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This work aims to recover multi-dimensional visual data from limited partial sampling with noisy observations.
For this typical inverse problem, we first employ the discrete cosine transform (DCT)-based tensor nuclear norm
(TNN) to depict the global low-rank structure. Then, the overall degradation process is decoupled into two parts,
i.e., the entries missing and the noise corruption. To recover abundant details in visual data effectively, we
employ the plug-and-play (PnP) prior framework. Specifically, we formulate two implicit regularization terms
to integrate two deep convolutional neural networks (CNNs), which are pre-trained for image denoising and
completion, respectively. The proposed model, which consists of the low-rank part and PnP modules, is effi-
ciently solved using the alternating direction method of multipliers (ADMM). and the theoretical guarantee of
its convergence is then established. Numerical experiments are conducted to demonstrate the superiority of the
proposed method compared to state-of-the-art methods on various types of multi-dimensional visual data, and
the excellent performance on compressive sensing magnetic resonance imaging (CS-MRI) validates the promising

generalization ability for different multi-dimensional image recovery tasks of the proposed model.

1. Introduction

With the widespread use of multi-sensor technology, many real-
world visual data, e.g., videos [1], hyper/multi-spectral images
(HSIs/MSIs) [2], and magnetic resonance imaging (MRI) data [3], are
often multi-dimensional. However, limitations of imaging environments
or devices for real-world applications often result in image degrada-
tion, such as noise corruption, blur, and under-sampling, which can se-
riously affect subsequent applications like semantic segmentation and
object detection. Therefore, it is essential to recover high-quality multi-
dimensional imaging data from degraded observations. In this study,
we focus on a typical multi-dimensional visual data recovery problem,
namely the noisy tensor completion, where the partially observed en-
tries of original visual data are corrupted with noise. When the degra-
dation is determined, introducing reasonable prior knowledge of the vi-
sual data within the maximum a posteriori (MAP) framework becomes
the critical point. On account of the low-dimensional structures main-
tained by many real-world multi-dimensional visual data, researchers
have made significant efforts to exploit the matrix/tensor low-rankness
to characterize the overall low-dimensionality [4]. Unlike the matrix
case, the tensor format (i.e., the multi-way array) is naturally suitable
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to represent the multi-dimensional visual data, preserving their inherent
structural information better. Therefore, tensor low-rankness is widely
utilized for restoring multi-dimensional imaging data and has achieved
great success in the past decade [5].

However, the rank of the tensor is not uniquely defined, such as the
Tucker rank [6,7], the CANDECOMP/PARAFAC (CP) rank [8], the ten-
sor tubal-rank [9,10], which are derived from various tensor decompo-
sition paradigms. Among these definitions of tensor rank, the last one,
defined based on the tensor singular value decomposition (t-SVD) [9]
framework which is originally defined specifically for third-order ten-
sors, is fit for processing various multidimensional imaging data. As min-
imizing the tubal-rank is NP-hard, the tensor tubal nuclear norm (TNN),
a convex surrogate of the tensor tubal-rank, and the theoretical guaran-
tee for exact recovery are proposed in [10]. Consequently, the t-SVD has
garnered considerable attention in recent studies and shown results in
different tensor recovery tasks [11-13].

Meanwhile, multidimensional images retain abundant spatial de-
tails, which could not be fully captured by the tensor low-rankness prior
alone. Therefore, some additional prior knowledge is necessary to bet-
ter preserve these details. For example, the nonlocal regularizer is intro-
duced in [15] to characterize the nonlocal self-similarity. Alternatively,
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Fig. 1. The recovered results from different PnP-based frameworks on the color image (#68 in Urban100 [14] dataset) with structural missing (the noisy level ¢ = 15)
and the HSV data with random missing (SR = 0.2, ¢ = 20). The PnP-Denoiser struggles with the local structural patterns while the PnP-Inpainter fails to reconstruct
the fine details, and the proposed DAP +, which incorporates decoupled degradation information, preserves spatial geometries and details more effectively.

with the help of the plug-and-play (PnP) framework, prior knowledge
from a denoising algorithm can be incorporated [16]. Moreover, as deep
learning advances rapidly, various deep learning-based denoising tech-
niques, which are pretrained on plenty of natural images, can be adopted
for leveraging the data-driven prior knowledge within the flexible PnP
framework, and the promising performance of this approach is demon-
strated by the excellent experimental results of [17,18]. Nevertheless,
[19] notes that the plugged-in deep learning-based algorithms, with a
high model capacity, are not limited to expressing data-driven priors.
They are also expected to undertake part of the degradation, and better
performance can be achieved when the considered degradation (in their
training stage) is consistent with that of the problem to be solved.

In this work, we tackle the challenging noisy tensor completion prob-
lem, in which the degradation consists of both undersampling and noise
corruption. Compared to the counterparts for the tensor completion
task, existing methods for noisy tensor completion commonly incorpo-
rate a fidelity term ||[Pq(X) — (9||2F to mitigate the impact of the noise
corruption [20]. Although leveraging tensor low-rank priors is proficient
at capturing the overall low-dimensional structure of multidimensional
visual data, it is still struggling to precisely preserve fine details. From
this perspective, the idea of employing pretrained deep neural networks
under the PnP framework for well detail preservation in tensor com-
pletion methods [17,19] can be considered for noisy tensor completion.
However, existing tensor completion methods either consider the deep
denoiser [17,21] or the deep inpainter [19] in an independent usage
context. The degradation considered in these employed pretrained deep
neural networks is not consistent with that of noisy tensor completion,
limiting the performance of the direct use of the idea of deep PnP. To
address these limitations, we propose a novel approach that explicitly
decouples the degradation of noisy tensor completion into two compo-
nents: pixel loss and noise corruption. Then, two implicit regularizers,
whose subproblems are respectively handled by a deep inpainter and a
deep denoiser, are established to introduce the degradation accordant
data-driven prior.

As discussed above, we propose to combine the tensor low-rank prior
with the degradation accordant data-driven prior under the PnP frame-
work. Specifically, we leverage the discrete-cosine-transform (DCT)-
based TNN to capture the tensor low-rankness instead of TNN as DCT
has been shown to be more suitable for visual data with its reflective
boundary [11]. On the other hand, as for the PnP prior, commonly used
deep learning methods are typically designed only for either image in-
painting (deep inpainter) or denoising (deep denoiser), focusing on re-

constructing low-frequency information (e.g., local spatial structures)
or high-frequency details (e.g., sharp edges and fine textures), respec-
tively. Therefore, we propose decoupling the degradation into the pixel
loss and the noise corruption, and simultaneously introduce two deep
convolution neural networks (CNNs), which are pre-trained respectively
for denoising and completion, to capture the low-frequency and high-
frequency features concurrently. Fig. 1 presents representative exam-
ples of a color image (#68 from the Urban100 [14] dataset) and hyper-
spectral video (HSV) data. Moreover, with the usage of 2D fast Fourier
transform (2D FFT), we convert these results on color image #68 into
the k-space. In the context of k-space, low-frequency information is pre-
dominantly concentrated in the central region, while high-frequency
information is distributed across the peripheral areas. Fig. 2 illustrates
the error map of the reconstructed results compared to the groundtruth
in the Fourier domain on the color image #68. It is evident that our de-
coupling strategy is very effective not only in preserving low-frequency
information but also in mitigating high-frequency distortions, which
leads to an excellent performance of the proposed method in depicting
fine details and structural patterns in multi-dimensional imaging data.
In a nutshell, our contributions are summarised as follows:

e We propose a novel noisy tensor completion model for multi-
dimensional visual data, including videos, multi-spectral images, and
hyperspectral videos. In the proposed model, DCTNN is adopted as a
low-rank regularizer to exploit the intrinsic low-dimensional struc-
ture of tensors. Meanwhile, two implicit regularizers are incorpo-
rated to leverage the degradation accordant data-driven prior for
effective details and geometric structure preservation within the
plug-and-play framework.

e To optimize the proposed model, we design an ADMM-based algo-
rithm. The degradation in noisy tensor completion is decoupled into
the noise and the undersampling parts. Thus, our ADMM-based al-
gorithm formulates the two implicit-regularizer-related subproblems
as a denoising problem and an inpainting problem, respectively. This
allows us to plug in off-the-shelf denoising and inpainting CNNs,
which are pretrained on numerous natural image data and are read-
ily accessible. Moreover, we theoretically establish the convergence
of the proposed algorithm, which is quite difficult when the implicit
regularization and deep neural network are evolved.

e Numerous experiments are conducted on various multi-dimensional
visual data. Results demonstrate that our method outperforms state-
of-the-art methods, the effectiveness of our degradation decoupling
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Fig. 2. The amplitude error map of the recovered results (color image #68) in the Fourier domain. The denoiser concentrates more on image details yielding less
error in the high-frequency part, while the inpainter can better reconstruct the structure resulting in less error in the low-frequency part. Our DAP + can take both

advantages.

strategy and different low-rankness regularizers are illustrated in the
ablation study. Moreover, experiments on compressive sensing MRI
show that the proposed method maintains a good generalization abil-

ity.

This work is an extension of our previous work published in [19].
The new material is the following: a) the proposed method focuses on a
more challenging tensor restoration problem, namely noisy tensor com-
pletion; b) we utilize discrete cosine transform (DCT)-based tensor nu-
clear norm to characterize the global low-rank structure; c) to introduce
the data-driven prior and fully leverage the degradation information, a
deep denoiser and a deep inpainter are employed as the implicit regu-
larizers within the PnP framework; d) the theoretical guarantee of the
convergence of the solving algorithm is established; and e) we present
more extensive experimental results on various multi-dimensional im-
ages.

The remaining sections of this paper are organized as such: Section 2
presents a brief survey of related work. The fundamental preliminaries
related to the tensor are introduced in Section 3. Sections 4 and 5 out-
line the primary findings of this work. Numeric experiments, ablation
studies, and corresponding results are presented in Section 6. Finally,
conclusions are drawn in Section 7.

2. Related work
2.1. Low-rank tensor recovery

As mentioned earlier, the definition of tensor rank is not unique, and
many types of tensor rank, defined based on different tensor decom-
position methods, have been proposed. Tensor decomposition methods
typically factorize the tensor into a series of sub-factors or sub-tensors,
similar to matrix factorization. and four major decomposition schemes
have been widely investigated recently and applied to various tensor
recovery tasks, such as tensor completion. One of the earliest and most
widely used tensor decomposition techniques is the Tucker decomposi-
tion [6]. It decomposes a N-order tensor 7 € R"*"2"*"~N into N sub-
matrices along each mode and a core tensor that characterizes mutual
interactions across different modes, which can be formulated as:

X =G0X| A Xy Ay - Xy Ay,

where X, denotes the mode-k tensor-matrix multiplication [22], G €
R">*X"N s the core tensor, A, € R"*"x (k =1,2,---, N) represent the
factor matrix, and the N-tuple (r,, ...,ry) is the Tucker rank of 7. The
flexibility of capturing mode-wise interactions of tensors makes Tucker
decomposition a significant tool. Liu et al. [23] proposed a low-rank
tensor completion (LRTC) method, which utilizes the sum of nuclear
norms for all mode-n unfolding matrices of a tensor as a convex surro-
gate of Tucker rank. Tong et al. [24] proposed and validated a formu-
lation that reinterprets the Tucker model as a CP decomposition with

low-rank factor matrices, enabling a more direct and effective approach
to multilinear rank learning.

The CANDECOMP/PARAFAC (CP) decomposition [8] is a simple and
interpretable tensor decomposition technique, which decomposes a ten-
sor into a set of factor vectors along different dimensions and represents
the tensor as the sum of rank-one components formed by the outer prod-
uct of these vectors. The CP decomposition of a tensor 7 € R"1>"2" Xy
can be expressed as

A
7 =Y ia*loa*?o..axN, )
z=1

where Z € N* is the number of rank-one components, 1, € Rs are scalar
weights, o denotes the outer product of vectors, and a* € R”". The min-
imum Z required to express X is called the CP rank. Although determin-
ing the appropriate CP rank for a tensor remains a challenge [25], for
many real-world datasets with strong intrinsic low-dimensional struc-
tures, a small CP rank often suffices to achieve an effective representa-
tion and shows promising performance on various tensor recovery tasks
[5].

The tensor network decomposition [26,27] is also an effective way
to depict the intrinsic structure of tensors. It provides a framework for
factorizing higher-order tensors into a set of interconnected small-scale
factor tensors. This significantly reduces computational complexity and
memory costs, making it particularly suitable for large-scale tensor data.
Representative tensor network decomposition methods include tensor
train (TT) decomposition [26] and tensor ring (TR) decomposition [2].
Zheng et al. [28] proposed the fully connected tensor network (FCTN)
decomposition to establish the comprehensive correlations between ar-
bitrary two factors, which performs well on various tensor recovery
tasks like the traffic data completion.

The tensor singular value decomposition (t-SVD), induced by the
well-defined tensor-tensor product (t-prod, see Definition 1), extends
the matrix SVD to third-order tensors [9]. For a third-order tensor
T € R">*mXn3 " the t-SVD can be formulated as:

T=l/'*tS*,VH,

where U € R"*"1*"3 and V € R"*"2*"3 are orthogonal tensors (see Def-
inition 4), S € R"*"*"3 s an f-diagonal tensor (only diagnoal entries of
all frontal slices are non-zero), the V¥ is the conjugate transpose of V
(see Definition 2), %, denotes the t-prod. The tensor tubal rank [29] of T
is defined as the number of non-zero singular tubes (the vectors along
the third mode) of S. On account of the excellent power of capturing the
global low-dimensional structure information and the “spatial-shifting”
correlation in tensors [4], the t-SVD framework has attracted increas-
ing attention from many researchers across different applications. Since
minimizing the tensor tubal rank is NP-hard, a convex surrogate in the
Fourier domain of tubal rank called the heuristic tensor nuclear norm
(TNN) is utilized in the tensor completion in [10] with a theoretical
guarantee. Kernfeld et al. [30] showed that t-prod [9] can be defined
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based on any invertible linear transforms, which motivated many works
introducing various transforms into the t-SVD framework like the dis-
crete cosine transform [11], the tight wavelet frame (framelet) [31]. Ad-
ditionally, the t-SVD framework has been generalized to handle higher-
order tensors, further expanding its applicability in data analysis [32].
Wang et al. [4] build a novel regularizer term that incorporated low-
rankness and smoothness together to design a high-order tensor recov-
ery model with theoretical exact-recovery guarantees, which demon-
strated impressive performances in tensor completion and tensor robust
principal component analysis.

Different tensor decompositions maintain specific advantages and
disadvantages, which are briefly summarized as follows. Tucker decom-
position offers a flexible approach to dimensionality reduction by fac-
toring a tensor into a smaller core tensor and some factor matrices,
and it excels at capturing multilinear relationships within data. How-
ever, Tucker decomposition lacks unique solutions [22]. In contrast, the
uniqueness and identifiability of the CP decomposition make it ideal
for revealing distinct underlying patterns in data, whereas the deter-
mination of CP-rank is NP-hard [25]. Tensor Network decompositions
are well-suited for handling high-order tensors by factorizing them into
small-scaled interconnected factor tensors, facilitating efficient compu-
tation and scalability [26]. Nevertheless, existing methods generally rely
on heuristic strategies [28] to determine the specific network structure,
i.e., how the factor tensors are connected. The t-SVD is analogous to the
matrix SVD and is effective at capturing global low-dimensional struc-
tures in multidimensional visual data. While classic t-SVD-based tensor
decomposition methods were tailored for third-order tensors, some re-
cent advancements, such as [4], generalize to high-order cases. How-
ever, the flexibility for handling the heterogeneous correlations along
different modes is limited owing to its specific decomposition scheme.

2.2. Plug-and-play based tensor recovery

Although low-rank tensor recovery methods have succeeded substan-
tially in various real-world applications, the recovery of ample details
retained in multidimensional images remains a bottleneck. Many re-
searchers introduced additional priors, such as local smoothness and
non-local similarity, to improve the effectiveness of recovery. Mean-
while, with the help of the flexible Plug-and-Play (PnP) framework,
state-of-the-art denoisers can be utilized in ADMM or other proximal
algorithms by formulating an implicit regularizer term [16], and the
corresponding subproblem can be regarded as a denoiser problem. How-
ever, the limitation of hand-crafted prior on characterizing the data fea-
ture is inevitable. Recently, motivated by the success of deep learning,
many efforts have been devoted to incorporating deep neural network
techniques as a data-driven prior term to develop PnP-based models.

Zhang et al. [18] trained a set of specific denoising convolutional
networks and integrated them into a model-based optimization method
to solve image deblurring, image denoising, and image super-resolution.
Zhao et al. [17] introduced the deep data-driven prior into the TNN-
based tensor recovery model and achieved impressive performance in
tensor completion and image demosaicing. Hu et al. [19] incorporated
degradation information in the tensor completion task and employed
deep inpainting networks to introduce degradation accordant deep plug-
and-play prior to the LRTC model.

2.3. Degradation decoupling strategy

To the best of our knowledge, there are a limited number of investi-
gations that leverage the idea of degradation decoupling. Liu et al. [33]
proposed a video restoration network specifically designed for Under-
Display Camera (UDC) systems, where the display’s pixel array causes
complex degradations like diffraction and light attenuation, leading to
varying light intensity and diverse visual artifacts (e.g., flare and haze)
over time. The core innovation lies in its decoupling attention module,
which utilizes a soft mask generation function to analyze each video
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frame and decomposes its degradation into distinct flare and haze com-
ponents, based on the principles of how incident light of varying in-
tensities causes diffraction. Xue et al. [34] focused on the underwater
image enhancement task and presented a deep neural network with a
parallel architecture, consisting of a model-inspired haze-removal mod-
ule and a data-driven color-adaptation module, to address the complex
degradation caused by underwater environments. These two methods
have shown promising performance for their respective tasks and have
also demonstrated the effectiveness of the degradation decoupling strat-
egy. It should be noted that these two works leverage the degradation
decoupling strategy implicitly through the design of deep network mod-
ules, and by utilizing a large amount of labeled datasets to train their
end-to-end models. This contrasts with our approach. To the best of our
knowledge, our method is the first to explicitly decouple the degradation
by the formulation of an optimization model within the plug-and-play
framework.

3. Notations and preliminaries

For brevity, we give the main notations for various basic concepts of
the tensors in Table 1. Then, we provide the basic definitions necessary
for the proposed model.

Definition 1 (Tensor-tensor product [9]). For third-order tensors A €
R™M*mx13 and B € R™*"4>" | the tensor-tensor product 7 = A = B is a
ny X ny X n3 tensor whose (i, i,)-th tube 7'(i,,i,, :) is obtained by
n2
Tiysip )= ) Blip, 1, ) @ Al iy, 0) 2
[

where ® denotes the circular convolution between two vectors of the
same size.

Definition 2 (Conjugate transpose [29]). For third-order tensors 7 €
R™1>mXn3 its conjugate transpose of 7, denotes as 7, can be obtained
by conjugate transposing all the frontal slices of 7 and then reversing
these slices from 2 to the end except for the first slice.

Definition 3 ( Identity tensor [29]). The identity tensor T € R™"*"1%"3
is a tensor whose first frontal slice is an identity matrix and the others
are zeros matrices.

Definition 4 ( Orthogonal tensor [29]). Given a tensor 7 € R"1>"1X13
it is orthogonal if 7« 7TH = T7H + 7 = 1.

Theorem 1 (t-SVD [29]). Given a third-order tensors T € R"1>"2%"3  the
t-SVD of it can be formulated as

T=Ux*Sxpi, 3

where U € R"*">" and P € R"*"2*" are orthogonal tensors, S €
R">*mXns3 s an f-diagonal tensor, the VH is the conjugate transpose of V.

Definition 5 (Block diagonal operation [10]). The block diagonal op-
eration of 7 € R">*"X" js given by

71
2
bdiag(T) £ T . , “
T (13)
where bdiag(7) € C""s>""s,

Definition 6 (Tubal nuclear norm (TNN) [10]). The tubal nuclear norm
of a third order tensor 7 € R"1>*"2%"3 | denoted as ||7 ||tny, is defined as

n3
17l 2 DTG50 (5)
where 7 is the result of applying fast Fourier transform (FFT) along the

third dimension of 7, and || - ||, is the matrix nuclear norm, i.e., the sum
of singular values.
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Table 1
Summary of notations.
Symbol Description Symbol Description
seR Scalar veR” Vector
M e R™" Matrix T € Rm>>ny Tensor
T or The (i, j)-th tube of
2y T 1 t TG, j,: .
T (iysinseensin) ensor elemen (de ) a third-order tensor 7
T(:,:,k)or The k-th frontal slice of (T,S)= Tensor inner product
T a third-order tensor 7 v T Siy iy P
1Tl = . The tensor-tensor product (t-prod)
Tensor Frobenius norm A= B
VAT, T) ¥ of two third-order tensors A and B
The vectorization of a tensor o The inverse operation of vec(-)
vec() vec™' ()

RmXmyXny _y Rmnansx1

RmmamXl _y [ayXmxny

It is noteworthy that the FFT utilized in TNN could be replaced by other

linear invertible transforms, e.g., the DCT is adopted in [11] to take the
ny »

place of the FFT, i.e., | T|l, 2 X II7(:, :,i)ll,, where ||T||, denotes the
i=1

DCT-based TNN and 7 is the DCT transformed tensor (along the third

mode) of 7.

4. The proposed model and algorithm

The general plug-and-play based low-rank tensor recovery (LRTR)
model could be formulated as follows:

m(gn D(X) + P(X). s.t. AX)+N =0. (6)

where @ € RM*X"L is the measurement tensor, L is the dimension
amount, X € RM>X*"L is the underlying tensor, N represents the dense
additive noise (we mainly consider the zero-mean Gaussian noise in this
work), A(-) is the linear forward operator (in tensor completion, it refers
to a projection operator Pg(-) which maintains the values of the ele-
ments in a specific set Q while assigning zero to other elements), ®(X)
denotes a general regularizer of tensor low-rankness, and ¥(X) is an im-
plicit regularizer to introduce the PnP prior. In this work, we leverage
the DCT-based TNN [11] to capture the intrinsic low-dimensional struc-
tures of multidimensional data. Meanwhile, on account of the zero-mean
Gaussian noise we thinking about, (6) can be reformulated as

i 1 —oIR) + 2 X2
min A2, +¥@) + (S 1A - O} ) + 21213 @

where ||X||, denotes the DCT-based TNN of X, ||(\f’||fE is a Tikhonov
reuglarizer, 4, 4 and p are nonnegative trade-off parameters.

Then, we split ¥(X) into two implicit regularizers: y; (X) and y,(X).
We can see in the following part that this simple step enables us to
decouple the hybrid degradation clearly into the denoising part and the
inpainting part reasonably. Thus, more pretrained CNNs customized for
denoising or inpainting are readily available as finding a suitable CNN
pretrained for both tasks simultaneously is not that easy. Meanwhile, the
plugged-in CNNs also obey the concept of degradation accordant in [19].
Next, after introducing auxiliary variables, the optimization problem
turns out to be

. 1 p
min AWl + i) +va(@) + (514 - Ol + 211213

XV.2, ®)

st AZ)=AX), Y=&, W=2X,

where W, Z,and Y € R"1>*"2"X"L are auxiliary variables. We remark that
the constraint A(Z) = A(X) requires the auxiliary variable Z admits to X
after applying the linear forward operator. Therefore, (8) is not strictly
equivalent to (7). The benefit of introducing the auxiliary variable in
this usual way is that we can introduce the inpainting networks (See the
Z related subproblem).

Thus, the augmented Lagrangian function of (8) could be written as
follow:

_ Ao B Ay s
LX, W, Z,N) =AW, +BIlW-X + 7||F+5||37—X+7||F
A
+ gllA(Z) - AX) + 73||§+W1()7)+W2(Z) )

1 p
+u(F1A@-0R+ 21213 ).

where § is the nonnegative penalty parameter, A;, A,, and A5 are the
multipliers.

Then, following standard steps of the ADMM [35], each variable is
updated by iteratively solving the corresponding subproblem.

1) The W subproblem is

Ak
min AWl + I — & + 1. 0

where k is the number of the iteration, and by the application of tensor
singular value thresholding (t-SVT) [25], the closed-form solution of
each W could be exactly determined as

A
Wk :t—SVTA-<Xk——1> év<5-4>v, an
7 B B
where U, S, V derive from the tensor singular value decomposition (t-
Ak
SVD) of ¢;(x*) — o
2) The subprobfem of X at the k-th iteration is
Ak Ak
min gk —w - =124 D ye 222
X ﬂ F 2 ﬂ F
. (12)

p _ k _ﬁ 2 1 —on2 o P2
+ ZIAQ=AEH =2+ (5140 = Ol + S1211 ).
Denoting A* as the adjoint operator of A, and letting C = uO+
BAZF) +A’3‘, D = pWk+l 4 yky 4 A’l‘ +A’2‘, the solution of (12) can be
calculated as

-1
K= (0f + upT+(u+PAA)  (A*(O+D), as)

where 7 is the identity mapping operator and (-)~! denote the inverse
of an operator
3) The Y subproblem can be rewritten as

2 A
min 71 —xkrl g fuf, +y (D). (14)

Under the PnP framework, the CNNs could serve as the proximal opera-
tor of regularization y,(-), i.e., Prox,, : RiXmpXns _, RM*nXn3 - Reeding
X into the CNN pretrained for denoising, we obtain the solution of the
Y-subproblem as

Ak
V¥ = Denoising | (Xk+1 - 72> (15)
B
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4) Similarly, the subproblem of Z can be formulated as
k

A
minyy(2) + 5 142) A + 13- a6

As discussed in [19], we can find that (16) is an inpainting problem
and can be solved by plugging in an inpainting CNN as follows,

Zh+l = Inpainting<A(Xk+1) - 7*) a7
5) Finally, multipliers in our method are updated as
Ak+1 /\k +ﬂ(Wk+l A;kJrl)
L+l Ak + ﬂ(yk-H Xk+1) (18)

Afﬁ-l Ak +ﬂ(A(Zk+l) _ A(Xk+l)).

The whole optimization scheme based on the ADMM framework is
described in Algorithm 1.

Algorithm 1 ADMM for solving (7).
Input: A(O), 4, u,p,p, kpax, k=0
Initialization: : W0 = Y0 = 20 = X0 = A(O9), A, = A, = A; =0.

1: while & < k,, do

2: Update Wk*! using (11).
Update xX**! using (13).
Update Y**! using (15).
Update Z¥+! using (17).

6:  Update {A,~}f= using (18).

7: end while
Output: W

a b w

5. Convergence analysis

Now we present the fixed-point analysis of Algorithm 1, whose out-
line follows the counterpart in [36]. We reformulate our optimization
problem into (20), a similar formulation as presented in [36]. Building
on this, we introduce the key assumptions for our proof, discuss the rea-
sonableness, and present the main theorem in Section 5.2. Due to space
constraints, the necessary lemmas and the detailed proof of the main
theorem are provided in Supplementary Material.

5.1. Problem reformulation

Firstly, by the tensor vectorization operation, the model in (8) can
be reformulated as

. 1 L P 2)
min, AWl + 91 )+ va@) + (5 1A = ol + 2l ).
w X | (19)
sty |=]| x|
Az Ax |

where A denotes the projection operator, x,y,z, w, and o are the vector-
ization of X, Y, Z, W, and O. Let

w Allwll x|
e=[y[ re©=|y(y [ v=[x]
z Y, (z) X

we can rewrite (19) as follows
min  uf(v) +r(e),

ey (20)
s.t. e=Lyv,

I
where L = 1 , and f(-) denotes a scalar-valued function satis-

A
fying:
1

)= 3100 Tv—olf% + £1j0 0 Vi,

1
= - lAX) - Ol% +

Piet2
5 5 Il

Pattern Recognition 172 (2026) 112612

Then the augmented Lagrangian function of (20) can be written as

L) = uf )+ S Le = Ly + 115 + r(e), 1)
SR VR ¥
where A = [7 7 7] is the Lagrangian multiplier, {A; } | are the

vectorization of {A } ,in(9), and without the loss of generahty, the pa-
rameters relating to the multipliers are set to the same value denoted as
p. Moreover, according to the standard steps of the ADMM, each vari-
able is updated by iteratively solving corresponding subproblems shown
as follow:

el = arg mein (g“Le —Lvk + kkui + r(e))

2
vk“:argmvin (ufv + g”Lek*l —Lv+)»k”2)‘ (22)
ML =k 4 Lekt! _ T ykt]
Prox,
Let denoting P, = D, , where the Prox; denotes the t-

H
SVT operator in (11), D,(:) is the CNN pretrained for denoising as in
(15), H(-) is the CNN for recovering utilized in (17). Then, based on the
PnP framework, the corresponding solutions could be formulated as
k12 P, (Lvk — 26
kel — Proan(Lek+1 +25, (23)
ik+1 — )\(k + Lek+l _ ka+l

where Prox, , is the proximal operator of the subproblem of v.

Similar to the interpretation in [36], we call the method formulated
in (23) alternating directions method of multipliers for DAP+ (ADMM-
DAP+) and say its fixed point is (v*, {A* }?zl) if

v =P, (Lv* — %)
. (24)
V¥ = Prox, (V¥ +1%)

Let ek = vk = v* and A} =A% (i = 1,2,3), then we can get k! = vk+! =
v* and M =0k =X (1 = 1 2,3). Furthermore, according to the equiv-
alence of plug- and play alternating directions method of multipliers
(PNP-ADMM) and plug-and-play Douglas—Rachford splitting (PNP-DRS)
verified in [36], let u* = Lvk¥ — A\¥, we can obtain the corresponding
Douglas—Rachford splitting for DAP + (DRS-DAP +) which is formulated
as

k1l
v 2 =Prox /(u )

P, QLv'E —ub) (25)

kel
uk+1 =llk +ka+l —Lv 2

In addition, we interpret this method as a fixed-point iteration and re-
gard u* as its fixed point if

v* = Prox, (u*)

“ . (26)
*=P,,QLv* —u*)

Equivalently, (25) can be rewriten as follows

e} k
vV'2 =Prox, (u")

P, Ly T —ub) 27
u =k 4+ LP16(2LV% —uf) - LProxM(uk)
Now we can convert the iterations of u into:
uktl = i k4 (2LProx s —DQLP,, — Du, (28)

according to (25). As L is a operator, we denote that B=LP,_, Then
(28) can be rewritten as

+1 _ M(llk), (29)

where M = %I + %(ZLProx «s —D@B —1), and the subsequent analysis

will be carried out by studying the contractiveness of the operator M.
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5.2. Key assumption and main theorem

It should be noted that if only a denoiser is considered in our method,
the convergence analysis of Algorithm 1 would extremely follow the cor-
responding part in [36], but the primary difference between this work
and typical PnP-based methods makes the analysis more complex, so
new assumptions is required, and we need to verify their reasonability.

Prox,
We assume B = D

” : RY — R satisfies

LH
(B =1)(x)) — (B-T) I < € llx; — %, 12, @A)

for all x,,x, € R? for some ¢ > 0. Subsequently, it is rational to say
that LH is close to the identity when the recovering CNNs are well-
trained. Thirdly, Prox; is essentially a t-SVT operator (although it is
directly applied to the third-order tensor, it can also be viewed as a
mapping: RY - R? with the implicit employment of reshape transfor-
mations, whose operator norms are equal to 1, between the vector and
the tensor. Here the vectorization and its inverse operation are denoted
as vec(-) and vec~!(-), respectively), which can be formulated as:

Prox,;(X) = t-SVT,(X) 2 U « D » VH, (30)

where U, S, V¥ are attained by the t-SVD of X, and D is an f-diagonal
tensor obtained satisfying D(i, i, k) = max{S(i, i, k) — 4,0}, where § is the
Discrete cosine transformed (along the third mode) tensor of S. By the
Lemma 3.19 in [9], we can write that

2

105 = 1V S« VL = 1SI7 = , (€3))

S |||

where Sy’s (i=1,2,3,...,n3) are the i-th frontal slices of S, X €
R™M>m>n3 - Similarly, by the unitary invariance of Frobenius norm, we
denotes the C, as DCT matrix and write as :

X 2
)
X2 =|lc, @7 @ C®1
F n3y n
X(n}) F (32)
~ 2 ~ 2
Xay . Sy
= X(2) cee = 5(2) “ee
X("S) F S("S) F

where X is the discrete cosine transformed (along the third mode) tensor
of X. Then we sort all the singular values in descending order of all X’
assy 28y 2 vt 28, 2 A2 25, > 54 = 0 and consider the unitary
invariance of orthogonal matrix, then we can directly have

= 2 12
Say B 51 5
S = 53 (33)
Sy Yl Sk |l g
and
sp— A 12
2 — Sig =4 34
[IProx,(X)l% = 0
0_ F
Then it is easy to obtain
) 2
-
l(Prox, — D(X)|3. = ~St,41 : (35)
=5 [

It is evident that Prox, will be close to identity with 4 close to 0. Fur-
thermore, by reshaping X, and &, into the vector x, and x, and utilizing
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the ¢, norm of the vectors, (35) can be formulated as:

l(Prox, — D(x)Il, = |k 42 + i (92, (36)
\ k=k;+1
and for x,:
)
l(Prox, — DX, = |, A2 + z (s> 37)
I=l1+1

where (ky, kp, {si 1), (I}, I, {s,y }) are respectively the numbers of singular
values of x; and x, that are greater than 4, and 0, as well as the k/I-th
(k/l1 =1, ,ky/1,) largest singular values, and we can directly get:

ky
Ixill = | 2602 lIxl, = (38)
k=1
According to the triangle inequality:
2 2
(||X1||2—||X2||2) < ||X1—X2||§ < (||X1||2 + ||X2||2) , 39

then

llProx; — D(x,)—(Prox, - D(x,)I2 < (lIProx, —Dx)ll, + (Prox, - Dxy)l) .
Therefore, the third part of Assumption (A):

ll(Prox; — I)(x;)—(Prox, — D(x,)I1? < €?[|x; — X, |12 (40)

will be hold if the 4, ky, Iy, {s3}(k = 1,2, -+, ky) and {s)}(I = 1,2, -, 1,)
satisfy the following inequality:

2
ky I
( 2+ Y G2+ Y (s,y)2> <

k=k,+1 I=1+1

ky I
P Z(s,yﬂ)
k=1 =1

& (llProx,;~Dxll, + lI(Prox, — I)(Xz)llz)2 <X Il = 1%l
(41)

The Assumption (A) is reasonable based on the above discussion.

Theorem 2 (Convergence of DAP +). Assume that B satisfies assumption
(A) for some € > 0. f in (20) is p-strongly convex and differentiable. Then

1, 1
M= EI + E(ZLPro:z:“ s—D@B-1) (42)
satisfies

l14+e+eup+2etup

M - M <
[IM(x,) x)ll < T+ jp + 2epp

lIx; =Xl
for dll x;,x, € RY. The coefficient is less than 1 if
€

— <y, e<1.
(14+¢e-2€2)p H

Owing to the limitation of space, the proof of Theorem 2 is presented in
Supplementary Material.

6. Experiments results

With a series of experiments, we assess the performance of the pro-
posed degradation accordant plug-and-play for LRTR (DAP +) and com-
pare it with other state-of-the-art methods. Compared methods' are:
a Tucker decomposition based-method, HaLRTC [23]; a t-SVD-based
method that utilizes the tensor nuclear norm as the convex surrogate for
the tensor tubal rank, TNN [10]; a dictionary-learning-induced method

1 As some compared methods only consider noise-free tensor completion. We
remark here that it is necessary and easy to modify their methods for the noisy
tensor completion problem by replacing the indicator function in their objective
function with the weighted Frobenius norm. Meanwhile, the hard projection
step of the intermediate variable should be correspondingly changed to be in
the same manner as (13).
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Fig. 3. The PSNR and SSIM values of results by various methods on CAVE dataset (SR = 0.05 & ¢ = 10.)

Observed HaLRTC TNN DTNN  FaNTRC LTNN RTCDLN

TCTV GTNN DP3LRTC DAPLRTC Ours  Groundtruth

Observed HaLRTC TN DTNN  FaNTRC LTNN RTCDLN

TCTV GTNN DP3LRTC DAPLRTC Ours  Groundtruth

Fig. 4. Pseudo color images of restored results by various methods on MSIs Balloons and Superballs (SR = 5% & ¢ = 10).

based on the t-SVD framework, DTNN[25]; a tensor ring decomposition- functions, GTNN [37]; a method that exploits local smoothness as well
based method with high computational efficiency, FaNRTC [20]; a t- as the lowr-rankness based the high-order t-SVD framework, TCTV [4];
SVD-based method with a balanced-unfolding strategy, LTNN [13]; a a PnP-based method that combines the tensor low-rank prior and a

method combining nonconvex regularization and dictionary learning data-driven prior by utilizing a deep denoiser, DP3LRTC [17]; and a
within the t-SVD framework, RTCDLN [12]; a t-SVD-based method that PnP-based method that combines the tensor low-rank prior and a data-
generates sparsity-inducing regularizers with closed-form thresholding driven prior by utilizing a deep inpainter, DAPLRTC [19]. As some of the
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HaLRTC s TNN suDTNN mFaNTRC I LTNN s RTCDLN s TCTV GTNN s DP3LRTC m DAPLRTC BMDAP -+
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Fig. 5. The PSNR and SSIM values of results by various methods on 8 color videos (SR = 0.2 & ¢ = 20).

Observed HaLRTC

TNN

DTNN

FaNTRC LTNN  RTCDLN

TCTV

GTNN DP3LRTC DAPLRTC

Ours  Groundtruth

Fig. 6. Visual results by various methods on the color video Miss A (SR = 20% & ¢ = 20).

Observed HaLRTC TN N_

DTNN

FaNTRC LTNN RTCDLN

TCTV

compared methods are originally designed for the noise-free case, we
have modified the constraint in their model with the Gaussian noise
taken into account for fairness.

The multidimensional visual datasets, including multispectral im-
ages (MSIs) from the CAVE dataset?, color images from the Urban100
dataset [14], color videos from the Yuv dataset®, and hyper-spectral
video (HSV)* are chosen to evaluate the performance of different meth-
ods. Additionally, the Supplementary Material provides experimental
results on the grayscale videos from the Yuv dataset and demonstrates
the practical value of our method with applications in compressive sens-
ing magnetic resonance imaging (CS-MRI).

We remark here that different types of data for experiments in this
work are not included in the training set of the denoiser or inpainter
employed in our algorithm. It should also be noted that we reshape the
color videos (CV) and HSV data into third-order tensors in the corre-
sponding experiments.

For MSIs data, we consider three numerical metrics: the Peak signal-
to-noise ratio (PSNR), the structural similarity index (SSIM), and the
mean spectral angle mapper (SAM), to evaluate the reconstructed result
of all the methods. For other data, PSNR and SSIM are utilized to mea-
sure the effectiveness of each method, and except for the color image
and MSI, the gradient magnitude similarity deviation (GMSD) [38] is
also utilized. Higher PSNR, SSIM values and lower SAM, GMSD values

2 http://www.cs.columbia.edu/CAVE/databases/multispectral/
3 http://trace.eas.asu.edu/yuv/
4 http://openremotesensing.net/knowledgebase/hyperspectral-video/

GTNN DP3LRTC DAPLRTC

Grundtruth

Ours
o = 20).

Fig. 7. The restored results by various methods on the HSV data (SR = 20% &

indicate better performance. As the PSNR, SSIM, and GMSD are designed
to measure the quality of natural images, we compute them slice by
slice for our multidimensional visual data and then report the average
value.

A CNN denoiser is considered in our method: DRUNet in [18], and
two CNN inpainters are employed in our method: i) CRUNet in [19] for
random missing, ii) LBAM [39] for structural missing. All experiments
were conducted on the platform of Windows 10 with an RTX 2080Ti
GPU, AMD Ryzen9 3950X CPU, and 32RAM.

6.1. Parameter setting

Referring to the augmented Lagrangian function of our model in (9),
the parameters that need to be specified are A, y, § and p, then let the
thresholding y = 4/f, where y can be singly used for solving the sub-
problem of W. In all experiments, p is set to 10~*. For MSIs, grayscale
videos and color videos, (4, u, f) are set to (1,1,1), and y € [0.5,0.7]
,[0.1,0.4], and [0.9, 1] respectively. For HSV data, (4, u, f) are set to
(1,10,10) and y € [5,10]. Meanwhile we set (4, u, f) to (1,1,1) and
y =0.1.

6.2. Multi-spectral image (MSD)

The CAVE dataset with 32 MSIs of the size 256 x 256 x 31 is con-
sidered in this part. The observation tensors are obtained by i) adding
zero-mean Gaussian noise with different standard deviations (¢) and
ii) uniformly random sampling with different sampling rates (SRs), re-
spectively. As MSIs are highly inner correlated, we test all the methods
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Observed HaLRTC TNN

DTNN
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FaNTRC LTNN RTCDLN

\ A\ 3 > -~ o »
DP3LRTC DAPLRTC

Fig. 8. The recovered results by different methods on the color images (#82, #84, and #87 in Urban100 datasets) with structural missing and noisy level ¢ = 15.

Table 2

Quantitative results of various methods averaged across 32 multispectral images (MSIs) with varying SRs and
os. The best and second best values are highlighted by boldface and underline, respectively.

SR& o 3% &5 5% & 10 10% & 15 .
Time
Method PSNR? SSIM1T SAM| PSNR?T SSIM1 SAM| PSNR?T SSIM1 SAM|
Observed 14.39 0.197 - 14.47 0.197 - 14.65 0.183 - -
HaLRTC 19.20 0.600 29.898  21.52 0.662 26.148 23.80 0.705 23.693 28.3
TNN 23.91 0.590 30.958  26.12 0.585 31.494 26.22 0.494 32.767  18.39
DTNN 27.03 0.726 26.974  28.18 0.724 26.386 29.73 0.738 25.155 252.0
FaNTRC 26.21 0.663 23.998  27.87 0.696 20.565 28.41 0.711 20.728 11.3
LTNN 27.89 0.745 18.064  28.35 0.677 22.625 27.42 0.773 17.037 113.6
RTCDLN 24.23 0.608 30.628  26.12 0.663 27.269 28.42 0.740 21.866 279.9
TCTV 27.98 0.808 20.810  29.09 0.827 20.580  30.30 0.835 19.771 128.5
GTNN 21.43 0.574 35.734  23.53 0.617 33.660 26.23 0.672 30.468 48.3
DP3LRTC 28.28 0.822 10.521 29.23 0.809 13.999 29.24 0.731 20.292 186.1
DAPLRTC 27.39 0.812 11.418  28.66 0.806 13.668 29.09 0.731 19.067 25.4
DAP + 29.73 0.872 9.595 32.14 0.897 8.159 33.79 0.915 6.848 90.2

with some challenging combinations of the SR and ¢ and we list aver-
age quantitative metrics of the results by different methods in Table 2.
We also report PSNR and SSIM values of the results by different meth-
ods on 32 MSIs with SR = 0.05, ¢ = 10 in Fig. 3. Then we concate-
nate the 25-th, 15-th, and 8-th bands of results by all methods on the
MSIs (Balloons, Superballs) to get Pseudo-color images and show them in
Fig. 4. It can be observed that the proposed method demonstrates supe-
rior performance among these methods, owing to its inherent strength
to simultaneously reconstruct both high-frequency and low-frequency
information. Consequently, the missed structural information is accu-
rately reconstructed, and the noise artifacts are effectively mitigated, as

10

demonstrated in Fig. 4. Conversely, it is evident that methods primar-
ily leveraging tensor low-rank priors exhibit limitations in noise removal
and the accurate recovery of geometric information. DAPLRTC struggles
with the noise corruption, whereas DP3LRTC generates overly-smooth
results, which can be attributed to their incomplete consideration of the
degradation within the PnP framework.

6.3. Color video

8 color videos of the size 144 x 176 x 3 (color) x 50 (frame) are se-
lected to measure the performance of different methods. Firstly, we
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Table 3
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Quantitative results of various methods averaged across 8 color videos with varying SRs and os. The best and
second best values are highlighted by bold and underlined, respectively.

SR & ¢ 5% & 10 10% & 15

20% & 20

Time (s)

Method PSNR?T SSIMt GMSD| PSNR?T SSIM1 GMSD| PSNR?T SSIMt GMSD|
Observed 6.36 0.019 - 6.59 0.026 - 7.07 0.037 - -
HaLRTC 19.43 0.574 0.156 21.67 0.592 0.126 23.06 0.531 0.105 51.7
TNN 20.57 0.508 0.123 25.96 0.615 0.080 24.84 0.503 0.089 101.0
DTNN 21.89 0.702 0.184 22.86 0.715 0.146 25.25 0.708 0.091 367.6
FaNTRC 26.16 0.692 0.100 26.81 0.684 0.092 27.90 0.730 0.083 41.3
LTNN 23.73 0.609 0.116 25.94 0.609 0.087 26.01 0.574 0.086 768.4
RTCDLN 24.38 0.723 0.132 27.01 0.786 0.095 29.15 0.825 0.069 485.4
TCTV 25.04 0.772 0.100 27.97 0.782 0.077 29.56 0.792 0.071 275.8
GTNN 25.29 0.713 0.113 27.53 0.764 0.085 27.37 0.643 0.086 61.2
DP3LRTC 2510  0.738  0.106 28.24  0.822  0.071 2831 0736 0.074 194.9
DAPLRTC 25.85 0.761 0.085 26.89 0.723 0.074 26.20 0.603 0.077 101.9
DAP+ 28.61 0.838 0.068 30.14 0.861 0.061 30.82 0.862 0.056 65.4

Table 4

Quantitative results of all methods on the HSV data with varying SRs and os. The best and second best values

are highlighted via boldface and underline, respectively.
SR& o 5% & 10 10% & 15 20% & 20 .

Time

Method PSNR?T SSIMt GMSD| PSNR?T SSIM1 GMSD| PSNR?T SSIMt GMSD|
Observed 9.18 0.020 - 9.40 0.034 - 9.87 0.058 - -
HaLRTC 15.24 0.428 0.228 19.10 0.564 0.154 21.62 0.583 0.110 69.7
TNN 22.39 0.677 0.121 26.85 0.738 0.081 25.31 0.642 0.084 151.7
DTNN 26.31 0.834 0.086 27.52 0.819 0.072 27.30 0.752 0.070 1338.5
FaNTRC 28.51 0.860 0.074 29.36 0.878 0.064 29.59 0.887 0.060 38.0
LTNN 23.53 0.712 0.128 25.89 0.702 0.097 25.41 0.653 0.093 767.1
RTCDLN 25.01 0.807 0.146 27.97 0.875 0.103 30.94 0.913 0.073 774.5
TCTV 28.19 0.871 0.079 30.23 0.889 0.063 31.56 0.904 0.054 353.3
GTNN 27.42 0.833 0.105 29.93 0.852 0.072 24.80 0.613 0.092 89.8
DP3LRTC 28.21 0.868 0.087 30.24 0.875 0.070 30.66 0.872 0.064 387.8
DAPLRTC 28.76 0.875 0.074 29.89 0.865 0.071 29.73 0.856 0.063 226.5
DAP + 30.11 0.907 0.065 31.54 0.926 0.053 32.74 0.938 0.046 130.1

reshape these data into tensors of the size 144 x 176 x 150. It can be ob-
served from Table 3 that our method obtains the best metrics for all
cases. Fig. 5 displays the PSNR and SSIM values of the results by differ-
ent methods on color video data with SR = 0.2, ¢ = 20. Fig. 6 shows
the reconstructed results by different methods on the color video Miss-A
with SR = 0.2 and ¢ = 20, and it is evident that our method obtains a
clear result. Results by other methods, even including the deep denoiser-
based method DP3, are not satisfactory for remaining noise or inferior
completion effectiveness.

6.4. Hyper-spectral video (HSV)

In this experiment, a hyper-spetral video® of size 480X 752 x
20(band) x 20 (frame) is selected as a 4D data to test the strength of
different methods. Considering the computational limitation, all spa-
tial slices of HSV are downsampled by us, and then we reshape it into
a smaller tensor of size 120 x 120 x 400. The sampling rates (SR) and
noise level ¢ are the same as in the experiments on color videos and
the quantitative results and visual results by all considered methods are
listed in Table 4 and Fig. 7, respectively. It is explicit that our method
outperforms other methods both quantitatively and visually.

6.5. Color image with structural missing

In this part, we test all the methods on color images from Urban100
datasets [14] with structural missing and Gaussian noise corruptions
with the noise level ¢ = 15 in all RGB channels. Table 5 exhibits the
quantitative metrics by different methods on color images (#68,#82,
#84, #87 in Urban100 datasets) with different types of missing

5 http://openremotesensing.net/knowledgebase/hyperspectral-video/
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areas. Fig. 8 shows the corresponding reconstructed results on the
color images (#82, #84, #87) by all methods.

It could be obviously observed that our method made more accurate
results in more intricate structural-missing situations, and DP3LRTC fails
to the structural information while DAPLRTC struggles hard with noises.

6.6. Ablation study

Our method consists of three important modules, including the low-
rankness (LR) part, denoiser (Dn), and inpainter (Ipt). We conduct the
ablation study by testing different combinations of these three regular-
izers on whole MSIs in CAVE dataset with SR = 5% and noise level ¢
= 10. We can see that our method without the low-rankness regular-
ization, which considers the decoupled data degradation process, could
also generate a good result, and obviously, results of the model when
all priors are considered outperform other cases, which could clearly
demonstrate the effect of our model. Meanwhile, we also vary the low-
rank regularization with LRMF[40], HaLRTC[23], TNN[10], DCT-based
TNN (DCTNN) [11] to examine the effectiveness of different low-rank
tensor regularizers. We show all quantitative metrics in Table 6, the re-
sults by the model incorporating the considered DCTNN in this work
have an improvement over others.

6.7. Parameter analysis and convergence behaviour

We conduct experiments on the grayscale video named Carphone
with SR =10% and ¢ = 15 to test effects from different values of pa-
rameters f and u, which affect the performance at most. In Fig. 9, We
report the PSNR and SSIM values of the restored results for different g/,
with all other parameters held constant. Obviously, the effectiveness of
our method is sensitive to # and u, and it would be better to adjust their
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Table 5
Quantitative results by various methods on color images (#68,#82, #84, and #87 in Urban100
datasets) with different structural missing areas and noise level ¢ = 15. The best and second best
values are highlighted by boldface and underline, respectively.
Mask Type Typel Type2 Type 3 Type 4 Time (s)
Method PSNRt  SSIMf  PSNRt  SSIM?  PSNRt  SSIMt  PSNRt  SSIMf
Observed 12.81 0.465 17.03 0.567 18.44 0.619 14.39 0.552 -
HaLRTC 12.88 0.488 23.44 0.666 24.23 0.730 21.40 0.669 6.2
TNN 21.38 0.619  22.97 0.625  23.09 0.680  21.03 0.624 0.4
DTNN 22.46 0.670 25.36 0.729 24.66 0.771 22.07 0.710 157.5
FaNTRC 12.88 0.493 22.98 0.686 23.39 0.746 20.32 0.682 4.6
LTNN 22.07 0.653 24.12 0.665 24.03 0.725 21.78 0.663 7.4
RTCDLN 12.80 0.516 19.07 0.697 20.47 0.752 15.04 0.661 89.3
TCTV 23.43 0.729 25.48 0.772 27.30 0.837 23.81 0.788 10.0
GTNN 22.16 0.641 23.85 0.638 23.41 0.692 22.93 0.670 3.7
DP3LRTC 21.68 0.786  29.39 0.952  28.34 0.869  24.17 0.883  47.1
DAPLRTC 23.97 0.728 25.38 0.741 26.43 0.796 23.89 0.762 3.0
DAP+ 27.29 0.908 32.37 0.970 30.66 0.933 26.87 0.928 18.1
Table 6
Quantitative results by various combinations of different terms across 32 MSIs in the Cave dataset with SR =
5% and ¢ = 10. The best values are highlighted in bold.
IR DCTNN DCINN  DCTNN LRMF HaLRTC  TNN DCTNN
[11] [40] [23] [10] (Ours)
DN v v v v v v v
Ipt v v v v v v v
PSNR1? 27.33 28.03 29.91 29.20 30.63 31.23 31.45 31.95 31.91 32.14
SSIM?  0.739 0.759 0.746 0.802 0.793 0.867 0.871 0.888 0.889  0.897
SAM | 23.313 12.446 18.067 9.853 16.478 10.010 10.410 8.721 8.992 8.159
28.6 0.9 28.6 0.9
28
28 0.86 0.86
g 27.4 e
5274 0825
N
= 26.8 =
Z.26.8 =
Z 262 0.78%
262
25.6 0.74
107 102 107! 10° 10! 10% 10° 107 10° 107! 10° 10" 10° 10°
Parameter p Parameter 3
Fig. 9. The PSNR and SSIM values of results by our method with different y, # on the Video Carphone (SR = 10%, ¢ = 15).
SR 7. Conclusions
——Variable X'
g; o +¥:E:E}:Z ] We propose a novel low-rank noisy tensor completion method for
E multi-dimensional visual data. First, the DCT-based TNN is adopted to
O characterize the global high-correlated structure of tensors. Then, we
_E resort to the plug-and-play framework to introduce data-driven priors
= expressed by convolutional neural networks. Unlike previous methods
mlo,a | | using CNN denoiser, we decouple the degradation into two parts, i.e.,
the loss of data values and the impact of noise, by formulating two
0 5 0 20 25

15
#lterations

Fig. 10. The relative changes of the variables W, X, Y, Z on the video data
Carphone with SR=5% and ¢ = 10.

values near 1. Meanwhile, in Fig. 10, we plot relative changes of vari-
ables in our algorithm on the video data Carphone with SR =5% and
o = 10. We could not only theoretically establish the convergence of our
model, but also empirically see from Fig. 10 that all variables converge
rapidly and meet the stop criteria at the 28-th iteration (the convergence
criteria is set to 1073).
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implicit regularizers in our model. Thus, after developing an ADMM-
based algorithm, it is convenient for us to plug in a CNN denoiser and a
CNN inpainter with degradation accordance. Furthermore, the conver-
gence of the solution algorithm is theoretically substantiated. Numer-
ical experiments are conducted on various types of multi-dimensional
images to demonstrate that our method can outperform state-of-the-
art methods, additionally, the great performance on CS-MRI demon-
strates the proposed model’s ability to generalize across other applica-
tions for multi-dimensional imaging data. However, for tasks involving
different degradation processes, the proposed approach still requires re-
formulating the model and re-designing the solving algorithm. Addition-
ally, compared to existing methods with supervised learning based deep
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neural networks, the runtime of the proposed method is slower, which
constitutes a key limitation in applications requiring real-time process-
ing. In the future, we will focus on generalizing this framework to other
tensor recovery tasks, not limited to imaging data. Furthermore, im-
proving the computational efficiency of our method is also an important
consideration for future research.
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