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The imaging quality of single-pixel spectral imaging (SSI)
methods is poor at a low sampling ratio (SR). To tackle this
problem, a new Fourier single-pixel spectral imaging (FSSI)
technique is proposed. Firstly, we introduce the low-rank
tensor nuclear norm (TNN) to characterize the correlation
between spectral images. Compared with the conventional
method, TNN reconstructs image details better but brings
image artifacts simultaneously. Therefore, local low-rank
TNN (LTNN) constraint is proposed to ameliorate global
ones and to reduce the distortion caused by TNN and low
SR. Secondly, to make full use of the spectral information,
the proposed constraint is used as the coarse prior, and the
deep tensor prior (DTP) is introduced as the fine one to con-
struct the joint priors. Different from the single prior, the
joint method can make the two priors benefit and improve
each other and further enhance the imaging quality. Finally,
an efficient and high-quality SSI technique is achieved by
deducing the closed-form solution algorithm. Experimental
results show that our method significantly improves the qual-
ity of FSSI as much as 7–10 dB when compared to 3DTV
at the SR of 5%. © 2025 Optica Publishing Group. All rights,
including for text and data mining (TDM), Artificial Intelligence (AI)
training, and similar technologies, are reserved.
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Single-pixel imaging (SPI) technology has been widely con-
cerned by researchers with its special imaging style in recent
years. It has been commonly used in various imaging systems,
such as infrared imaging [1], single-photon imaging [2], and
multi-spectral imaging [3–5]. SPI captures scene information
only with a single-point detector, which dramatically reduces
the manufacturing cost of non-visible light or single-photon
detectors. However, it faces the problems of slow imaging speed
and poor imaging quality at low SR. To solve these problems,
researchers have proposed a large number of solutions, including

Hadamard basis scanning, Fourier spectrum sampling, and ran-
dom mask imaging methods [6–8]. In addition to the encoding
technique, the reconstruction algorithm is also an essential factor
affecting the performance of SPI. In recent years, various image
reconstruction methods have been proposed to solve the problem
of poor image quality at a low SR, including optimization-based
methods, end-to-end deep learning, and untrained deep learn-
ing algorithms [9–13]. However, these methods all have various
flaws. For instance, optimization-based methods often improve
imaging quality by handcraft priors such as total variation and
l1 regularization, but those methods fail to adequately charac-
terize the intrinsic features of the data, thus resulting in poor
imaging quality at the low SR. The end-to-end deep learning
techniques significantly improve image quality, but their perfor-
mance depends on the selection of training samples, and the
generalization of the network is poor. The untrained method
essentially uses neural networks to solve optimization prob-
lems, and its performance depends on the image prior and
network design. In this paper, we proposed a new technique
that combines LTNN and DTP to facilitate FSSI. Compared to
the conventional handcraft prior, such as 3DTV, our approach
improves imaging detail by introducing and refining tensor tech-
niques. Besides, the introduction of deep tensor prior and their
combination with handcraft constraint fully exploit redundant
information of images, thereby avoiding the problem of poor
imaging quality in traditional single priors. Experimental results
show that our method is superior.

Usually, multi-spectral images can be represented by three-
dimensional tensors. Thus, the single-pixel multi-spectral image
reconstruction can be considered as a tensor recovery problem.
Notably, adjacent spectral images have a considerable similarity.
Therefore, the three-dimensional tensor of consecutive spectral
images is low rank or sparse in the transformation domain. In
general, low-rank-based reconstruction methods can be used to
restore the original scene, but these methods often rearrange
the three-dimensional tensor into a two-dimensional matrix and
reconstruct it via the low-rank constraint of the matrix. This
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strategy will destroy the tensor’s internal structure, resulting in
the quality reduction of tensor recovery. To solve this problem,
the tensor nuclear norm (TNN) based on tensor singular value
decomposition (t-SVD) [14–16] is introduced to describe the
correlation of multi-spectral images:

X̂ = arg min
X

| |X||TNN , (1)

where X ∈ Rn1×n2×n3 is the three-dimensional tensor, which is
composed of multi-spectral images and | |X||TNN =

∑︁n3
i=1 | |X̄(i) | |∗,

X̄(i) represents the i-th front-slice of the tensor X̄, and X̄ is the
Fourier transform of tensor X̄ along the mode-3 fibers. | | ∗ | |∗
represents the nuclear norm. The sum of | |X̄(i) | |∗ can be obtained
by the t-SVD of tensor X in the Fourier domain. Essentially,
TNN is the correlation description of the multi-spectral images.
If the images are highly correlated, then its TNN is very low.
Generally, the multi-spectral images are highly similar and have
redundancy features in the spectral domain, but they are not
entirely identical due to the images’ abundant details and spectral
change. To solve this problem, a new method is proposed based
on image local low-rank TNN (LTNN) to improve the perfor-
mance further, which uses TNN constraints to every sub-region
image of corresponding adjacent spectra. In this manner, it pre-
cisely utilizes spectral redundancy information to reconstruct
the image and retain its internal structure and detail information
simultaneously. Therefore, the new image reconstruction model
can be rewritten as follows:

X̂ = arg min
X

| |X||LTNN . (2)

LTNN enhances TNN’s modeling ability for tensors, but due
to the abundant details in the adjoining spectrum image, the
handcraft local low-rank tensor prior cannot describe the multi-
spectral image sufficiently. To tackle this problem, a widely
used deep prior in image super resolution and denoising [17,18]
is introduced to further facilitate the model and improve the
reconstructed image’s details. Different from the traditional deep
priors for a single image, we use the deep tensor prior to describe
the correlation between spectral images. Compared to low-rank
tensor constraints, the deep tensor prior uses the knowledge
learned from the 3D data by the neural network to optimize the
image reconstruction process. In this paper, deep and low-rank
tensor constraints are integrated into the image reconstruction
model simultaneously so that they can complement each other
and fully describe the intrinsic features of the image. There-
fore, the image reconstruction model can be further rewritten as
follows:

X̂ = arg min
X

µ| |X||LTNN + λR(X), (3)

where R(X) is the deep tensor prior. µ and λ are penalty coef-
ficients, which can adjust the proportion of the two priors,
enabling the model to achieve the best performance in describ-
ing the intrinsic features of the image. In addition, the image
reconstruction process should conform to the Fourier single-
pixel measurement equation. Therefore, the above formula can
be rewritten as follows:

X̂ = arg min
X

µ| |X||LTNN + λR(X), s.t. | |Fp(X) − Y||22<δ
2,

(4)
where Fp is the three-dimensional (3D) partial Fourier matrix
and Y is the Fourier spectrum tensor obtained by a single-pixel
detector. To solve the above problem, we change the Fp(X) into

S ⊙ F (X) and introduce the alternating direction method of mul-
tipliers (ADMM) algorithm [19] to optimize the solving process,
where S represents the 0–1 sampling matrix and ⊙ represents the
element-wise product. Under the framework of ADMM, we can
introduce additional tensors U and V to optimize the solving
process. Therefore, the above problems can be transformed into
the following constraint:

X̂ = arg min
X

µ| |X||LTNN + λR(X) +
δ

2
| |S ⊙ F(X) − Y||22)

s.t.U = X,V = X.
(5)

Then, we can use the Lagrange multiplier method to transform
the above constrained problem into the following unconstrained
problem:

X̂ = arg min
X

µ| |V||LTNN + λR(U) +
δ

2
| |S ⊙ F(X) − Y||22

+
β

2

(︃
| |X − V +

γv

β
| |22 + | |X − U +

γu

β
| |22

)︃
,

(6)

where γv and γu are the Lagrange multipliers and δ and β are the
penalty coefficients. By introducing additional tensors and com-
bining them with the variable splitting algorithm, it is possible to
achieve step-by-step analytical solutions for each sub-problem,
thereby improving the iteration efficiency of the algorithm. For
X sub-problem, we can obtain the solution:

X = F−1

(︄
F(δF−1ST ⊙ Y + (U −

γu
β
) + (V −

γv
β
))

F(δF−1ST ⊙ SF + γ)

)︄
. (7)

For the tensor U sub-problem, we can obtain the solution by
solving for the following equation:

Û = arg min
U

β

2
| |U − X +

γu

β
| |22 + λ | |R(U)||22 . (8)

The U sub-problem is a multi-dimensional image-denoising
problem, which can be solved by the neural network. Since
HSI-SDeCNN [20] has the advantages of real-time and sound
denoising performance, we adopt it to solve the above problem.
Thus, the solution of U can be obtained by the following:

U = D
(︃
X +

γu

β
, δ

)︃
, (9)

where δ =
√︂

λ

β
represents the noise level in HSI-SDeCNN, but

is the error between ground truth and the estimation in the
FSSI problem, and D represents the deep neural network denois-
ing. The last sub-problem is the V sub-problem. Based on the
variable splitting method, we can get it by the following:

V̂ = arg min
V

β

2
| |X − V +

γv

β
| |22 + λ | |V||LTNN . (10)

To solve the above equation, it needs to be transformed into the
following problem:

V̂ = arg min
V

β

2

∑︂
i

| |Qi − Pi | |
2
2 + λ

∑︂
i

| |Pi | |TNN , (11)

where Pi is the tensor composed of corresponding sub-regions
between consecutive spectral tensor V. Qi represents the same
sub-regions composed of tensor X with error. The closed-form



Letter Vol. 50, No. 4 / 15 February 2025 / Optics Letters 1283

Fig. 1. The 660 nm spectral images (128 × 128) were recon-
structed by 3DTV, TNN, and LTNN constraint, respectively.

solution of the sub-region can be obtained by the tensor singular
value decomposition algorithm [21,22]. Meanwhile, the updated
formula of Lagrange multipliers γv and γu can be obtained by
γv = γv + β(V − X) and γu = γu + β(U − X).

We first test the performance of the proposed method by
comparing the LTNN constraint with the original TNN and the
traditional three-dimensional total variation (3DTV) regulariza-
tion method in multi-spectral SPI. The test images used in this
paper are from a well-known CAVE dataset [23]. In every sim-
ulation experiment, 31 spectral images are used simultaneously
for testing, and the sampling rate is 5%. The parameters of µ
and β in LTNN and TNN are set to 100 and 1, respectively. The
parameter λ is set to 0 for removing DIP. The test results are
shown in Fig. 1, and the sampling method is variable density
random sampling [24].

From Fig. 1, it can be seen that the reconstructed image of
3DTV is blurry, with many image details lost, while the result of
TNN has better image details. However, what cannot be ignored
is that the image obtained by TNN is also mixed with more arti-
facts. In contrast, the images reconstructed by LTNN have the
best clarity and artifact suppression. The above results prelimi-
narily demonstrate the effectiveness of the LTNN prior. Still, it
can be seen that the improvement of the LTNN prior is limited
(about 1–2 dB’s PSNR higher than TNN in numerous tests). In
response to this issue, we introduce DTP to complement LTNN.
The essence of the DTP is to use the knowledge learned by
deep neural networks to improve imaging quality. Thus, it has
a specific dependence on training data but describes the intrin-
sic features of the data more fundamentally. On the contrary,
LTNN do not rely on any training data and have better gen-
eralization. Based on the advantages and disadvantages of the
above two approaches, this paper proposes joint priors to fully
integrate the advantages of both methods and improve imaging
quality.

To verify the performance of the proposed techniques, we use
multiple multi-spectral images (128 × 128 × 31) for testing. In
the simulation experiment, the parameters µ, β, and δ were set
to 40, 0.5, and 1, respectively. At the same time, the ablation test
of the proposed method is carried out: the performance of the
LTNN prior and DTP is tested separately and compared with the
joint priors. The parameters of every method are set the same,
except for the µ and λ in LTNN and DTP that are set to 0,
respectively. The experimental results are shown in Fig. 2.

From the results, it can be seen that the image quality recon-
structed by the 3DTV is the lowest among the four methods.
In comparison, the images reconstructed by the other three
constraints are superior, especially regarding image details.
Specifically, the LTNN-based method outperforms the 3DTV
method in terms of image quality but is inferior to the results
reconstructed by the DTP or neural network method. Compared
to the LTNN method, the neural network based learned prior
reconstructs more clear images with richer details. This indicates
that constraint models based on deep prior can better recover

Fig. 2. Three different wave band spectral images (128 × 128)
were reconstructed by 3DTV, LTNN, DTP, and LTNN–DTP joint
priors (5% sampling ratio), respectively.

Fig. 3. Reconstruction results of two different (Chart and Feath-
ers) multi-spectral images and the average PSNR curves of all the
multi-spectral images in CAVE with different priors.

image information. The reason is that the image prior knowledge
obtained from a large amount of training data can characterize
the intrinsic features of images more efficiently. The constraint
method combining LTNN and DTP has the best performance,
and the PSNR value of the reconstructed image exceeds the sin-
gle deep prior by 4–5 dB at a sampling rate of 5%. From the
image quality perspective, the joint method outperforms single
ones such as LTNN or DTP regarding image details and artifact
suppression. The reason is that when X with errors is recon-
structed through Eq. (7), then two restoration models (9, 11)
will be used consecutively to restore X. Thus, the performance
of joint prior is better.

Without loss of generality, we tested the algorithm’s perfor-
mance at different scene and sampling rates and selected all the
multi-spectral images in the CAVE dataset as test samples (SR,
5–15%; resolution, 128 × 128 × 31). The above results (Fig. 3)
indicates that the method proposed in this paper has a significant
lead over the 3DTV prior at low sampling rates. Precisely, at a
sampling rate of 5%, the joint priors reconstruct images with
a PSNR 7–10 dB higher than the 3DTV, which fully reveals
the excellent performance of the proposed method. In addition,
compared with other single prior constraints such as LTNN or
DTP, the joint model also shows better implementation in differ-
ent sampling rates and imaging scenes. But as the SR increases,
the image quality gradually approaches the GT, and the param-
eters δ, µ, and the network model trained with noisy images
are no longer applicable to the new input images, resulting in a
relative performance decrease between the joint and single pri-
ors. However, it can be improved by adjusting parameters and
retraining the model. In terms of computational time, the pro-
posed method reconstructs 31 images simultaneously and takes
an average of 65 s, which is achieved on an outdated Intel laptop
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Fig. 4. Schematic diagram of our optical imaging system.

Fig. 5. Multi-spectral images obtained in optical experiments
(10% SR). The first row is the result of the 3DTV constraint, and
the second row is the reconstruction result of the joint priors.

CPU. If more advanced hardware is adopted, it is expected to
reduce the reconstruction time significantly.

We designed an optical system to test the imaging perfor-
mance of the proposed method in the physical environment. The
optical path diagram is shown in Fig. 4. In the diagram, the
reflected light of the object is collected by the imaging lens and
projected through a beam splitter on the digital micro-mirror
device (DMD, Vialux v-7001). The DMD encodes the scene
images and then reflects light through the beam splitter again to
the camera by two relay lens. The camera is used as a single-pixel
detector, and the image information on the CCD is integrated as
a measurement signal. We use a four-step phase-shifting method
[7] to encode images and obtain a Fourier spectrum based on
variable density random sampling in the experiment. To acquire
different spectral images, we used a six-channel wheel installed
with six wave filters, and the spectral range is from 532 to 600
nm. Besides, a data acquisition card (DAQ, NI-6211) controls
the DMD and camera for synchronous encoding and imaging.
In this experiment, our hardware system is CPU: Intel i5-9300H
with 32 GB memory. The software platform is MATLAB 2022,
and the deep learning environment is MatConvNet. The imaging
results are shown in Fig. 5. As can be seen from the results, the
method proposed in this paper achieves better imaging quality
than the traditional method at a low sampling rate, especially
the text in the image that is more clearer, which proves that the
joint algorithm performs better than the traditional method in
real imaging scene.

In conclusion, to solve the problem of low imaging qual-
ity in multi-spectral SPI technology at a low sampling rate, this
paper proposes a new FSSI reconstruction method that combines

LTNN and DTP. Experimental results show that the technique
proposed in this paper outperforms the traditional prior mod-
els, such as 3DTV, as much as 7–10 dB in PSNR at 5% SR.
Our joint framework not only improves the imaging quality of
FSSI at low SR but can also be extended to application sce-
narios such as video imaging where there is a high correlation
between consecutive frames. In view of the complexity of our
method, in the future, the computational efficiency can be sig-
nificantly improved by optimizing algorithms or introducing
hardware devices such as GPUs, thereby further enhancing
practicality.
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