasting task. Specifically, the FMB module models firm homo-
geneity by calculating homogeneity weights along the firm dimension. 
At the same time, the HDE module calculates specificity weights that 
contain heterogeneous information to model company heterogeneity. 
By integrating these two sets of weights and applying them to company 
feature maps, the proposed mechanism can effectively capture both the 
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Fig. 3. Details of HHS.
Fig. 4. Overview of homogeneous–heterogeneous-self-attention.
similarities and unique characteristics of companies. This enables the 
model to accurately represent company-wise correlation.

The tensor  and   obtained from the HHS module are subjected to 
reshaping operations to obtain a matrix of size (𝑁,𝑁 × 𝑚𝑇 ), and then 
they are used as inputs to this module, which are denoted as 𝐋′, 𝐓′

respectively. In traditional self-attention mechanisms, the size of the 
𝐐, 𝐊, and 𝐕 are usually the same, where 𝐐 = 𝐖𝑞𝐋′, 𝐊 = 𝐖𝑘𝐋′, 
𝐕 = 𝐖𝑣𝐓′. Unlike previous studies, the query matrix, key matrix, 
and value matrix here are obtained through the FMB module that we 
designed. As shown in Fig.  4, FMB consists of two layers of activation 
function and linear, which linearly maps the extracted homogeneity 
and heterogeneity pattern to the hidden space to avoid information 
mixing. Company-wise Attention captures the correlation along the 
company dimension. Both 𝐐 and 𝐊 are obtained by linear mapping of 
homogeneous pattern. They measure the similarity between each stock 
(i.e., the similarity of the company dimension). Therefore, there are 
𝑁 ×𝑁 similar weights, and the weights on the diagonal represent the 
company itself. In practical implementations, 𝐊 and 𝐐 are normalized 
along the corporate dimension with tensor norm and multiplied by a 
weight factor to enhance the representational power. 𝐕 is obtained by 
linear mapping the heterogeneity information, measuring the difference 
between each stock, so we embed the 1 ×𝑁 specificity weights into a 
diagonal matrix to obtain 𝑁 ×𝑁 specificity.
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Furthermore, to further capture the predictive properties in hetero-
geneity, we propose an extraction mechanism called HDE for hetero-
geneity information. Previous research did not consider the potential 
correlation between heterogeneous information. By comprehensively 
analyzing this information, the driving factors of market changes can 
be discovered. In order to fill this gap, the 𝐕 obtained by FMB is 
used to obtain the heterogeneity characteristics of different company 
dimensions through global average pooling, and then 1𝑑 convolution 
is fully connected along the company dimension, which can effectively 
obtain the upgraded version of heterogeneity advanced predictive char-
acteristics. Therefore, we propose the Homogeneous–Heterogeneous 
Self-attention as 

HHSA(,  ) = 𝚂𝚘𝚏𝚝𝚖𝚊𝚡(𝑤1
𝐐𝐊𝑇

‖𝐐‖ ⋅ ‖𝐊‖

+𝑤2(HDE(𝐕))). (9)

The self-attention mechanism in (9) is a key component to integrate 
the interpretable low-rank component  and the sparse component 
  in the unrolling output, which is consistent with the theoretical 
underpinnings in the relevant literature. It has been shown that TR-
PCA can effectively capture this low-rank and sparse structure [19], 
and previous empirical studies have demonstrated that decomposing 
financial data into low-rank and sparse components can enhance model 
performance [9]. Integrating homogeneous and heterogeneous compo-
nents into the self-attention mechanism further extends this proven 
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Fig. 5. Data partition diagram.
approach. The HHSA combines the advantages of the TRPCA unrolling 
with the flexibility of the self-attention mechanism, allowing the model 
to account for both low-rank trends and sparse anomalies while still 
maintaining a degree of interpretability.

Finally, we integrate the HHSA mechanism and LSTM for predic-
tion. Specifically, firstly, homogeneous and heterogeneous pattern is 
processed through the HHSA module to capture the relationships be-
tween homogeneous–homogeneous and homogeneous–heterogeneous 
while encoding these relationships through weights. The output of the 
HHSA module is then reshaped to fit the input format of the LSTM. 
Next, the LSTM layer uses these encoded input sequences to learn the 
dependencies between time steps. Finally, the output of the LSTM layer 
is processed through a fully connected layer and a Sigmoid activation 
function to generate predictions. This combination exploits the ability 
of the HHSA mechanism in capturing the complex relationships of 
homogeneous–heterogeneous information and the strength of the LSTM 
in processing time-series data, which improves the model’s prediction 
accuracy and generalization to securities market data.

5. Experimental evaluation

In this chapter, we first carry out experiments with real stock market 
data and contrast our model with leading stock prediction frameworks. 
In addition, through the ablation study, we validate the effectiveness 
of the primary modules of our model.

5.1. Data set and experimental settings

The experiment is conducted on the daily stock transaction data of 
CSI 500, Nasdaq, CMIN-US, and FTSE 100. The data spans: 

• CSI 500: January 1 to December 31, 2013;
• Nasdaq: January 1, 2020 to March 31, 2021;
• CMIN-US3: January 2, 2018 to December 31, 2021;
• FTSE 1004: January 7, 2014 to June 30, 2018.
The CSI 500 data reflects China’s recovery after the financial crisis. 

After three years of bear market, the market showed signs of easing 
its decline and gradually stabilizing in 2013. The Nasdaq data covers 
the COVID-19 pandemic period, including the market crash in 𝑄1 2020 
and subsequent tech stock rally. The CMIN-US data shows the different 
dynamics of stock trends before and during the epidemic, and the FTSE 
100 data incorporates Brexit uncertainties and post-pandemic market 
adjustments in the UK.

It should be noted that the CSI 500 data is limited to listed com-
panies in mainland China, excluding Hong Kong and overseas listed 

3 https://github.com/BigRoddy/CMIN-Dataset.
4 https://datalab.snu.ac.kr/dtml/.
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companies. Nasdaq data does not include non-US companies and IPOs 
before 2020 to control survivor bias. FTSE 100 data excludes companies 
delisted during the UK’s post-Brexit regulatory overhaul and lacks news 
sentiment data due to limited public news API coverage for UK markets. 
The transaction data is obtained from the Center for Research in 
Security Prices. The fundamental data consists of the stock prices (such 
as opening price), volume, turnover rate, price-to-earnings ratio, and 
price-to-book ratio. The news within our dataset is gathered through 
web crawling from East Money5 and Bloomberg.6 News collection is 
unavailable for FTSE 100; however, its technical indicators mitigate 
this gap by capturing short-term market dynamics. News collection is 
restricted to trading days within the selected time frame.

In terms of data partitioning, we use a ‘‘sliding window’’ to intercept 
fragments of the original sequence, thereby reshaping the original data 
into samples of a specified length for modeling. The sliding window 
𝑇  is a hyperparameter. Taking the 𝑇 -value equal to 9 as an example, 
specifically, the division of the data set can be shown in Fig.  5. As 
shown in Fig.  6, we test the results of our method under different 𝑇
values on two data sets. On the CSI 500 dataset, accuracy is highest 
when 𝑇 = 13, and on the Nasdaq, FTSE 100 and CMIN-US datasets, 
accuracy is highest when 𝑇 = 9, 𝑇 = 7 and 𝑇 = 5, respectively. 
During training, we use the Adam optimizer, and the batch size is set as 
16. To prevent overfitting, we use a dynamic learning rate adjustment 
strategy. The initial learning rate is set to 0.001, the step size is set 
to 100 and the learning rate is gradually reduced in the later stages 
of training to make the model converge more smoothly to the optimal 
solution.

5.2. Evaluation indicators

In long-term studies, the forecasting of stock price movements is 
approached as a binary classification problem. Therefore, building upon 
prior research methodologies, the prediction performance is evaluated 
by four indicators: accuracy (Acc) and precision (Prec), F1-score and 
recall, which are hereby delineated. 

Accuracy = TP + TN
TP + TN + FP + FN , (10)

Precision = TP
TP + FP ,

(11)

Recall = TP
TP + FN , (12)

F1-score = 2Precision × RecallPrecision + Recall ,
(13)

where TP, TN, FP, and FN represent the true positives (TP), 
true negatives (TN), false positives (FP), and false negatives (FN), 
respectively.

5 https://www.eastmoney.com/.
6 https://www.bloombergneweconomy.com/.

https://github.com/BigRoddy/CMIN-Dataset
https://datalab.snu.ac.kr/dtml/
https://www.eastmoney.com/
https://www.bloombergneweconomy.com/
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Fig. 6. Evaluation metrics for different sliding windows.
Table 1
Evaluation metrics for the prediction outcomes of various approaches on the CSI 500 
set. The top and second highest values are respectively emphasized using bold text
and underlining.
 Methods ACC Precision F1-score Recall  
 GAT [38] 0.5261 0.5013 0.5064 0.5145  
 FinGAT [39] 0.5262 0.5085 0.5155 0.5277  
 AD-GAT [40] 0.5234 0.5007 0.5114 0.5215  
 SPLSTM [25] 0.5877 0.5202 0.5519 0.5910  
 TLSTM [9] 0.5746 0.5292 0.5572 0.5996  
 CLSR [37] 0.5295 0.4983 0.5031 0.5103  
 OURS 0.6040 0.5454 0.5876 0.6231 

5.3. Comparisons

We compare the our model with six widely-applied sequential 
models, i.e., the sentiment-price LSTM (SPLSTM) [25], the tensor 
based LSTM (TLSTM) [9], the contrastive learning framework for 
stock representations (CLSR) [37], the graph attention networks 
(GAT) [38], the financial graph attention networks (FinGAT) [39] and 
the attribute-driven graph attention networks (AD-GAT) [40].

∙ SPLSTM [25]: it utilizes the LSTM architecture to integrate tech-
nical stock price indicators with news sentiment from textual news 
articles for stock price prediction.

∙ TLSTM [9]: it combines a tensor representation and fusion 
framework with the LSTM framework based on attention mechanism.

∙ CLSR [37]: it leverages comparative learning in conjunction with 
the Informer framework for stock forecasting. This framework is adept 
at capturing both global and local patterns in extended time series data. 
Additionally, contrastive learning is implemented to effectively uncover 
potential relationships between samples and mitigate data uncertainty.

∙ GAT [38]: it is a powerful graph neural network structure that 
can flexibly capture the interrelationships between nodes in a graph by 
introducing an attention mechanism.

∙ FinGAT [39]: it combines the LSTM with a variant of GAT with a 
two-stage attention mechanism.

∙ AD-GAT [40]: it introduces a pioneering attribute-driven graph 
attention network, which is crafted to capture the attribute-sensitive 
momentum overflow effect and deduce latent relationships among 
listed corporations, ultimately elevating prediction accuracy. 
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Table 2
Evaluation metrics for the prediction outcomes of various approaches on the Nasdaq 
data set. The top and second highest values are respectively emphasized using bold 
text and underlining.
 Methods ACC Precision F1-score Recall  
 GAT [38] 0.5170 0.5082 0.5246 0.5494  
 FinGAT [39] 0.5051 0.5031 0.5232 0.5569  
 AD-GAT [40] 0.5196 0.5168 0.5306 0.5520  
 SPLSTM [25] 0.5403 0.5232 0.5712 0.6275  
 TLSTM [9] 0.5395 0.5241 0.5850 0.6489  
 CLSR [37] 0.5257 0.5089 0.5288 0.5496  
 OURS 0.5481 0.5469 0.5993 0.6690 

Table 3
Evaluation metrics for the prediction outcomes of various approaches on the FTSE 100 
data set. The top and second highest values are respectively emphasized using bold 
text and underlining.
 Methods ACC Precision F1-score Recall  
 GAT [38] 0.5017 0.5048 0.5069 0.5098  
 FinGAT [39] 0.5004 0.5007 0.5023 0.5046  
 AD-GAT [40] 0.5028 0.5015 0.5037 0.5070  
 SPLSTM [25] 0.5159 0.5155 0.5122 0.5164  
 TLSTM [9] 0.5177 0.5175 0.5159 0.5225  
 CLSR [37] 0.5092 0.5003 0.5039 0.5102  
 OURS 0.5267 0.5272 0.5342 0.5437 

Tables  1 and 2 show the prediction performance of the different 
methods on the CSI 500 and Nasdaq data sets, respectively. Overall, 
our proposed method achieves the best performance on all evaluation 
metrics on both datasets. On the CSI 500 dataset, our proposed method 
achieves 0.6040 for predicted ACC (at least 5.94%), which is a sig-
nificant improvement compared to all other methods. On the Nasdaq 
dataset, our method also shows a balanced performance across all 
metrics. It achieves the highest Recall and F1-score, while maintaining 
strong performance in ACC and precision. 

Tables  3 and 4 show the prediction performance of the different 
methods on the FTSE 100 and CMIN-US datasets, respectively. Overall, 
our proposed method achieves the best performance on all evaluation 
metrics on both datasets. On the FTSE 100 dataset, our proposed 
method achieves 0.5267, 0.5272, 0.5342 and 0.5437 for predicted 
ACC, Precision, F1-score and Recall, respectively, which is a signifi-
cant improvement compared to all other methods. On the CMIN-US 
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Table 4
Evaluation metrics for the prediction outcomes of various approaches on the CMIN-US 
data set. The top and second highest values are respectively emphasized using bold 
text and underlining.
 Methods ACC Precision F1-score Recall  
 GAT [38] 0.5178 0.5112 0.5471 0.5871  
 FinGAT [39] 0.5113 0.5088 0.5263 0.5356  
 AD-GAT [40] 0.5213 0.5246 0.5563 0.5981  
 SPLSTM [25] 0.5329 0.5496 0.5838 0.6319  
 TLSTM [9] 0.5343 0.5557 0.5891 0.6354  
 CLSR [37] 0.5209 0.5092 0.5170 0.5281  
 OURS 0.5463 0.5609 0.6065 0.6703 

Table 5
Results of statistical tests of the results of the various methods of prediction.
 Model CSI 500 Nasdaq FTSE 100 CMIN-US

 𝜒2 𝑝-value 𝜒2 𝑝-value 𝜒2 𝑝-value 𝜒2 𝑝-value 
 GAT [39] 4.9123 0.0289 4.3062 0.0379 4.4690 0.0393 5.4038 0.0268 
 FinGAT [40] 5.8667 0.0214 3.9858 0.0428 3.8873 0.0456 5.3990 0.0301 
 AD-GAT [41] 5.0141 0.0251 4.8421 0.0277 5.8967 0.0283 6.3581 0.0217 
 SPLSTM [24] 7.9150 0.0050 6.0890 0.0136 7.7795 0.0052 8.2434 0.0034 
 TLSTM [9] 9.0638 0.0026 7.9399 0.0048 9.7556 0.0017 7.4654 0.0069 
 CLSR [38] 3.7817 0.0463 3.7630 0.0413 4.2043 0.0403 3.9203 0.0377 
 OURS 8.0554 0.0045 9.6761 0.0018 9.4595 0.0026 7.8881 0.0049 

dataset, our method further demonstrates superiority, with its ACC of 
0.5463, Precision of 0.5609, F1-score of 0.6065, and Recall reaching 
0.6703, especially in the Recall metrics, which are significantly better 
than the other methods. This indicates that our method not only has 
high classification accuracy, but also can effectively identify positive 
examples, showing good adaptability and robustness when dealing 
with financial time series forecasting tasks. This result verifies the 
effectiveness and superiority of the method in this paper in the field 
of financial forecasting, and provides strong support for subsequent 
research and practical applications.

5.4. Statistical test

To verify the validity of the models, a Chi-square test is con-
ducted on four benchmark datasets (CSI 500, Nasdaq, FTSE 100, and 
CMIN-US).

From Table  5, the chi-square test results indicate that all models 
demonstrated statistically significant predictive capabilities across the 
datasets (𝑝 < 0.05), rejecting the null hypothesis of randomness. 
Our method consistently achieved the strongest statistical significance, 
with 𝑝-values uniformly below 0.005 (range: 0.0018–0.0049), reflect-
ing robust deviations from random predictions. While some baseline 
models such as TLSTM and SPLSTM exhibited high significance on 
specific datasets, the narrow 𝑝-value range of our method highlights 
its cross-dataset stability. This statistical consistency further validates 
the reliability of our method in diverse market environments.

5.5. Ablation study

Throughout our framework, the key parts of our model are the 
AHCE, the HHSA and the HDE, we need to figure out the particular 
effect of each module. Thus, in this part, we test our method by setting 
each part of our framework differently.

Ablation on the HHS: To assess the effectiveness of the HHS 
module, we conduct ablation experiments on the number of modules 
(i.e. TRPCA layers). It can be found from Table  6 that as the number 
of TRPCA layers increases, indicators such as prediction accuracy also 
increase, which shows that HHS plays a key role in the separation of ho-
mogeneous pattern and heterogeneous pattern in prediction. However, 
the number of TRPCA layers is constrained by the amount of data. In 
the experiment, when we set the number of TRPCA layers to 4, the 
results are not as good as when the number of TRPCA layers is 3. 
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Ablation on the AHCE: As shown in Table  7, we can see that when 
there is only the AHCE module, the prediction accuracy and other 
indicators are average. Although the AHCE part has not yet taken into 
account the heterogeneous information part, when AHCE and other 
modules are combined, the prediction accuracy and other indicators are 
significantly improved, which can illustrate the effectiveness of AHCE 
to a certain extent, and also illustrate the effectiveness of separating 
homogeneous and heterogeneous pattern after the AHCE module.

Ablation on the HHSA: In this section, we mainly ablate the 
homogeneous pattern of HHSA to facilitate comparison with the het-
erogeneous pattern of the HDE module. Based on the results shown 
in Table  7, we can observe that the HHSA module has the highest 
improvement in prediction accuracy, which shows the importance 
of homogeneous pattern in prediction accuracy, and further shows 
that the relationship between companies in a short period of time is 
homogeneous.

Ablation on the HDE: According to the results in Table  7, we can 
find that when there is no HDE module, each prediction index has a 
certain degree of decline, which proves that the heterogeneous pattern 
mined by HDE plays an indispensable role in the entire prediction 
process. At the same time, the HDE module also fills the gap of the 
AHCE module’s lack of attention to heterogeneous pattern.

5.6. Investments simulation

To evaluate the effectiveness of our model, we conducted a stock 
investment simulation using CSI500 data from October to December 
2015. This approach allowed us to assess the model’s performance 
over a specific period while minimizing the risk of overfitting or 
data snooping bias. We compare our method with five state-of-the-
art methods discussed in Section 5.3 in real investment scenarios. The 
initial capital is set at CNY 50,000, and we compare the cumulative 
daily returns based on continuous investment. In the simulation, we 
disregard transaction fees and perform daily buy/sell operations. In-
vestment options are selected based on the predicted probabilities of 
daily price movements ranked by our framework. When sufficient funds 
are available, we prioritize purchasing the top five stocks with the 
highest predicted probabilities. Fig.  7 illustrates the cumulative returns 
over time.

Fig.  7 presents the investment simulations of our approach and 
compares it with several existing methods, including GAT, FinGAT, 
AD-GAT, SPLSTM, TLSTM, and CLSR. As demonstrated in the accompa-
nying figure, our approach consistently exhibits superior performance 
in comparison to alternative methods over the 60 day investment 
period. Specifically, the proposed approach yielded a return rate of 
12.84%, with the maximum return being RMB 56,418, which is consid-
erably higher than the returns of other methods (GAT: 5.57%, FinGAT: 
5.09%, AD-GAT: 4.62%, SPLSTM: 8.35%, TLSTM: 7.68%, and CLSR: 
4.86%). Statistical analysis indicates that the difference in returns 
between our approach and the other methods is statistically significant 
(𝑝-values < 0.05).

During the initial phase of the investment period, all methods 
show some degree of volatility. However, our approach demonstrates 
a more stable and steady upward trend compared to the other meth-
ods. This suggests that our approach is better at capturing market 
trends and making effective investment decisions in the early stages 
of the investment period. In the mid-phase, the performance of the 
different methods begins to diverge more significantly. While some 
methods experience fluctuations and even declines in portfolio value, 
our approach continues to show a consistent upward trajectory. This 
further highlights the robustness and effectiveness of our approach in 
navigating market dynamics and maximizing returns. As the investment 
period progresses towards its conclusion, our approach continues to 
outperform the other methods, reaching the highest portfolio value of 
CNY 56,418. This demonstrates the superior long-term performance 
and profitability of our approach.
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Table 6
Prediction performance under different numbers of TRPCA layers. The top value is emphasized using bold 
text.
 TRPCA layers CSI500 data set Nasdaq data set
 Acc Precision F1-score Recall Acc Precision F1-score Recall  
 1 0.5607 0.5327 0.5392 0.5527 0.5246 0.5345 0.5354 0.5492  
 2 0.5931 0.5412 0.5725 0.6145 0.5374 0.5408 0.5483 0.5566  
 3 0.6040 0.5454 0.5876 0.6231 0.5481 0.5469 0.5993 0.6690 
 4 0.5823 0.5371 0.5653 0.5992 0.5410 0.5423 0.5804 0.6357  
Table 7
Quantitative results of different versions of our proposed model on the CSI500 and Nasdaq data sets. The
top and second highest values are respectively emphasized using bold text and underlining.
 Module CSI500 data set Nasdaq data set
 AHCE HHSA HDE Acc Precision F1-score Recall Acc Precision F1-score Recall  
 ✓ 0.5505 0.5167 0.5314 0.5692 0.5235 0.5347 0.5322 0.5431  
 ✓ 0.5708 0.5335 0.5729 0.6202 0.5376 0.5413 0.5574 0.5835  
 ✓ 0.5640 0.5187 0.5612 0.6107 0.5322 0.5392 0.5468 0.5647  
 ✓ ✓ 0.5721 0.5357 0.5711 0.6144 0.5417 0.5484 0.5482 0.5597  
 ✓ ✓ 0.5539 0.5389 0.5615 0.5830 0.5396 0.5434 0.5370 0.5898  
 ✓ ✓ 0.5850 0.5361 0.5742 0.6271 0.5419 0.5531 0.5865 0.6253  
 ✓ ✓ ✓ 0.6040 0.5454 0.5876 0.6231 0.5481 0.5469 0.5993 0.6690 
Fig. 7. Short-term investment simulations.

In order to verify the effectiveness of the strategy in different market 
cycles, a long-term backtest was conducted based on the CMIN-US 
dataset. The initial capital is set at USD 200,000, and we compare 
the cumulative daily returns based on continuous investment. In the 
simulation, we disregard transaction fees and perform daily buy/sell 
operations. Investment options are selected based on the predicted 
probabilities of daily price movements ranked by our framework. 
When sufficient funds are available, we prioritize purchasing the top 
five stocks with the highest predicted probabilities. The experiment 
involved the selection of trading day data from January 1 to December 
31, 2021 for the purpose of investment backtesting. This period was a 
special year under the unprecedented circumstances of the COVID-19 
pandemic, and the data was unique and representative. The uncertainty 
engendered by the pandemic has facilitated a more comprehensive 
evaluation of the performance and adaptability of strategies in such 
contexts, ensuring that experimental data encompasses a broader spec-
trum of risk changes than most previous studies. The backtest results 
are shown in Fig.  8.

As demonstrated in Fig.  8, the efficacy of the our strategy is evident 
in its superior performance in the evaluation of stock investment strate-
gies, outperforming alternative strategies. The portfolio value shows a 
consistent and stable growth trajectory over the 250 day investment 
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Fig. 8. Long-term investment simulations.

cycle. During the initial 150 day period of the investment cycle, the 
portfolio value of each strategy exhibits a relatively similar growth 
trend. However, commencing on the 150th day, our strategy initiates 
a gradual widening of the gap with competing strategies. This acceler-
ation peaks at the 200th day, ultimately resulting in a portfolio value 
of approximately 245,000 on the 250th day. In contrast, although the 
SPLSTM strategy (dark green curve) performs second best, its portfolio 
value only reaches approximately 225,000 on the 250th day, which 
is somewhat different from our strategy. Concurrently, the portfolio 
values of alternative strategies, such as GAT, FinGAT, and ADGAT, 
are essentially below 220,000 on the 250th day, and the aggregate 
performance is comparatively inadequate.

In terms of volatility, our strategy also shows a smaller fluctuation 
range, indicating that it has a stronger ability to resist risks. The 
volatility of other strategies is relatively large, especially in certain 
periods of volatile market conditions, when the value of their portfolios 
has fallen significantly, which may indicate that these strategies have 
certain deficiencies in risk control and response to market changes.

With regard to investment returns, our strategy has achieved a cu-
mulative return of about 27.24% during the investment cycle, while the 
TLSTM strategy has a cumulative return of about 18.76%, the SPLSTM 
strategy has a cumulative return of about 18.63%, and the cumulative 
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returns of other strategies are below 15%, showing our significant 
advantage in investment returns. Statistical analysis indicates that the 
difference in returns between our approach and the other methods is 
statistically significant (𝑝-values < 0.05). At the same time, our strategy 
has maintained a high rate of return on investment for most of the time 
period, and can more effectively capture investment opportunities in 
the stage of positive market trends, thereby achieving a rapid increase 
in the value of the portfolio.

6. Discussion

6.1. Theoretical and practical implications

The theoretical foundation can be traced back to the exact separa-
tion of the low-rank and sparse components under certain conditions 
in [19]. Wang et al. [9] have empirically explored that this low-rank 
and sparse modeling, i.e., the TRPCA model, is practical for securities 
market data. On this basis, we further unroll their iterative optimization 
algorithm for the TRPCA model into a deep neural network, with each 
module being well in accordance with the algorithm’s updating. Thus, 
we obtain a HHS, with both interpretability and a higher model capac-
ity for the separation of homogeneous and heterogeneous information. 
This indeed expands the application scope of the mathematical theory 
in [20] to the field of financial data.

Then, we fully explore the homogeneous and heterogeneous infor-
mation by designing a novel self-attention mechanism. This mechanism 
can make full use of both homogeneous and heterogeneous data in a 
reasonable and effective way, yielding better prediction results. There-
fore, our work not only enriches the application of the theory in [19], 
but also further provides an elegant way to utilize those homogeneous 
and heterogeneous components for the subsequent prediction task.

6.2. Limitations

In this study, the explicit mapping of the optimization process is 
achieved through the algorithmic unrolling network technique, and 
the self-attention mechanism is customized based on the interpretable 
output of the unrolling network. This design significantly enhances the 
interpretability of our method. However, to fully capture the character-
istics of the financial market data, we introduce a self-attention-based 
LSTM for prediction, which remains a black box, limiting the whole 
interpretability of our work. Nonetheless, as financial markets’ fluctua-
tions in stock price are influenced by a complex interplay of historical 
trends, event sequences, and market sentiment, exhibiting nonlinear 
and time-varying characteristics, introducing the LSTM or other deep 
neural network structures to modeling the complex nonlinear patterns 
is inevitable.

6.3. Future work

While our current framework achieves partial interpretability 
through the algorithm unrolling, the predictive module remains a 
black-box that requires deeper structural transparency. Recent ad-
vances in white-box architectures show promising directions. For 
instance, the Transformer variant built upon sparse coding principles 
attained 85.1% image classification accuracy while maintaining archi-
tectural interpretability [41], particularly through its rate reduction 
objective that enables mathematically analyzable feature transforma-
tions. Building on these insights, we plan to derive a white-box 
attention mechanism by unrolling optimization procedures for sparse 
coding, which may reveal the mathematical principles governing 
cross-modal information fusion in stock prediction.
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7. Conclusion

This paper proposes an interpretable model-guided stock prediction 
framework that integrates homogeneous–heterogeneous processing us-
ing unrolled TRPCA and a customized self-attention mechanism. The 
key innovation of this framework is that it can effectively combine 
unrolled principal component analysis and customized self-attention 
mechanism. Specifically, the unrolled TRPCA effectively separates low-
rank homogeneous components and sparse heterogeneous components, 
while the customized self-attention mechanism models homogeneous 
information and heterogeneous information. This architectural innova-
tion achieves an organic balance between mathematical interpretability 
and deep learning representation capabilities. The unrolled TRPCA 
module provides an interpretable homogeneous and heterogeneous 
decoupling process, while the self-attention mechanism better captures 
the global dependencies of homogeneous information and the local 
correlation patterns of heterogeneous information. The synergy of the 
two enables the model to achieve excellent prediction performance 
while maintaining a certain degree of interpretability. The proposed 
method significantly improves prediction accuracy on the CSI 500, 
Nasdaq and FTSE 100 datasets, outperforming state-of-the-art methods 
while maintaining partial interpretability of the results.
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Appendix A. Mathematical foundations

Definition 1 (T-product [35]).: The tensor–tensor product  =  ∗ 
of tensors  ∈ R𝑛1×𝑛2×𝑛3  and  ∈ R𝑛2×𝑛4×𝑛3  results in a tensor of size 
𝑛1 × 𝑛4 × 𝑛3. The (i,j)th tube 𝐜𝑖𝑗∶ is determined by 

𝐜𝑖𝑗∶ = (𝑖, 𝑗, ∶) =
𝑛2
∑

𝑔=1
(𝑖, 𝑔, ∶) ∗ (𝑔, 𝑗, ∶) (A.1)

where ∗ represents the circular convolution between two tubes of iden-
tical size. An effective method for computing the t-prod of two tensors 
involves the following steps: (i) applying a Fast Fourier transform 
(FFT) along tubes, (ii) conducting matrix multiplications of each pair of 
frontal slices of the tensors in the transform domain, and (iii) applying 
an inverse FFT along tubes of the resulting tensor.
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Definition 2 (Conjugate Transpose [35]). The conjugate transpose of a 
tensor  ∈ R𝑛1×𝑛2×𝑛3 , denoted as  𝐻 , is defined as follows:

(i) ( 𝐻 )(1) = ( (1))𝐻

(ii) ( 𝐻 )(𝑖) = ( (𝑛3+2−𝑖))𝐻 , where 𝑖 = 2,… , 𝑛3.

Theorem 1 (t-SVD [35]).: For a tensor  ∈ R𝑛1×𝑛2×𝑛3 , the t-SVD of   is 
expressed as 

 =  ∗  ∗ 𝐻 (A.2)

where  ∈ R𝑛1×𝑛1×𝑛3  and  ∈ R𝑛2×𝑛2×𝑛3  are orthogonal tensors which 
satisfy  ∗ 𝐻 = 𝐻 ∗  =  ∗ 𝐻 = 𝐻 ∗  = , and  ∈ R𝑛1×𝑛2×𝑛3

is an f-diagonal tensor which each frontal slice  (𝑖) is a diagonal matrix.

Definition 3 (Tensor tubal rank [42]).: Given the t-SVD:  =  ∗  ∗
𝐻 , where  ∈ R𝑛1×𝑛2×𝑛3 , the tubal rank 𝑟𝑎𝑛𝑘𝑡() the count of nonzero 
singular tubes in .

Definition 4 (Tensor Tubal Nuclear Norm (TNN) [42]).: Denoted as 
‖‖TNN, the tensor nuclear norm of a tensor  ∈ R𝑛1×𝑛2×𝑛3  is defined 
as 

‖‖TNN =
𝑛3
∑

𝑖=1
‖̃ (𝑖)

‖∗ (A.3)

where ̃ refers to the Fourier transformed tensor along the third mode.

Minimizing TNN effectively promotes tensor low-rank proper-
ties [43].

Appendix B. Details of Algorithm 1

The iterative workflow of Algorithm 1 is detailed as follows.

1. Algorithm parameter description

• (0): Initial for the low-rank component (default: ).
•  (0): Initial for the sparse component (default: zero tensor).
• (0): Lagrangian multiplier enforcing the constraint  =
 +   (default: zero tensor).

• 𝛽 > 0: Penalty parameter controlling the trade-off between 
constraint satisfaction and objective minimization.

• 𝜆 ≥ 0: Regularization parameter for the sparse component, 
embedded in the shrinkage operator.

• Convergence thresholds 𝜂, 𝜂 > 1 × 10−6: Relative error 
tolerances for terminating iterations.

2. Low-Rank Component  Update (Lines 2–3): The low-rank com-
ponent  is recovered by minimizing the TNN. The process is as 
follows:

• Let  =  −  (𝑘) + (𝑘)

𝛽 . By performing t-SVD on , we 
obtain: 
 =  ∗  ∗ 𝐻 , (B.1)

where  , are orthogonal tensors and  is the f-diagonal 
singular value tensor. Based on this decomposition, the 
closed-form update for  is given by: 
(𝑘+1) =  ∗ Shrink1∕𝛽 () ∗ 𝐻 , (B.2)

with the shrinkage operator defined as: 
Shrink𝜏 (𝑠) = sign(𝑠) ⋅max (|𝑠| − 𝜏, 0) . (B.3)

These steps ensure that  maintains its low-rank property, 
thereby effectively separating the low-rank component.

3. Sparse Component   Update (Line 4):
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• Compute the update using entry-wise shrinkage: 

 (𝑘+1) = Shrink 𝜆
𝛽

(

 − (𝑘+1) + (𝑘)

𝛽

)

, (B.4)

where the shrinkage threshold 𝜆𝛽  controls sparsity.

This step eliminates small entries in the residual to model sparse 
outliers or noise.

4. Lagrangian Multiplier Update (Line 5):

• Adjusts the multiplier to penalize deviations from the 
constraint  =  +  , ensuring feasibility as 𝛽 increases.

5. Convergence Check (Lines 6–7):

• Calculate relative residuals for  and   updates. The 
residuals measure the relative change between consecutive 
iterations. A small term (10−10) is added to avoid division 
by zero. The loop stops if the maximum of these residuals 
falls below 1 × 10−6.

Data availability

Data will be made available on request.
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