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ARTICLE INFO ABSTRACT

Keywords: Stock movement prediction is a difficult task in the field of financial technology due to non-stationary
Unrolling network dynamics and complex market interdependencies. Most of the existing research is based on deep neural
Tensor networks, which lack interpretability. An interpretable prediction method helps uncover the mystery of the

Stock movements underlying operating mechanism of the securities market. In this work, we propose a model-guided method

with interpretable homogeneous-heterogeneous processing for stock movement prediction. Specifically, based
on that the correlations among the entities in the market are homogeneous within a short period, we unroll
the iterative algorithm for solving the tensor robust principal component analysis (TRPCA) to separate the
homogeneous and heterogeneous patterns from multiview data. Then, a specialized tensor-based attention for
homogeneous and heterogeneous feature extraction is designed, and embedded in long short-term memory
(LSTM) for better prediction. Experiments on real datasets show our model’s superiority over state-of-the-art
stock forecast methods.

1. Introduction et al. [6] observed that integrating stock price and news information
can help improve stock prediction. Cheng et al. [7] designed a graph

The stock market stands as one of the most influential financial neural network to predict financial time series, which preserves in-
markets, and predicting market movements is an extremely attractive formative market information as inputs, including stock prices, news
topic for traders and investors. However, in real-world scenarios, the information and relations in KG. Ma et al. [8] developed a fusion model
dynamics of the stock market is highly stochastic. It is challenging to that demonstrated enhanced prediction performance by incorporating
track stock movements to avoid as much risk as possible and make multiple sources of market information. Wang et al. [9] introduced an
optimal investment decisions. To improve prediction accuracy, ma- innovative stock correlation representation approach using the tensor

chine learning [1] and deep learning techniques [2,3] are increasingly
emerging in both academic research and industry.

Many factors contribute to the volatility of the stock market, and the
main factors include the state of the economy, the policy environment,
traders’ expectations, and the mood of the online media. Therefore, it is
quite difficult to predict the trend of stock volatility. Previously, schol-
ars concentrated on studying technical indicator modality and utilizing
the information obtained from feature mining for forecasting [4]. With
the rise of the Internet, scholars have found that social media sentiment
also has an impact on stock market volatility and have studied it as a
new modality [5].

The accuracy of stock movements forecasting relies on various
market information and poses a multi-modal learning challenge. Feng

format, leveraging a tensor robust principal component analysis (TR-
PCA) model to seamlessly integrate multi-modal and multi-temporal
market data. Additionally, existing methods based on multi-modal data
utilized the homogeneity of such data for prediction [10]. In the field of
stock movement prediction, homogeneous patterns refer to consistent
and predictable behaviors or trends observed across multiple stocks
or time periods. These patterns exhibit similarities in their move-
ment dynamics, suggesting a high degree of coherence in the market
(Coherence can be well captured by the low-rankness). Conversely,
heterogeneous patterns describe diverse and irregular behaviors, where
stocks or time periods exhibit distinct and non-uniform movement char-
acteristics. Heterogeneous patterns often reflect complex interactions
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Fig. 1. Sparse noise removal results by TPRCA [19] and our TRPCA unrolling network on the multi-spectral image stuffed toys.'?

PSNR: 28.47
SSIM: 0.47

and external influences, making them more challenging to predict.
The above papers focus on the homogeneous part of the multimodal
information, which is used for prediction. Each company in the market
possesses idiosyncratic information, considered as heterogeneous data
that complements the homogeneous information.

However, the usage of heterogeneous information is also impor-
tant [11], which is viewed as complement of the homogeneous in-
formation. Therefore, the rational and effective combination of both
homogeneous and heterogeneous information in multi-modal data is
crucial for stock prediction.

Previous work usually splices features from different information
sources into a single feature vector, while this approach ignores the
interactions between various information sources [12]. To take advan-
tage of possible correlations between different stocks, Felix et al. [13]
represented the textual data through a matrix and used a sparse matrix
factorization method to extract the correlation between the stock price
and the textual data and used it for prediction. Ritika et al. [14]
represented the NASDAQ dataset using matrices, then use principal
component analysis for dimensionality reduction, and then fed the
reduced data into an artificial neural network (ANN) for prediction.
The natural properties of the tensor, which can represent data of arbi-
trary dimensions and well represent the intrinsic connections of data,
make the tensor an ideal tool for processing and representing complex
data [15,16]. Considering the effectiveness of tensors in fusing mul-
tidimensional data, some studies have attempted to use tensor-based
approaches for modeling to preserve as much information as possible.
Li et al. [17] used a tensor format to represent the raw stock data in
different modes and subsequently augmented the underlying relation-
ships inherent in the data through the tucker decomposition. Although
the intrinsic connection of different modal information is considered
through tensor format in [17,18], the inherent connection of different
stocks is ignored, to solve this problem, Zhang et al. [11] proposed
a method based on coupling matrix and tensor decomposition, which
adopts the tensor format to fuse social media, historical quantitative
data as a way to study their common impact on stock price movements.

While tensor-based methods are more effective and interpretable,
they also suffer from some issues. Many tensor-based methods main-
tains two-stage, the tensor representation part, which involves tensor
optimization and computations to mine the multi-linear correlations,
and the prediction part, which is generally a nonlinear deep neural
network. This prevents them from an end-to-end training and results
in low efficiency.

In this work, we unroll a TRPCA algorithm to build the model-
guided deep neural network (HHS) as the backbone of the framework.
Then, a homogeneous and heterogeneous self-attention is designed to
seamlessly handle the low-rank (homogeneous) and sparse (heteroge-
neous) patterns separated from the HHS module. Thus, our method

1 https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio.
2 Structural Similarity Index [20].
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can well handle homogeneous and heterogeneous patterns in multi-
modal tensor data with good effectiveness and interpretability. More
specifically, we first design an attention-like correlation extraction
module to extract the correlation among different companies across
different modalities. Then, we design a homogeneous-heterogeneous
separating network by unrolling an iterative alternating direction mul-
tiplication method (ADMM) algorithm, which is initially established
for solving the TRPCA problem [19]. The network modules, includ-
ing the low-rank thresholding part, the sparse thresholding part, and
the multiplier updating part, are strictly consistent with the opti-
mization algorithm. A toy example in Fig. 1 shows that an unrolling
network is able to perform better than the corresponding optimiza-
tion algorithm. Finally, we design an LSTM with the Homogeneous—
Heterogeneous Self-Attention Mechanism (HHSAM), which comprises
three key modules: Feature Map Block (FMB), Heterogeneous infor-
mation Diagonal Embedding (HDE) and Homogeneous-Heterogeneous
Self-attention (HHSA), to handle the low-rank (homogeneous) and
sparse (heterogeneous) features separated from the TRPCA module.

The principal contributions of this research can be summarized as
follows.

+ With a view to extract the homogeneous and heterogeneous
pattern of the multiview data, we unroll the iterative algorithm
designed for TRPCA into a deep neural network. The network
structure and modules are consistent with the iterative algo-
rithm with good interpretability. Thus, homogeneous information
is reliably extracted in the tensor low-rank component, while
heterogeneous information is captured in the sparse component.
Following the model-driven homogeneous-heterogeneous separa-
tion part, we present a novel homogeneous-heterogeneous atten-
tion block that can utilize company-wise heterogeneous similarity
as well as homogeneous particularity, therefore yielding better
prediction results.

Experiments on the CSI 500, Nasdaq and FTSE 100 data sets
indicate that our approach outperforms existing state-of-the-art
methods. Investment simulations reveal that our approach attains
the highest annual return rate, standing at 27.24%.

The rest of this paper is given below. Section 2 provides a review
of the relevant literature on stock movement prediction and the un-
rolling network. Section 3 provides the basic notations and revisits the
TRPCA model and the corresponding optimization algorithm. Section 4
presents the model architecture. Section 5 showcases the experimental
results. Subsequently, Section 6 is dedicated to an in-depth discussion.
Lastly, conclusions are provided in Section 7.

2. Related work
2.1. Stock movement prediction

The autoregressive integrated moving average (ARIMA) model [21]
and the generalized autoregressive conditional heteroskedasticity
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(GARCH) model [22], based on traditional econometric models, have
been extensively utilized in time series analysis in the field of eco-
nomics and finance. However, various commonly used prediction mod-
els and methods based on traditional statistical methods, due to the
constraints of their own linear structure, have affected the further
improvement of prediction accuracy for time series data, and often
cannot achieve satisfactory results in practical applications.

The rise of deep learning technology allows stock prediction to
better deal with these problems. Currently, deep learning-based stock
prediction methods have also become one of the hot spots in stock
prediction research [23,24]. Various prevalent deep learning archi-
tectures encompass convolutional neural networks (CNNs), recurrent
neural networks (RNNs), long short-term memory networks (LSTMs),
and the Transformer model, etc. Specifically, RNN and its variant
networks have demonstrated commendable performance in forecasting
stock trends, as they can capture potential chaotic time series dynamics.

As a special variant of RNN, LSTM learns temporal patterns through
feedback connections within the neural network, overcoming the prob-
lem of gradient disappearance or explosion caused by RNN. For in-
stance, Li et al. [25] incorporated both quantitative indicators and
news sentiments extracted from sentiment dictionaries into an LSTM-
based model to predict stock prices in the Hong Kong market. In
addition, recently popular transformer-based architectures [26] can
handle distance dependence in sequences, but their large number of
parameters and complex structure aggravate the black-box problem
in deep learning, leading to difficulties in interpreting during the
decision-making process.

Besides, the mentioned publications presented some shortcomings.
Since the acquisition and processing of market data requires a lot of
time and resources, the quality and stability of the data also need to be
guaranteed. The black-box nature of deep learning models makes its
prediction outcomes difficult to interpret and understand, which poses
certain challenges to research. Essentially, the uniqueness of financial
trading requires robust predictive results and revealing mechanisms of
stock movements, rather than just a winning accuracy number.

2.2. Model-driven learning via unrolling

The application of algorithm unrolling — a methodology that con-
verts iterative optimization processes into interpretable neural
architectures — remains an emerging frontier in stock price forecast-
ing. Unlike conventional deep learning models, algorithm unrolling
explicitly retains mathematical connections to classical financial the-
ories while leveraging data-driven learning capabilities. This hybrid
approach systematically unfolds iterative algorithms (e.g., gradient-
based optimizers, sparse recovery methods) into layered networks,
enabling end-to-end training with built-in domain constraints.

As early as 2010, Gregor and LeCun et al. [27] were inspired by
the iterative shrinkage and thresholding algorithm (ISTA) and proposed
the first deep expansion-based framework, LISTA, which expanded the
ISTA algorithm into a non-linear sparse coding feedforward network.
Based on LISTA, scholars have proposed some image super-resolution
networks based on sparse coding [28]. In recent years, depth-unfolding
strategies have flourished in the field of image processing, including
front-and-back background separation, image denoising, and image
enhancement. For example, Yang et al. [29] expanded the iterative pro-
cess of the ADMM algorithm into a novel deep network and achieved
superior performance in the MRI compressed sensing task. In the lit-
erature, Zhang et al. [30] introduced ISTA-Net, a deep network built
upon the ISTA expansion, using nonlinear transformation to solve
the proximal mapping related to the sparsity-induced regularizer. A
large number of experiments have shown that ISTA-Net advances in
compressed sensing reconstruction.

In financial contexts, unrolling offers unique advantages for mod-
eling non-stationary market dynamics, particularly in terms of inter-
pretability. Its modular design allows for the direct integration of

Applied Soft Computing 182 (2025) 113519

volatility-aware priors into network layers, ensuring that the model’s
decisions are grounded in interpretable financial principles. Early stud-
ies demonstrate its potential in multi-scale feature extraction from
noisy market data while maintaining computational tractability. Al-
though still underexplored compared to mainstream black-box models,
unrolling frameworks show promise in balancing performance with
traceable reasoning, a critical consideration for risk-sensitive financial
applications.

Interpretability remains a critical challenge in stock prediction
research, as current deep learning approaches that demonstrate su-
perior predictive performance typically exhibit opaque ‘black-box”
characteristics. While several studies have attempted to address this
issue through different methodological perspectives, comprehensive
model interpretability has yet to be achieved. Previous work has
made progress in understanding different aspects of the problem, Hu
et al. [31] conducted empirical analyses of attention weights within
textual corpora to evaluate the relative importance of financial news
articles. Subsequent work by Dang et al. [32] developed a multimodal
neural architecture designed to filter news content relevant for stock
market forecasting. More recently, Li et al. [33] proposed an innovative
Prediction-Explanation Network (PEN) that aligns textual information
with pricing data streams through joint representation learning. The
PEN framework employs a salient vector mechanism to capture text-
price correlations, enabling identification of potentially influential
news content that can subsequently provide explanatory rationales for
observed price movements.

Overall, the unrolling strategy combines good performance with a
high degree of interpretability, which makes it not only capable of
achieving efficient and accurate results when dealing with complex
problems, but also provides researchers and developers with clear ideas
and a basis for decision-making.

3. Revisiting tensor robust principal component analysis

First, we summarize the core tensor algebra conventions essential
to our methodology. Throughout this paper, we use X to denote a
tensor, X to denote a matrix and X to denote a vector. Key operational
constructs—including the tensor-tensor product (t-product) and tensor
nuclear norm(|| - ||;ny) are contextually introduced here to guide the
technical narrative, with their formal mathematical definitions rigor-
ously derived in Appendix A. The t-SVD framework, the mathematical
foundation of our approach, originates from [34,35] and has received
tremendous attention in recent years. Theoretical guarantees for sepa-
rating the low-rank tensor from sparse corruptions, namely the tensor
robust principal component analysis (TRPCA), are established in [19].
Wang et al. combining the TRPCA model with an attention-based LSTM
for stock movements prediction [9].

Lu et al. [19] proposed a tensor robust principal component analysis
(TRPCA) model based on the tensor nuclear norm (TNN) derived from
the t-SVD framework, aiming to exactly separate the low-rank tensor
structure and sparse outliers from high-dimensional data. Given a
tensor X, the formulation of the model is as follows.
min 11NN + AT Il o
st. X=L+T
where £ and 7, respectively, represent the low-rank component and the
sparse component, A represents a non-negative parameter, ||-||, denotes
the #, norm, and || - ||;ny denotes the tensor nuclear norm.

The above problem (1) can be efficiently solved using the ADMM
algorithm [36], which decomposes the original problem into tractable
sub-problems while ensuring constraint satisfaction. First, we construct
the augmented Lagrangian function:

Ly (£, M) = Ll + AT+ (M X = £=T)+ S - £ =TI,

@
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where M denotes the Lagrange multiplier, and g > 0 is the penalty
parameter.
After that, the ADMM alternately updates {£, 7 M} as follows.

2

(k)
£ = awgmin iy + 5 |- £ 70+ 22 ©
F
®) |2
7D = argmin A7), + 2 [ = 2040 — 7 4 M @
7 172 F
M(k+1) - M(k) + ﬂ (X _ C(k+l) _ T(k+])) (5)

The complete implementation workflow, including initialization
and termination criteria, is formally described in Algorithm 1. The
detailed explanation of Algorithm 1 can be seen in Appendix B.

Algorithm 1 ADMM iterations for tensor RPCA

Input: The observed tensor X, L, 7, M
Initialization: The error threshold 7., n;; the Lagrangian parameter
p; the non-negative parameter A.
1: while 7, > 1 x 107 and n, > 1 x 107° do
2:  Decompose the tensor £ into U" % S * V# via t-SVD
3: Update £K*! via £ = U  Shrink (S) * VH;
[

4; Update 7%*! via 75+! = Shrink ; (X — £¥+! + MTk);

B
Update M*+! via MK = MK 4 p(x — £FH! — ThH1)
ek kg 1x10710)],
Update '1‘5_—||£k-1+1x10—10||2

7K+ =Tk 1x10710)

7: Update nr= ||7'k—l+1x|0—10||2

8: end while
Output: The tensor LK1, Tr+ A+l

Theorem 4.1 in [19] provides a mathematical guarantee that the
low-rank component and the sparse component can be exactly sepa-
rated into £ and 7, respectively, under certain conditions, via Algo-
rithm 1. The basic assumption in [19] is that the low-rank part satisfies
the tensor incoherent condition. Generally speaking, this assumption
holds when the low-rank part is not sparse and the sparse part is not
low-rank.

Based on this theoretical foundation, Wang et al. [9] presents
systematic empirical evidence demonstrating that higher-order tensor
representations constructed from multidimensional financial market
datasets exhibit prominent low-rank structural characteristics. By ap-
plying the TRPCA framework to analyze these financial tensors, [9]
reveals that the original tensor can be effectively decomposed into a
superposition structure comprising low-rank principal components and
sparse noise elements.

This theoretical-empirical synergy not only reinforces TRPCA’s
methodological robustness but also substantiates its applicability in
processing complex financial datasets.

4. Model-guided stock movements prediction with homogeneous—
heterogeneous processing

Fig. 2 is an overview of our model. First, the Attention-like Homo-
geneous Correlation Extraction Module (AHCE) extracts homogeneous
information from the original tensor for subsequent fusion. Then the
model-guided deep neural network (HHS) (i.e., the expanded net-
work based on the TRPCA algorithm) based on the TRPCA algorithm
divides the original stock data into homogeneous pattern and heteroge-
neous pattern. The initially separated homogeneity and heterogeneity
patterns are further utilized by the homogeneous-heterogeneous self-
attention mechanism (HHSAM) to generate features that represent
stock prediction information.
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4.1. Attention-like homogeneous correlation extraction module

In this section, we integrate multimodal stock market information
into a tensor format, preserving their internal structure. In the securities
market, the relationship computed along different modes can be viewed
as a projection of the true relationship of the individual firms within
the market in different modalities. At the same time, for a short period
of time, we can view this relationship as homogeneous [9].

Consider a market scenario where there are N stocks being traded
over a time frame of T consecutive trading days, each stock has m
information modalities (i.e., time mode and basic mode), and each
mode has d,, features (such as opening price and closing price). We
represent the data of each stock in certain mode every day with a vector
x whose dimension is d x 1, where d represents the number of features
in this mode. That is, all stock information under this mode can be
represented by a matrix A of size N X d. Along the first dimension of
A, the sum of the outer products of the features of the current stock
and the other stocks is computed, expanded to a one-dimensional array,
and used as the i,;, row of the matrix B. The resulting matrix B is of size
N xd?. With the outer product operation described above, points in the
original stock feature space can be mapped to a new feature space. In
this new space, each dimension represents a combinatorial interaction
between the original features of different stocks. An initial similarity
matrix C = B-B¥ can be approximated by computing the dot product of
each row (representing the features of a stock) and each column (also
representing the features of a stock) in B. Therefore, the information
under all m modes forms a tensor C of size (mx T, N, N). The above is
the original data processing process.

In a short period of time, the relationships between different compa-
nies can be regarded as homogeneous, so the homogeneous correlations
can be extracted first. In the attention mechanism, the dot product Q -
K” measures the similarity between the query vector and the key vector
in the feature space, which is similar to the correlation coefficient used
in statistics to measure the correlation between two variables. Inspired
by this, we introduce a novel attention-like mechanism to model both
intra-modality information and inter-modality interconnectivity. By
modeling both intra-modality and intermodality relations, we aim to
capture the joint effects of input modalities while preserving modality-
specific features. The computation of the attention-like value is detailed
below:

Q¢ = WQ ' C(i), (6)

Ko =Wy - €9, ™
. Qc - K¢

X0 = Attn(Qe, K¢) = ——C ®)

R
where 1 is a learnable parameter with an initial value of 1, i = 1,..., n;.

Considering the homogeneity between companies in a short period
of time, AHCE is used to capture the homogeneity in the initial data.
In this module, we believe that the homogeneous pattern obtained is
not “pure”, that is, it contains a small amount of heterogeneous infor-
mation, which also provides conditions for the subsequent separation
of homogeneous and heterogeneous patterns.

4.2. Model-guided separation of homogeneous and heterogeneous pattern
module

In the context of predicting the trend of fluctuation in the stock
market, we believe that the stock data have low-rank characteristics.
This inspires us to use a lower-dimensional approach to effectively ap-
proximate the representation of data and use fewer features to describe
most of the fluctuations in the original stock data without considering
too much redundant information, thus improving the efficiency of
prediction.
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Fig. 2. The overview of the proposed model, including tensor-based feature extraction module (AHCE), model-guided separation of homogeneous-heterogeneous pattern module

(HHS) and homogeneous-heterogeneous self-attention mechanism (HHSAM).

From a technical standpoint, homogeneous patterns can be asso-
ciated with the low-rank component in the context of TRPCA, which
captures the underlying stable and coherent trends in the data. On
the other hand, heterogeneous patterns describe diverse and irregular
behaviors, where stocks or time periods exhibit distinct and non-
uniform movement characteristics. These heterogeneous patterns often
reflect complex interactions and external influences, making them more
challenging to predict. In TRPCA, these heterogeneous patterns can
be attributed to the noise component, which represents the irregular
and unpredictable fluctuations in the data. The separation of these
two components through TRPCA provides a powerful framework for
analyzing and predicting stock movements by distinguishing between
stable trends and volatile noises.

Assuming that the homogeneity pattern records obtained through
the AHCE module are X, it can be decomposed into X = £ + 7, where
L is the low-rank component and 7 is the sparse component. In order
to better separate homogeneous pattern and heterogeneous pattern of
stocks, we use the tensor principal component analysis model as shown
in (1) to decompose.

The above problem (1) can be solved using the ADMM algorithm,
but it will take at least dozens of iterations to obtain a satisfactory
solution. Meanwhile, setting hyperparameters, such as 4, is challeng-
ing. Therefore, in this study, instead of using a fixed paradigm for
iterative solutions by learning from the data itself, i.e., by constructing
interpretable networks (HHS) instead of the original numerical iterative
solution.

In order to design the HHS, we start by mapping the ADMM itera-
tion process onto a data flow graph. As illustrated in the upper middle
part of Fig. 3, the graph comprises nodes representing the three oper-
ations of the ADMM algorithm and directed edges indicating the data
flow between these operations. These operations can be summarized as
low-rank layers, sparse layers, and multiplier update layers. The general
framework is built by sequentially connecting each layer. Next, we will
discuss them in details.

Low-rank Layer (£¥): Before performing tensor decomposition,
we first perform the Fourier transform on the data. The essence of
the Fourier transform is a linear transformation, so we use a fully
connected layer instead of the Fourier transform. By the definition of
t-SVD, it follows that the kth frontal slice of the transformed tensor
X0 = ys®pH Eyrthermore, because the minimization of is
equivalent to the minimization of 3;* [[UY H f(X)®V®||,. The uni-
tary matrices U® and V® (k = 1,2, ...,n;) based on t-SVD are directly
learned from the data, rather than relying on fixed paradigms. They
correspond to the row and column operations respectively. To improve
the low-rank representation of the transformed tensors, we utilize a
multilayer convolutional neural network with nonlinear characteristics
to encapsulate the transformation, enhancing the expressiveness of the

neural network-driven process. Specifically, the motivations involve
two points: (i) the convolution operation can effectively replace the row
and column operations. (ii) Following the t-SVD transformation, the
intricate features associated with small singular values are not reliably
preserved. Taking into account the factors mentioned above, we use
convolution instead of U¥ and V. After the transformation, the system
maintains its ability to adapt to data and effectively extract features.

The low-rank layer structure designed according to the above pro-
cess is depicted in Fig. 3. In line with the traditional TNN approach,
we start by employing the neural network in mode-3 to investigate the
connections between frontal sections. Likewise, the inverse transform
is performed along mode-3. Meanwhile, to describe the non-linear
connection between the first and second dimensions, we stack ConRCon
layers (i.e. energy concentration). By employing nonlinear modeling
within the low-rank layer, minimizing the TRPCA-based TNN enables
the acquisition of a lower-rank tensor L, thereby leading to a superior
low-rank representation.

Sparse Layer (T k): The contraction operator is essentially a nonlin-
ear function, and this layer uses the ReLu function instead of the sparse
term update process formula, and the output of this layer at stage kth is
specified as: 7% = max ( 2, & — £* + Mt ), where g, 4 are all learnable
parameters with an initial value of 0.01.

Multiplier Update Layer (M¥): This layer is defined by the La-
grange multiplier update process. The output of this layer at stage k
is expressed as M* = M*~! + (X — £k — T*), the network designation
of this layer strictly follows the formula.

The iterative solution process of our proposed modules and algo-
rithms is highly consistent and highly interpretable. The output of
the HHS is the low-rank component and the sparse component of
the original data, which represent homogeneous pattern and hetero-
geneous pattern, respectively. Next, we consider further extracting the
predictive features in the homogeneous and heterogeneous patterns.

4.3. Homogeneous-heterogeneous-self-attention for prediction

In Section 4.2, the raw data are separated into homogeneous and
heterogeneous patterns through the HHS module. In previous studies,
scholars have focused on the market information embedded in the
homogeneous pattern while ignoring the heterogeneous pattern. There-
fore, we propose the HHSAM to further capture the special information
in the heterogeneous pattern, which can improve the performance of
the forecasting task. Specifically, the FMB module models firm homo-
geneity by calculating homogeneity weights along the firm dimension.
At the same time, the HDE module calculates specificity weights that
contain heterogeneous information to model company heterogeneity.
By integrating these two sets of weights and applying them to company
feature maps, the proposed mechanism can effectively capture both the
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Fig. 4. Overview of homogeneous-heterogeneous-self-attention.

similarities and unique characteristics of companies. This enables the
model to accurately represent company-wise correlation.

The tensor £ and 7 obtained from the HHS module are subjected to
reshaping operations to obtain a matrix of size (N, N x mT), and then
they are used as inputs to this module, which are denoted as L/, T’
respectively. In traditional self-attention mechanisms, the size of the
Q, K, and V are usually the same, where Q = WqL’, K = W,L/,
V = W,T'. Unlike previous studies, the query matrix, key matrix,
and value matrix here are obtained through the FMB module that we
designed. As shown in Fig. 4, FMB consists of two layers of activation
function and linear, which linearly maps the extracted homogeneity
and heterogeneity pattern to the hidden space to avoid information
mixing. Company-wise Attention captures the correlation along the
company dimension. Both Q and K are obtained by linear mapping of
homogeneous pattern. They measure the similarity between each stock
(i.e., the similarity of the company dimension). Therefore, there are
N x N similar weights, and the weights on the diagonal represent the
company itself. In practical implementations, K and Q are normalized
along the corporate dimension with tensor norm and multiplied by a
weight factor to enhance the representational power. V is obtained by
linear mapping the heterogeneity information, measuring the difference
between each stock, so we embed the 1 x N specificity weights into a
diagonal matrix to obtain N x N specificity.

Furthermore, to further capture the predictive properties in hetero-
geneity, we propose an extraction mechanism called HDE for hetero-
geneity information. Previous research did not consider the potential
correlation between heterogeneous information. By comprehensively
analyzing this information, the driving factors of market changes can
be discovered. In order to fill this gap, the V obtained by FMB is
used to obtain the heterogeneity characteristics of different company
dimensions through global average pooling, and then 1d convolution
is fully connected along the company dimension, which can effectively
obtain the upgraded version of heterogeneity advanced predictive char-
acteristics. Therefore, we propose the Homogeneous-Heterogeneous
Self-attention as

QK”
HHSA(L, T) = Softmax(w; ————— + w,(HDE(V))). 9
QI - 1Kl

The self-attention mechanism in (9) is a key component to integrate
the interpretable low-rank component £ and the sparse component
7 in the unrolling output, which is consistent with the theoretical
underpinnings in the relevant literature. It has been shown that TR-
PCA can effectively capture this low-rank and sparse structure [19],
and previous empirical studies have demonstrated that decomposing
financial data into low-rank and sparse components can enhance model
performance [9]. Integrating homogeneous and heterogeneous compo-
nents into the self-attention mechanism further extends this proven
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Fig. 5. Data partition diagram.

approach. The HHSA combines the advantages of the TRPCA unrolling
with the flexibility of the self-attention mechanism, allowing the model
to account for both low-rank trends and sparse anomalies while still
maintaining a degree of interpretability.

Finally, we integrate the HHSA mechanism and LSTM for predic-
tion. Specifically, firstly, homogeneous and heterogeneous pattern is
processed through the HHSA module to capture the relationships be-
tween homogeneous-homogeneous and homogeneous-heterogeneous
while encoding these relationships through weights. The output of the
HHSA module is then reshaped to fit the input format of the LSTM.
Next, the LSTM layer uses these encoded input sequences to learn the
dependencies between time steps. Finally, the output of the LSTM layer
is processed through a fully connected layer and a Sigmoid activation
function to generate predictions. This combination exploits the ability
of the HHSA mechanism in capturing the complex relationships of
homogeneous-heterogeneous information and the strength of the LSTM
in processing time-series data, which improves the model’s prediction
accuracy and generalization to securities market data.

5. Experimental evaluation

In this chapter, we first carry out experiments with real stock market
data and contrast our model with leading stock prediction frameworks.
In addition, through the ablation study, we validate the effectiveness
of the primary modules of our model.

5.1. Data set and experimental settings

The experiment is conducted on the daily stock transaction data of
CSI 500, Nasdaq, CMIN-US, and FTSE 100. The data spans:

+ CSI 500: January 1 to December 31, 2013;

» Nasdaq: January 1, 2020 to March 31, 2021;

+ CMIN-US®: January 2, 2018 to December 31, 2021;
« FTSE 100*: January 7, 2014 to June 30, 2018.

The CSI 500 data reflects China’s recovery after the financial crisis.
After three years of bear market, the market showed signs of easing
its decline and gradually stabilizing in 2013. The Nasdaq data covers
the COVID-19 pandemic period, including the market crash in Q1 2020
and subsequent tech stock rally. The CMIN-US data shows the different
dynamics of stock trends before and during the epidemic, and the FTSE
100 data incorporates Brexit uncertainties and post-pandemic market
adjustments in the UK.

It should be noted that the CSI 500 data is limited to listed com-
panies in mainland China, excluding Hong Kong and overseas listed

% https://github.com/BigRoddy/CMIN-Dataset.
4 https://datalab.snu.ac.kr/dtml/.

companies. Nasdaq data does not include non-US companies and IPOs
before 2020 to control survivor bias. FTSE 100 data excludes companies
delisted during the UK’s post-Brexit regulatory overhaul and lacks news
sentiment data due to limited public news API coverage for UK markets.
The transaction data is obtained from the Center for Research in
Security Prices. The fundamental data consists of the stock prices (such
as opening price), volume, turnover rate, price-to-earnings ratio, and
price-to-book ratio. The news within our dataset is gathered through
web crawling from East Money® and Bloomberg.® News collection is
unavailable for FTSE 100; however, its technical indicators mitigate
this gap by capturing short-term market dynamics. News collection is
restricted to trading days within the selected time frame.

In terms of data partitioning, we use a “sliding window” to intercept
fragments of the original sequence, thereby reshaping the original data
into samples of a specified length for modeling. The sliding window
T is a hyperparameter. Taking the T-value equal to 9 as an example,
specifically, the division of the data set can be shown in Fig. 5. As
shown in Fig. 6, we test the results of our method under different T
values on two data sets. On the CSI 500 dataset, accuracy is highest
when 7' = 13, and on the Nasdaq, FTSE 100 and CMIN-US datasets,
accuracy is highest when T 9, T =7 and T = 5, respectively.
During training, we use the Adam optimizer, and the batch size is set as
16. To prevent overfitting, we use a dynamic learning rate adjustment
strategy. The initial learning rate is set to 0.001, the step size is set
to 100 and the learning rate is gradually reduced in the later stages
of training to make the model converge more smoothly to the optimal
solution.

5.2. Evaluation indicators

In long-term studies, the forecasting of stock price movements is
approached as a binary classification problem. Therefore, building upon
prior research methodologies, the prediction performance is evaluated
by four indicators: accuracy (Acc) and precision (Prec), F1-score and
recall, which are hereby delineated.

TP + TN
" TP+ TN +FP+FN 10
Accuracy TP+ TN+ FP+FN’ 10
Precision = L a
TP + FP
TP
= —— .
Reca TPIIN’ 2
Fl-score =2 Precision x Recall -

Precision + Recall’
where TP, TN, FP, and FN represent the true positives (TP),
true negatives (TN), false positives (FP), and false negatives (FN),
respectively.

5 https://www.eastmoney.com/.
6 https://www.bloombergneweconomy.com/.
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Table 1

Evaluation metrics for the prediction outcomes of various approaches on the CSI 500
set. The top and second highest values are respectively emphasized using bold text
and underlining.

Table 2

Evaluation metrics for the prediction outcomes of various approaches on the Nasdaq
data set. The top and second highest values are respectively emphasized using bold
text and underlining.

Methods ACC Precision Fl-score Recall Methods ACC Precision F1-score Recall
GAT [38] 0.5261 0.5013 0.5064 0.5145 GAT [38] 0.5170 0.5082 0.5246 0.5494
FinGAT [39] 0.5262 0.5085 0.5155 0.5277 FinGAT [39] 0.5051 0.5031 0.5232 0.5569
AD-GAT [40] 0.5234 0.5007 0.5114 0.5215 AD-GAT [40] 0.5196 0.5168 0.5306 0.5520
SPLSTM [25] 0.5877 0.5202 0.5519 0.5910 SPLSTM [25] 0.5403 0.5232 0.5712 0.6275
TLSTM [9] 0.5746 0.5292 0.5572 0.5996 TLSTM [9] 0.5395 0.5241 0.5850 0.6489
CLSR [37] 0.5295 0.4983 0.5031 0.5103 CLSR [37] 0.5257 0.5089 0.5288 0.5496
OURS 0.6040 0.5454 0.5876 0.6231 OURS 0.5481 0.5469 0.5993 0.6690
Table 3

5.3. Comparisons

We compare the our model with six widely-applied sequential
models, i.e., the sentiment-price LSTM (SPLSTM) [25], the tensor
based LSTM (TLSTM) [9], the contrastive learning framework for
stock representations (CLSR) [37], the graph attention networks
(GAT) [38], the financial graph attention networks (FinGAT) [39] and
the attribute-driven graph attention networks (AD-GAT) [40].

« SPLSTM [25]: it utilizes the LSTM architecture to integrate tech-
nical stock price indicators with news sentiment from textual news
articles for stock price prediction.

o TLSTM [9]: it combines a tensor representation and fusion
framework with the LSTM framework based on attention mechanism.

« CLSR [37]: it leverages comparative learning in conjunction with
the Informer framework for stock forecasting. This framework is adept
at capturing both global and local patterns in extended time series data.
Additionally, contrastive learning is implemented to effectively uncover
potential relationships between samples and mitigate data uncertainty.

o GAT [38]: it is a powerful graph neural network structure that
can flexibly capture the interrelationships between nodes in a graph by
introducing an attention mechanism.

« FinGAT [39]: it combines the LSTM with a variant of GAT with a
two-stage attention mechanism.

o AD-GAT [40]: it introduces a pioneering attribute-driven graph
attention network, which is crafted to capture the attribute-sensitive
momentum overflow effect and deduce latent relationships among
listed corporations, ultimately elevating prediction accuracy.

Evaluation metrics for the prediction outcomes of various approaches on the FTSE 100
data set. The top and second highest values are respectively emphasized using bold
text and underlining.

Methods ACC Precision F1-score Recall
GAT [38] 0.5017 0.5048 0.5069 0.5098
FinGAT [39] 0.5004 0.5007 0.5023 0.5046
AD-GAT [40] 0.5028 0.5015 0.5037 0.5070
SPLSTM [25] 0.5159 0.5155 0.5122 0.5164
TLSTM [9] 0.5177 0.5175 0.5159 0.5225
CLSR [37] 0.5092 0.5003 0.5039 0.5102
OURS 0.5267 0.5272 0.5342 0.5437

Tables 1 and 2 show the prediction performance of the different
methods on the CSI 500 and Nasdaq data sets, respectively. Overall,
our proposed method achieves the best performance on all evaluation
metrics on both datasets. On the CSI 500 dataset, our proposed method
achieves 0.6040 for predicted ACC (at least 5.94%), which is a sig-
nificant improvement compared to all other methods. On the Nasdaq
dataset, our method also shows a balanced performance across all
metrics. It achieves the highest Recall and F1-score, while maintaining
strong performance in ACC and precision.

Tables 3 and 4 show the prediction performance of the different
methods on the FTSE 100 and CMIN-US datasets, respectively. Overall,
our proposed method achieves the best performance on all evaluation
metrics on both datasets. On the FTSE 100 dataset, our proposed
method achieves 0.5267, 0.5272, 0.5342 and 0.5437 for predicted
ACC, Precision, Fl-score and Recall, respectively, which is a signifi-
cant improvement compared to all other methods. On the CMIN-US
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Table 4

Evaluation metrics for the prediction outcomes of various approaches on the CMIN-US
data set. The top and second highest values are respectively emphasized using bold
text and underlining.

Methods ACC Precision Fl1-score Recall
GAT [38] 0.5178 0.5112 0.5471 0.5871
FinGAT [39] 0.5113 0.5088 0.5263 0.5356
AD-GAT [40] 0.5213 0.5246 0.5563 0.5981
SPLSTM [25] 0.5329 0.5496 0.5838 0.6319
TLSTM [9] 0.5343 0.5557 0.5891 0.6354
CLSR [37] 0.5209 0.5092 0.5170 0.5281
OURS 0.5463 0.5609 0.6065 0.6703
Table 5
Results of statistical tests of the results of the various methods of prediction.
Model CSI 500 Nasdaq FTSE 100 CMIN-US
7 p-value 2 p-value 2 p-value 2 p-value
GAT [39] 4.9123 0.0289 4.3062 0.0379 4.4690 0.0393 5.4038 0.0268

FinGAT [40] 5.8667 0.0214 3.9858 0.0428 3.8873 0.0456 5.3990 0.0301
AD-GAT [41] 5.0141 0.0251 4.8421 0.0277 5.8967 0.0283 6.3581 0.0217
SPLSTM [24] 7.9150 0.0050 6.0890 0.0136 7.7795 0.0052 8.2434 0.0034

TLSTM [9] 9.0638 0.0026 7.9399 0.0048 9.7556 0.0017 7.4654 0.0069
CLSR [38] 3.7817 0.0463 3.7630 0.0413 4.2043 0.0403 3.9203 0.0377
OURS 8.0554 0.0045 9.6761 0.0018 9.4595 0.0026 7.8881 0.0049

dataset, our method further demonstrates superiority, with its ACC of
0.5463, Precision of 0.5609, Fl-score of 0.6065, and Recall reaching
0.6703, especially in the Recall metrics, which are significantly better
than the other methods. This indicates that our method not only has
high classification accuracy, but also can effectively identify positive
examples, showing good adaptability and robustness when dealing
with financial time series forecasting tasks. This result verifies the
effectiveness and superiority of the method in this paper in the field
of financial forecasting, and provides strong support for subsequent
research and practical applications.

5.4. Statistical test

To verify the validity of the models, a Chi-square test is con-
ducted on four benchmark datasets (CSI 500, Nasdaq, FTSE 100, and
CMIN-US).

From Table 5, the chi-square test results indicate that all models
demonstrated statistically significant predictive capabilities across the
datasets (p < 0.05), rejecting the null hypothesis of randomness.
Our method consistently achieved the strongest statistical significance,
with p-values uniformly below 0.005 (range: 0.0018-0.0049), reflect-
ing robust deviations from random predictions. While some baseline
models such as TLSTM and SPLSTM exhibited high significance on
specific datasets, the narrow p-value range of our method highlights
its cross-dataset stability. This statistical consistency further validates
the reliability of our method in diverse market environments.

5.5. Ablation study

Throughout our framework, the key parts of our model are the
AHCE, the HHSA and the HDE, we need to figure out the particular
effect of each module. Thus, in this part, we test our method by setting
each part of our framework differently.

Ablation on the HHS: To assess the effectiveness of the HHS
module, we conduct ablation experiments on the number of modules
(i.e. TRPCA layers). It can be found from Table 6 that as the number
of TRPCA layers increases, indicators such as prediction accuracy also
increase, which shows that HHS plays a key role in the separation of ho-
mogeneous pattern and heterogeneous pattern in prediction. However,
the number of TRPCA layers is constrained by the amount of data. In
the experiment, when we set the number of TRPCA layers to 4, the
results are not as good as when the number of TRPCA layers is 3.
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Ablation on the AHCE: As shown in Table 7, we can see that when
there is only the AHCE module, the prediction accuracy and other
indicators are average. Although the AHCE part has not yet taken into
account the heterogeneous information part, when AHCE and other
modules are combined, the prediction accuracy and other indicators are
significantly improved, which can illustrate the effectiveness of AHCE
to a certain extent, and also illustrate the effectiveness of separating
homogeneous and heterogeneous pattern after the AHCE module.

Ablation on the HHSA: In this section, we mainly ablate the
homogeneous pattern of HHSA to facilitate comparison with the het-
erogeneous pattern of the HDE module. Based on the results shown
in Table 7, we can observe that the HHSA module has the highest
improvement in prediction accuracy, which shows the importance
of homogeneous pattern in prediction accuracy, and further shows
that the relationship between companies in a short period of time is
homogeneous.

Ablation on the HDE: According to the results in Table 7, we can
find that when there is no HDE module, each prediction index has a
certain degree of decline, which proves that the heterogeneous pattern
mined by HDE plays an indispensable role in the entire prediction
process. At the same time, the HDE module also fills the gap of the
AHCE module’s lack of attention to heterogeneous pattern.

5.6. Investments simulation

To evaluate the effectiveness of our model, we conducted a stock
investment simulation using CSI500 data from October to December
2015. This approach allowed us to assess the model’s performance
over a specific period while minimizing the risk of overfitting or
data snooping bias. We compare our method with five state-of-the-
art methods discussed in Section 5.3 in real investment scenarios. The
initial capital is set at CNY 50,000, and we compare the cumulative
daily returns based on continuous investment. In the simulation, we
disregard transaction fees and perform daily buy/sell operations. In-
vestment options are selected based on the predicted probabilities of
daily price movements ranked by our framework. When sufficient funds
are available, we prioritize purchasing the top five stocks with the
highest predicted probabilities. Fig. 7 illustrates the cumulative returns
over time.

Fig. 7 presents the investment simulations of our approach and
compares it with several existing methods, including GAT, FinGAT,
AD-GAT, SPLSTM, TLSTM, and CLSR. As demonstrated in the accompa-
nying figure, our approach consistently exhibits superior performance
in comparison to alternative methods over the 60 day investment
period. Specifically, the proposed approach yielded a return rate of
12.84%, with the maximum return being RMB 56,418, which is consid-
erably higher than the returns of other methods (GAT: 5.57%, FinGAT:
5.09%, AD-GAT: 4.62%, SPLSTM: 8.35%, TLSTM: 7.68%, and CLSR:
4.86%). Statistical analysis indicates that the difference in returns
between our approach and the other methods is statistically significant
(p-values < 0.05).

During the initial phase of the investment period, all methods
show some degree of volatility. However, our approach demonstrates
a more stable and steady upward trend compared to the other meth-
ods. This suggests that our approach is better at capturing market
trends and making effective investment decisions in the early stages
of the investment period. In the mid-phase, the performance of the
different methods begins to diverge more significantly. While some
methods experience fluctuations and even declines in portfolio value,
our approach continues to show a consistent upward trajectory. This
further highlights the robustness and effectiveness of our approach in
navigating market dynamics and maximizing returns. As the investment
period progresses towards its conclusion, our approach continues to
outperform the other methods, reaching the highest portfolio value of
CNY 56,418. This demonstrates the superior long-term performance
and profitability of our approach.
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Table 6

Prediction performance under different numbers of TRPCA layers. The top value is emphasized using bold

text.
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TRPCA layers  CSI500 data set

Nasdaq data set

Acc Precision  Fl-score  Recall Acc Precision  Fl-score  Recall
1 0.5607  0.5327 0.5392 0.5527  0.5246  0.5345 0.5354 0.5492
2 0.5931 0.5412 0.5725 0.6145 0.5374 0.5408 0.5483 0.5566
3 0.6040 0.5454 0.5876 0.6231 0.5481 0.5469 0.5993 0.6690
4 0.5823  0.5371 0.5653 0.5992  0.5410  0.5423 0.5804 0.6357
Table 7

Quantitative results of different versions of our proposed model on the CSI500 and Nasdaq data sets. The
top and second highest values are respectively emphasized using bold text and underlining.

Module CSI500 data set Nasdaq data set
AHCE HHSA HDE Acc Precision Fl-score Recall Acc Precision Fl-score Recall
v 0.5505 0.5167 0.5314 0.5692 0.5235 0.5347 0.5322 0.5431
v 0.5708 0.5335 0.5729 0.6202 0.5376 0.5413 0.5574 0.5835
v 0.5640 0.5187 0.5612 0.6107 0.5322 0.5392 0.5468 0.5647
v v 0.5721 0.5357 0.5711 0.6144 0.5417 0.5484 0.5482 0.5597
v v 0.5539 0.5389 0.5615 0.5830 0.5396 0.5434 0.5370 0.5898
v v 0.5850 0.5361 0.5742 0.6271 0.5419 0.5531 0.5865 0.6253
v v v 0.6040 0.5454 0.5876 0.6231 0.5481 0.5469 0.5993  0.6690
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Fig. 7. Short-term investment simulations.

In order to verify the effectiveness of the strategy in different market
cycles, a long-term backtest was conducted based on the CMIN-US
dataset. The initial capital is set at USD 200,000, and we compare
the cumulative daily returns based on continuous investment. In the
simulation, we disregard transaction fees and perform daily buy/sell
operations. Investment options are selected based on the predicted
probabilities of daily price movements ranked by our framework.
When sufficient funds are available, we prioritize purchasing the top
five stocks with the highest predicted probabilities. The experiment
involved the selection of trading day data from January 1 to December
31, 2021 for the purpose of investment backtesting. This period was a
special year under the unprecedented circumstances of the COVID-19
pandemic, and the data was unique and representative. The uncertainty
engendered by the pandemic has facilitated a more comprehensive
evaluation of the performance and adaptability of strategies in such
contexts, ensuring that experimental data encompasses a broader spec-
trum of risk changes than most previous studies. The backtest results
are shown in Fig. 8.

As demonstrated in Fig. 8, the efficacy of the our strategy is evident
in its superior performance in the evaluation of stock investment strate-
gies, outperforming alternative strategies. The portfolio value shows a
consistent and stable growth trajectory over the 250 day investment

10

Fig. 8. Long-term investment simulations.

cycle. During the initial 150 day period of the investment cycle, the
portfolio value of each strategy exhibits a relatively similar growth
trend. However, commencing on the 150th day, our strategy initiates
a gradual widening of the gap with competing strategies. This acceler-
ation peaks at the 200th day, ultimately resulting in a portfolio value
of approximately 245,000 on the 250th day. In contrast, although the
SPLSTM strategy (dark green curve) performs second best, its portfolio
value only reaches approximately 225,000 on the 250th day, which
is somewhat different from our strategy. Concurrently, the portfolio
values of alternative strategies, such as GAT, FinGAT, and ADGAT,
are essentially below 220,000 on the 250th day, and the aggregate
performance is comparatively inadequate.

In terms of volatility, our strategy also shows a smaller fluctuation
range, indicating that it has a stronger ability to resist risks. The
volatility of other strategies is relatively large, especially in certain
periods of volatile market conditions, when the value of their portfolios
has fallen significantly, which may indicate that these strategies have
certain deficiencies in risk control and response to market changes.

With regard to investment returns, our strategy has achieved a cu-
mulative return of about 27.24% during the investment cycle, while the
TLSTM strategy has a cumulative return of about 18.76%, the SPLSTM
strategy has a cumulative return of about 18.63%, and the cumulative
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returns of other strategies are below 15%, showing our significant
advantage in investment returns. Statistical analysis indicates that the
difference in returns between our approach and the other methods is
statistically significant (p-values < 0.05). At the same time, our strategy
has maintained a high rate of return on investment for most of the time
period, and can more effectively capture investment opportunities in
the stage of positive market trends, thereby achieving a rapid increase
in the value of the portfolio.

6. Discussion
6.1. Theoretical and practical implications

The theoretical foundation can be traced back to the exact separa-
tion of the low-rank and sparse components under certain conditions
in [19]. Wang et al. [9] have empirically explored that this low-rank
and sparse modeling, i.e., the TRPCA model, is practical for securities
market data. On this basis, we further unroll their iterative optimization
algorithm for the TRPCA model into a deep neural network, with each
module being well in accordance with the algorithm’s updating. Thus,
we obtain a HHS, with both interpretability and a higher model capac-
ity for the separation of homogeneous and heterogeneous information.
This indeed expands the application scope of the mathematical theory
in [20] to the field of financial data.

Then, we fully explore the homogeneous and heterogeneous infor-
mation by designing a novel self-attention mechanism. This mechanism
can make full use of both homogeneous and heterogeneous data in a
reasonable and effective way, yielding better prediction results. There-
fore, our work not only enriches the application of the theory in [19],
but also further provides an elegant way to utilize those homogeneous
and heterogeneous components for the subsequent prediction task.

6.2. Limitations

In this study, the explicit mapping of the optimization process is
achieved through the algorithmic unrolling network technique, and
the self-attention mechanism is customized based on the interpretable
output of the unrolling network. This design significantly enhances the
interpretability of our method. However, to fully capture the character-
istics of the financial market data, we introduce a self-attention-based
LSTM for prediction, which remains a black box, limiting the whole
interpretability of our work. Nonetheless, as financial markets’ fluctua-
tions in stock price are influenced by a complex interplay of historical
trends, event sequences, and market sentiment, exhibiting nonlinear
and time-varying characteristics, introducing the LSTM or other deep
neural network structures to modeling the complex nonlinear patterns
is inevitable.

6.3. Future work

While our current framework achieves partial interpretability
through the algorithm unrolling, the predictive module remains a
black-box that requires deeper structural transparency. Recent ad-
vances in white-box architectures show promising directions. For
instance, the Transformer variant built upon sparse coding principles
attained 85.1% image classification accuracy while maintaining archi-
tectural interpretability [41], particularly through its rate reduction
objective that enables mathematically analyzable feature transforma-
tions. Building on these insights, we plan to derive a white-box
attention mechanism by unrolling optimization procedures for sparse
coding, which may reveal the mathematical principles governing
cross-modal information fusion in stock prediction.

11
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7. Conclusion

This paper proposes an interpretable model-guided stock prediction
framework that integrates homogeneous-heterogeneous processing us-
ing unrolled TRPCA and a customized self-attention mechanism. The
key innovation of this framework is that it can effectively combine
unrolled principal component analysis and customized self-attention
mechanism. Specifically, the unrolled TRPCA effectively separates low-
rank homogeneous components and sparse heterogeneous components,
while the customized self-attention mechanism models homogeneous
information and heterogeneous information. This architectural innova-
tion achieves an organic balance between mathematical interpretability
and deep learning representation capabilities. The unrolled TRPCA
module provides an interpretable homogeneous and heterogeneous
decoupling process, while the self-attention mechanism better captures
the global dependencies of homogeneous information and the local
correlation patterns of heterogeneous information. The synergy of the
two enables the model to achieve excellent prediction performance
while maintaining a certain degree of interpretability. The proposed
method significantly improves prediction accuracy on the CSI 500,
Nasdaq and FTSE 100 datasets, outperforming state-of-the-art methods
while maintaining partial interpretability of the results.
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Appendix A. Mathematical foundations

Definition 1 (T-product [35]).: The tensor-tensor product C = A * B
of tensors A € R">"%"3 and B € R™*"X"3 results in a tensor of size
ny X ny X n3. The (ij)th tube c;;. is determined by
ny
¢y =Clij, )= Al g ) * Bg.J» )
g=1

(A1)

where = represents the circular convolution between two tubes of iden-
tical size. An effective method for computing the t-prod of two tensors
involves the following steps: (i) applying a Fast Fourier transform
(FFT) along tubes, (ii) conducting matrix multiplications of each pair of
frontal slices of the tensors in the transform domain, and (iii) applying
an inverse FFT along tubes of the resulting tensor.
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Definition 2 (Conjugate Transpose [35]). The conjugate transpose of a
tensor 7 € R">"%"  denoted as 7/, is defined as follows:

@ THW =T

i) (TH)D = (7s+2=0)H " where i =2, ..., n;.

Theorem 1 (t-SVD [35]).: For a tensor T € R">"*"3 the t-SVD of T is
expressed as

T=U+S=xVH (A.2)

where U € R"X">" agnd V € R™*"2%" gre orthogonal tensors which
satisfy U« UH =UH « U =V« VE =V 4V =1, and S € R*mxm
is an f-diagonal tensor which each frontal slice S is a diagonal matrix.

Definition 3 (Tensor tubal rank [42]).: Given the t-SVD: A = U % S %
VH  where A € R"*™*"3 | the tubal rank rank,(A) the count of nonzero
singular tubes in S.

Definition 4 (Tensor Tubal Nuclear Norm (TNN) [42]).: Denoted as
[[X|ltans the tensor nuclear norm of a tensor X € R"1>*"2*"3 is defined
as

n3
I®ln = D 12O, (A.3)
i=1

where X refers to the Fourier transformed tensor along the third mode.

Minimizing TNN effectively promotes tensor low-rank proper-
ties [43].

Appendix B. Details of Algorithm 1
The iterative workflow of Algorithm 1 is detailed as follows.

1. Algorithm parameter description

+ £©: Initial for the low-rank component (default: X).

+ 7(©: Initial for the sparse component (default: zero tensor).

+ M©: Lagrangian multiplier enforcing the constraint X =
L + 7 (default: zero tensor).

» p > 0: Penalty parameter controlling the trade-off between
constraint satisfaction and objective minimization.

» 4> 0: Regularization parameter for the sparse component,
embedded in the shrinkage operator.

+ Convergence thresholds 7., > 1 x 107°: Relative error
tolerances for terminating iterations.

2. Low-Rank Component £ Update (Lines 2-3): The low-rank com-
ponent £ is recovered by minimizing the TNN. The process is as
follows:

k
clet L =X -TH® 4+ % By performing t-SVD on L, we
obtain:

L=U+S=VH | (B.1)

where U,V are orthogonal tensors and S is the f-diagonal
singular value tensor. Based on this decomposition, the
closed-form update for £ is given by:

£8+D = 1 s Shrink, /5(S) * VH, (B.2)
with the shrinkage operator defined as:
Shrink, (s) = sign(s) - max (|s| — 7,0). (B.3)

These steps ensure that £ maintains its low-rank property,
thereby effectively separating the low-rank component.
3. Sparse Component 7 Update (Line 4):

12
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» Compute the update using entry-wise shrinkage:

(k)
7%+ = Shrink , (X — 0D 4 MT) . (B.4)
B

where the shrinkage threshold 1% controls sparsity.

This step eliminates small entries in the residual to model sparse
outliers or noise.
4. Lagrangian Multiplier Update (Line 5):

+ Adjusts the multiplier to penalize deviations from the
constraint X = £ + 7, ensuring feasibility as f increases.

5. Convergence Check (Lines 6-7):

+ Calculate relative residuals for £ and 7 updates. The
residuals measure the relative change between consecutive
iterations. A small term (10710) is added to avoid division
by zero. The loop stops if the maximum of these residuals
falls below 1 x 107°.

Data availability

Data will be made available on request.
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