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 a b s t r a c t

This work aims to recover multi-dimensional visual data from limited partial sampling with noisy observations. 
For this typical inverse problem, we first employ the discrete cosine transform (DCT)-based tensor nuclear norm 
(TNN) to depict the global low-rank structure. Then, the overall degradation process is decoupled into two parts, 
i.e., the entries missing and the noise corruption. To recover abundant details in visual data effectively, we 
employ the plug-and-play (PnP) prior framework. Specifically, we formulate two implicit regularization terms 
to integrate two deep convolutional neural networks (CNNs), which are pre-trained for image denoising and 
completion, respectively. The proposed model, which consists of the low-rank part and PnP modules, is effi-
ciently solved using the alternating direction method of multipliers (ADMM). and the theoretical guarantee of 
its convergence is then established. Numerical experiments are conducted to demonstrate the superiority of the 
proposed method compared to state-of-the-art methods on various types of multi-dimensional visual data, and 
the excellent performance on compressive sensing magnetic resonance imaging (CS-MRI) validates the promising 
generalization ability for different multi-dimensional image recovery tasks of the proposed model.

1.  Introduction

With the widespread use of multi-sensor technology, many real-
world visual data, e.g., videos [1], hyper/multi-spectral images 
(HSIs/MSIs) [2], and magnetic resonance imaging (MRI) data [3], are 
often multi-dimensional. However, limitations of imaging environments 
or devices for real-world applications often result in image degrada-
tion, such as noise corruption, blur, and under-sampling, which can se-
riously affect subsequent applications like semantic segmentation and 
object detection. Therefore, it is essential to recover high-quality multi-
dimensional imaging data from degraded observations. In this study, 
we focus on a typical multi-dimensional visual data recovery problem, 
namely the noisy tensor completion, where the partially observed en-
tries of original visual data are corrupted with noise. When the degra-
dation is determined, introducing reasonable prior knowledge of the vi-
sual data within the maximum a posteriori (MAP) framework becomes 
the critical point. On account of the low-dimensional structures main-
tained by many real-world multi-dimensional visual data, researchers 
have made significant efforts to exploit the matrix/tensor low-rankness 
to characterize the overall low-dimensionality [4]. Unlike the matrix 
case, the tensor format (i.e., the multi-way array) is naturally suitable 
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to represent the multi-dimensional visual data, preserving their inherent 
structural information better. Therefore, tensor low-rankness is widely 
utilized for restoring multi-dimensional imaging data and has achieved 
great success in the past decade [5].

However, the rank of the tensor is not uniquely defined, such as the 
Tucker rank [6,7], the CANDECOMP/PARAFAC (CP) rank [8], the ten-
sor tubal-rank [9,10], which are derived from various tensor decompo-
sition paradigms. Among these definitions of tensor rank, the last one, 
defined based on the tensor singular value decomposition (t-SVD) [9] 
framework which is originally defined specifically for third-order ten-
sors, is fit for processing various multidimensional imaging data. As min-
imizing the tubal-rank is NP-hard, the tensor tubal nuclear norm (TNN), 
a convex surrogate of the tensor tubal-rank, and the theoretical guaran-
tee for exact recovery are proposed in [10]. Consequently, the t-SVD has 
garnered considerable attention in recent studies and shown results in 
different tensor recovery tasks [11–13].

Meanwhile, multidimensional images retain abundant spatial de-
tails, which could not be fully captured by the tensor low-rankness prior 
alone. Therefore, some additional prior knowledge is necessary to bet-
ter preserve these details. For example, the nonlocal regularizer is intro-
duced in [15] to characterize the nonlocal self-similarity. Alternatively, 
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Fig. 1. The recovered results from different PnP-based frameworks on the color image (#68 in Urban100 [14] dataset) with structural missing (the noisy level 𝜎 = 15) 
and the HSV data with random missing (SR = 0.2, 𝜎 = 20). The PnP-Denoiser struggles with the local structural patterns while the PnP-Inpainter fails to reconstruct 
the fine details, and the proposed DAP+, which incorporates decoupled degradation information, preserves spatial geometries and details more effectively.

with the help of the plug-and-play (PnP) framework, prior knowledge 
from a denoising algorithm can be incorporated [16]. Moreover, as deep 
learning advances rapidly, various deep learning-based denoising tech-
niques, which are pretrained on plenty of natural images, can be adopted 
for leveraging the data-driven prior knowledge within the flexible PnP 
framework, and the promising performance of this approach is demon-
strated by the excellent experimental results of [17,18]. Nevertheless, 
[19] notes that the plugged-in deep learning-based algorithms, with a 
high model capacity, are not limited to expressing data-driven priors. 
They are also expected to undertake part of the degradation, and better 
performance can be achieved when the considered degradation (in their 
training stage) is consistent with that of the problem to be solved.

In this work, we tackle the challenging noisy tensor completion prob-
lem, in which the degradation consists of both undersampling and noise 
corruption. Compared to the counterparts for the tensor completion 
task, existing methods for noisy tensor completion commonly incorpo-
rate a fidelity term ‖Ω() − ‖2𝐹  to mitigate the impact of the noise 
corruption [20]. Although leveraging tensor low-rank priors is proficient 
at capturing the overall low-dimensional structure of multidimensional 
visual data, it is still struggling to precisely preserve fine details. From 
this perspective, the idea of employing pretrained deep neural networks 
under the PnP framework for well detail preservation in tensor com-
pletion methods [17,19] can be considered for noisy tensor completion. 
However, existing tensor completion methods either consider the deep 
denoiser [17,21] or the deep inpainter [19] in an independent usage 
context. The degradation considered in these employed pretrained deep 
neural networks is not consistent with that of noisy tensor completion, 
limiting the performance of the direct use of the idea of deep PnP. To 
address these limitations, we propose a novel approach that explicitly 
decouples the degradation of noisy tensor completion into two compo-
nents: pixel loss and noise corruption. Then, two implicit regularizers, 
whose subproblems are respectively handled by a deep inpainter and a 
deep denoiser, are established to introduce the degradation accordant 
data-driven prior. 

As discussed above, we propose to combine the tensor low-rank prior 
with the degradation accordant data-driven prior under the PnP frame-
work. Specifically, we leverage the discrete-cosine-transform (DCT)-
based TNN to capture the tensor low-rankness instead of TNN as DCT 
has been shown to be more suitable for visual data with its reflective 
boundary [11]. On the other hand, as for the PnP prior, commonly used 
deep learning methods are typically designed only for either image in-
painting (deep inpainter) or denoising (deep denoiser), focusing on re-

constructing low-frequency information (e.g., local spatial structures) 
or high-frequency details (e.g., sharp edges and fine textures), respec-
tively. Therefore, we propose decoupling the degradation into the pixel 
loss and the noise corruption, and simultaneously introduce two deep 
convolution neural networks (CNNs), which are pre-trained respectively 
for denoising and completion, to capture the low-frequency and high-
frequency features concurrently. Fig. 1 presents representative exam-
ples of a color image (#68 from the Urban100 [14] dataset) and hyper-
spectral video (HSV) data. Moreover, with the usage of 2D fast Fourier 
transform (2D FFT), we convert these results on color image #68 into 
the k-space. In the context of k-space, low-frequency information is pre-
dominantly concentrated in the central region, while high-frequency
information is distributed across the peripheral areas. Fig. 2 illustrates 
the error map of the reconstructed results compared to the groundtruth 
in the Fourier domain on the color image #68. It is evident that our de-
coupling strategy is very effective not only in preserving low-frequency 
information but also in mitigating high-frequency distortions, which 
leads to an excellent performance of the proposed method in depicting 
fine details and structural patterns in multi-dimensional imaging data.

In a nutshell, our contributions are summarised as follows:

• We propose a novel noisy tensor completion model for multi-
dimensional visual data, including videos, multi-spectral images, and 
hyperspectral videos. In the proposed model, DCTNN is adopted as a 
low-rank regularizer to exploit the intrinsic low-dimensional struc-
ture of tensors. Meanwhile, two implicit regularizers are incorpo-
rated to leverage the degradation accordant data-driven prior for
effective details and geometric structure preservation within the 
plug-and-play framework.

• To optimize the proposed model, we design an ADMM-based algo-
rithm. The degradation in noisy tensor completion is decoupled into 
the noise and the undersampling parts. Thus, our ADMM-based al-
gorithm formulates the two implicit-regularizer-related subproblems 
as a denoising problem and an inpainting problem, respectively. This 
allows us to plug in off-the-shelf denoising and inpainting CNNs, 
which are pretrained on numerous natural image data and are read-
ily accessible. Moreover, we theoretically establish the convergence 
of the proposed algorithm, which is quite difficult when the implicit 
regularization and deep neural network are evolved.

• Numerous experiments are conducted on various multi-dimensional 
visual data. Results demonstrate that our method outperforms state-
of-the-art methods, the effectiveness of our degradation decoupling 
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Fig. 2. The amplitude error map of the recovered results (color image #68) in the Fourier domain. The denoiser concentrates more on image details yielding less 
error in the high-frequency part, while the inpainter can better reconstruct the structure resulting in less error in the low-frequency part. Our DAP+ can take both 
advantages.

strategy and different low-rankness regularizers are illustrated in the 
ablation study. Moreover, experiments on compressive sensing MRI 
show that the proposed method maintains a good generalization abil-
ity.

This work is an extension of our previous work published in [19]. 
The new material is the following: a) the proposed method focuses on a 
more challenging tensor restoration problem, namely noisy tensor com-
pletion; b) we utilize discrete cosine transform (DCT)-based tensor nu-
clear norm to characterize the global low-rank structure; c) to introduce 
the data-driven prior and fully leverage the degradation information, a 
deep denoiser and a deep inpainter are employed as the implicit regu-
larizers within the PnP framework; d) the theoretical guarantee of the 
convergence of the solving algorithm is established; and e) we present 
more extensive experimental results on various multi-dimensional im-
ages.

The remaining sections of this paper are organized as such: Section 2 
presents a brief survey of related work. The fundamental preliminaries 
related to the tensor are introduced in Section 3. Sections 4 and 5 out-
line the primary findings of this work. Numeric experiments, ablation 
studies, and corresponding results are presented in Section 6. Finally, 
conclusions are drawn in Section 7.

2.  Related work

2.1.  Low-rank tensor recovery

As mentioned earlier, the definition of tensor rank is not unique, and 
many types of tensor rank, defined based on different tensor decom-
position methods, have been proposed. Tensor decomposition methods 
typically factorize the tensor into a series of sub-factors or sub-tensors, 
similar to matrix factorization. and four major decomposition schemes 
have been widely investigated recently and applied to various tensor 
recovery tasks, such as tensor completion. One of the earliest and most 
widely used tensor decomposition techniques is the Tucker decomposi-
tion [6]. It decomposes a 𝑁-order tensor  ∈ ℝ𝑛1×𝑛2⋯×𝑛𝑁  into 𝑁 sub-
matrices along each mode and a core tensor that characterizes mutual 
interactions across different modes, which can be formulated as:
 =  ×1 𝐀1 ×2 𝐀2 ⋯ ×𝑁 𝐀𝑁 ,

where ×𝑘 denotes the mode-𝑘 tensor-matrix multiplication [22],  ∈
ℝ𝑟1×⋯×𝑟𝑁  is the core tensor, 𝐀𝑘 ∈ ℝ𝑛𝑘×𝑟𝑘  (𝑘 = 1, 2,⋯ , 𝑁) represent the 
factor matrix, and the N-tuple (𝑟1,… , 𝑟𝑁 ) is the Tucker rank of  . The 
flexibility of capturing mode-wise interactions of tensors makes Tucker 
decomposition a significant tool. Liu et al. [23] proposed a low-rank 
tensor completion (LRTC) method, which utilizes the sum of nuclear 
norms for all mode-n unfolding matrices of a tensor as a convex surro-
gate of Tucker rank. Tong et al. [24] proposed and validated a formu-
lation that reinterprets the Tucker model as a CP decomposition with 

low-rank factor matrices, enabling a more direct and effective approach 
to multilinear rank learning.

The CANDECOMP/PARAFAC (CP) decomposition [8] is a simple and 
interpretable tensor decomposition technique, which decomposes a ten-
sor into a set of factor vectors along different dimensions and represents 
the tensor as the sum of rank-one components formed by the outer prod-
uct of these vectors. The CP decomposition of a tensor  ∈ ℝ𝑛1×𝑛2⋯×𝑛𝑁

can be expressed as

 =
𝑍
∑

𝑧=1
𝜆𝑧𝐚𝑧,1◦𝐚𝑧,2◦⋯ 𝐚𝑧,𝑁 . (1)

where 𝑍 ∈ ℕ+ is the number of rank-one components, 𝜆𝑧 ∈ ℝs are scalar 
weights, ◦ denotes the outer product of vectors, and 𝐚𝑧,𝑖 ∈ ℝ𝑛𝑖 . The min-
imum 𝑍 required to express  is called the CP rank. Although determin-
ing the appropriate CP rank for a tensor remains a challenge [25], for 
many real-world datasets with strong intrinsic low-dimensional struc-
tures, a small CP rank often suffices to achieve an effective representa-
tion and shows promising performance on various tensor recovery tasks 
[5].

The tensor network decomposition [26,27] is also an effective way 
to depict the intrinsic structure of tensors. It provides a framework for 
factorizing higher-order tensors into a set of interconnected small-scale 
factor tensors. This significantly reduces computational complexity and 
memory costs, making it particularly suitable for large-scale tensor data. 
Representative tensor network decomposition methods include tensor 
train (TT) decomposition [26] and tensor ring (TR) decomposition [2]. 
Zheng et al. [28] proposed the fully connected tensor network (FCTN) 
decomposition to establish the comprehensive correlations between ar-
bitrary two factors, which performs well on various tensor recovery 
tasks like the traffic data completion.

The tensor singular value decomposition (t-SVD), induced by the 
well-defined tensor-tensor product (t-prod, see Definition 1), extends 
the matrix SVD to third-order tensors [9]. For a third-order tensor 
 ∈ ℝ𝑛1×𝑛2×𝑛3 , the t-SVD can be formulated as:
 =  ∗𝑡  ∗𝑡 𝐻 ,

where  ∈ ℝ𝑛1×𝑛1×𝑛3  and  ∈ ℝ𝑛2×𝑛2×𝑛3  are orthogonal tensors (see Def-
inition 4),  ∈ ℝ𝑛1×𝑛2×𝑛3  is an f-diagonal tensor (only diagnoal entries of 
all frontal slices are non-zero), the 𝐻  is the conjugate transpose of 
(see Definition 2), ∗𝑡 denotes the t-prod. The tensor tubal rank [29] of 
is defined as the number of non-zero singular tubes (the vectors along 
the third mode) of . On account of the excellent power of capturing the 
global low-dimensional structure information and the “spatial-shifting” 
correlation in tensors [4], the t-SVD framework has attracted increas-
ing attention from many researchers across different applications. Since 
minimizing the tensor tubal rank is NP-hard, a convex surrogate in the 
Fourier domain of tubal rank called the heuristic tensor nuclear norm 
(TNN) is utilized in the tensor completion in [10] with a theoretical 
guarantee. Kernfeld et al. [30] showed that t-prod [9] can be defined 
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based on any invertible linear transforms, which motivated many works 
introducing various transforms into the t-SVD framework like the dis-
crete cosine transform [11], the tight wavelet frame (framelet) [31]. Ad-
ditionally, the t-SVD framework has been generalized to handle higher-
order tensors, further expanding its applicability in data analysis [32]. 
Wang et al. [4] build a novel regularizer term that incorporated low-
rankness and smoothness together to design a high-order tensor recov-
ery model with theoretical exact-recovery guarantees, which demon-
strated impressive performances in tensor completion and tensor robust 
principal component analysis.

Different tensor decompositions maintain specific advantages and 
disadvantages, which are briefly summarized as follows. Tucker decom-
position offers a flexible approach to dimensionality reduction by fac-
toring a tensor into a smaller core tensor and some factor matrices, 
and it excels at capturing multilinear relationships within data. How-
ever, Tucker decomposition lacks unique solutions [22]. In contrast, the 
uniqueness and identifiability of the CP decomposition make it ideal 
for revealing distinct underlying patterns in data, whereas the deter-
mination of CP-rank is NP-hard [25]. Tensor Network decompositions 
are well-suited for handling high-order tensors by factorizing them into 
small-scaled interconnected factor tensors, facilitating efficient compu-
tation and scalability [26]. Nevertheless, existing methods generally rely 
on heuristic strategies [28] to determine the specific network structure, 
i.e., how the factor tensors are connected. The t-SVD is analogous to the 
matrix SVD and is effective at capturing global low-dimensional struc-
tures in multidimensional visual data. While classic t-SVD-based tensor 
decomposition methods were tailored for third-order tensors, some re-
cent advancements, such as [4], generalize to high-order cases. How-
ever, the flexibility for handling the heterogeneous correlations along 
different modes is limited owing to its specific decomposition scheme.

2.2.  Plug-and-play based tensor recovery

Although low-rank tensor recovery methods have succeeded substan-
tially in various real-world applications, the recovery of ample details 
retained in multidimensional images remains a bottleneck. Many re-
searchers introduced additional priors, such as local smoothness and 
non-local similarity, to improve the effectiveness of recovery. Mean-
while, with the help of the flexible Plug-and-Play (PnP) framework, 
state-of-the-art denoisers can be utilized in ADMM or other proximal 
algorithms by formulating an implicit regularizer term [16], and the 
corresponding subproblem can be regarded as a denoiser problem. How-
ever, the limitation of hand-crafted prior on characterizing the data fea-
ture is inevitable. Recently, motivated by the success of deep learning, 
many efforts have been devoted to incorporating deep neural network 
techniques as a data-driven prior term to develop PnP-based models.

Zhang et al. [18] trained a set of specific denoising convolutional 
networks and integrated them into a model-based optimization method 
to solve image deblurring, image denoising, and image super-resolution. 
Zhao et al. [17] introduced the deep data-driven prior into the TNN-
based tensor recovery model and achieved impressive performance in 
tensor completion and image demosaicing. Hu et al. [19] incorporated 
degradation information in the tensor completion task and employed 
deep inpainting networks to introduce degradation accordant deep plug-
and-play prior to the LRTC model.

2.3.  Degradation decoupling strategy

To the best of our knowledge, there are a limited number of investi-
gations that leverage the idea of degradation decoupling. Liu et al. [33] 
proposed a video restoration network specifically designed for Under-
Display Camera (UDC) systems, where the display’s pixel array causes 
complex degradations like diffraction and light attenuation, leading to 
varying light intensity and diverse visual artifacts (e.g., flare and haze) 
over time. The core innovation lies in its decoupling attention module, 
which utilizes a soft mask generation function to analyze each video 

frame and decomposes its degradation into distinct flare and haze com-
ponents, based on the principles of how incident light of varying in-
tensities causes diffraction. Xue et al. [34] focused on the underwater 
image enhancement task and presented a deep neural network with a 
parallel architecture, consisting of a model-inspired haze-removal mod-
ule and a data-driven color-adaptation module, to address the complex 
degradation caused by underwater environments. These two methods 
have shown promising performance for their respective tasks and have 
also demonstrated the effectiveness of the degradation decoupling strat-
egy. It should be noted that these two works leverage the degradation 
decoupling strategy implicitly through the design of deep network mod-
ules, and by utilizing a large amount of labeled datasets to train their 
end-to-end models. This contrasts with our approach. To the best of our 
knowledge, our method is the first to explicitly decouple the degradation 
by the formulation of an optimization model within the plug-and-play 
framework.

3.  Notations and preliminaries

For brevity, we give the main notations for various basic concepts of 
the tensors in Table 1. Then, we provide the basic definitions necessary 
for the proposed model.
Definition 1  (Tensor-tensor product [9]). For third-order tensors  ∈
ℝ𝑛1×𝑛2×𝑛3  and  ∈ ℝ𝑛2×𝑛4×𝑛3 , the tensor-tensor product  =  ∗  is a 
𝑛1 × 𝑛4 × 𝑛3 tensor whose (𝑖1, 𝑖2)-th tube  (𝑖1, 𝑖2, ∶) is obtained by

 (𝑖1, 𝑖2, ∶) =
𝑛2
∑

𝑙
(𝑖1, 𝑙, ∶)⊛(𝑙, 𝑖2, ∶) (2)

where ⊛ denotes the circular convolution between two vectors of the 
same size. 
Definition 2  (Conjugate transpose [29]). For third-order tensors  ∈
ℝ𝑛1×𝑛2×𝑛3 , its conjugate transpose of  , denotes as  𝐻 , can be obtained 
by conjugate transposing all the frontal slices of   and then reversing 
these slices from 2 to the end except for the first slice. 
Definition 3  ( Identity tensor [29]). The identity tensor  ∈ ℝ𝑛1×𝑛1×𝑛3

is a tensor whose first frontal slice is an identity matrix and the others 
are zeros matrices. 
Definition 4  ( Orthogonal tensor [29]). Given a tensor  ∈ ℝ𝑛1×𝑛1×𝑛3 , 
it is orthogonal if  ∗  𝐻 =  𝐻 ∗  = . 
Theorem 1  (t-SVD [29]). Given a third-order tensors  ∈ ℝ𝑛1×𝑛2×𝑛3 , the 
t-SVD of it can be formulated as
 =  ∗  ∗ 𝐻 , (3)

where  ∈ ℝ𝑛1×𝑛1×𝑛3  and  ∈ ℝ𝑛2×𝑛2×𝑛3  are orthogonal tensors,  ∈
ℝ𝑛1×𝑛2×𝑛3  is an f-diagonal tensor, the 𝐻  is the conjugate transpose of  . 

Definition 5  (Block diagonal operation [10]). The block diagonal op-
eration of  ∈ ℝ𝑛1×𝑛2×𝑛3  is given by

b𝑑𝑖𝑎𝑔( ) ≜

⎡

⎢

⎢

⎢

⎢

⎣

 (1)

 (2)

⋱
 (𝑛3)

⎤

⎥

⎥

⎥

⎥

⎦

, (4)

where bdiag( ) ∈ ℂ𝑛1𝑛3×𝑛2𝑛3 . 
Definition 6  (Tubal nuclear norm (TNN) [10]). The tubal nuclear norm 
of a third order tensor  ∈ ℝ𝑛1×𝑛2×𝑛3 , denoted as ‖ ‖TNN, is defined as

‖ ‖TNN ≜
𝑛3
∑

𝑖
‖̂ (∶, ∶, 𝑖)‖∗, (5)

where ̂  is the result of applying fast Fourier transform (FFT) along the 
third dimension of  , and ‖ ⋅ ‖∗ is the matrix nuclear norm, i.e., the sum 
of singular values. 

Pattern Recognition 172 (2026) 112612 

4 



Y. Hu et al.

Table 1 
Summary of notations.
 Symbol  Description  Symbol  Description
𝑠 ∈ ℝ  Scalar 𝐯 ∈ ℝ𝑛  Vector
𝐌 ∈ ℝ𝑚×𝑛  Matrix  ∈ ℝ𝑛1×⋯×𝑛𝑁  Tensor
𝑖1 𝑖2⋯𝑖𝑁  or Tensor element  (𝑖, 𝑗, ∶)

 The (𝑖, 𝑗)-th tube of
 (𝑖1 , 𝑖2 ,… , 𝑖𝑁 )  a third-order tensor 
 (∶, ∶, 𝑘) or  The 𝑘-th frontal slice of ⟨ ,⟩=

Tensor inner product(𝑘)  a third-order tensor  ∑

𝑖1 ,…,𝑖𝑁
𝑖1⋯𝑖𝑁 𝑖1⋯𝑖𝑁

‖ ‖𝐹= Tensor Frobenius norm  ∗   The tensor-tensor product (t-prod)
√

⟨ ,  ⟩  of two third-order tensors  and 

vec(⋅)
 The vectorization of a tensor

vec−1(⋅)
 The inverse operation of vec(⋅)

ℝ𝑛1×𝑛2×𝑛3 → ℝ𝑛1𝑛2𝑛3×1 ℝ𝑛1𝑛2𝑛3×1 → ℝ𝑛1×𝑛2×𝑛3

It is noteworthy that the FFT utilized in TNN could be replaced by other 
linear invertible transforms, e.g., the DCT is adopted in [11] to take the 
place of the FFT, i.e., ‖ ‖⋆ ≜

𝑛3
∑

𝑖=1
‖̃ (∶, ∶, 𝑖)‖∗, where ‖ ‖⋆ denotes the 

DCT-based TNN and ̃  is the DCT transformed tensor (along the third 
mode) of  .

4.  The proposed model and algorithm

The general plug-and-play based low-rank tensor recovery (LRTR) 
model could be formulated as follows:
min


Φ() + Ψ(). s.t. () + = . (6)

where  ∈ ℝ𝑛1×⋯×𝑛𝐿  is the measurement tensor, 𝐿 is the dimension 
amount,  ∈ ℝ𝑛1×⋯×𝑛𝐿  is the underlying tensor,   represents the dense 
additive noise (we mainly consider the zero-mean Gaussian noise in this 
work), (⋅) is the linear forward operator (in tensor completion, it refers 
to a projection operator Ω(⋅) which maintains the values of the ele-
ments in a specific set Ω while assigning zero to other elements), Φ()
denotes a general regularizer of tensor low-rankness, and Ψ() is an im-
plicit regularizer to introduce the PnP prior. In this work, we leverage 
the DCT-based TNN [11] to capture the intrinsic low-dimensional struc-
tures of multidimensional data. Meanwhile, on account of the zero-mean 
Gaussian noise we thinking about, (6) can be reformulated as

min

𝜆‖‖⋆ +Ψ() + 𝜇

( 1
2
‖() −‖2𝐹

)

+
𝜌
2
‖‖

2
𝐹 , (7)

where ‖‖⋆ denotes the DCT-based TNN of  , ‖‖

2
𝐹  is a Tikhonov 

reuglarizer, 𝜆, 𝜇 and 𝜌 are nonnegative trade-off parameters.
Then, we split Ψ() into two implicit regularizers: 𝜓1() and 𝜓2(). 

We can see in the following part that this simple step enables us to 
decouple the hybrid degradation clearly into the denoising part and the 
inpainting part reasonably. Thus, more pretrained CNNs customized for 
denoising or inpainting are readily available as finding a suitable CNN 
pretrained for both tasks simultaneously is not that easy. Meanwhile, the 
plugged-in CNNs also obey the concept of degradation accordant in [19]. 
Next, after introducing auxiliary variables, the optimization problem 
turns out to be
min

 , ,,
𝜆‖‖⋆ + 𝜓1() + 𝜓2() + 𝜇

( 1
2
‖() − ‖2𝐹 +

𝜌
2
‖‖

2
𝐹

)

s.t. () = (),  =  ,  =  ,
(8)

where  , , and  ∈ ℝ𝑛1×𝑛2⋯×𝑛𝐿  are auxiliary variables. We remark that 
the constraint () = () requires the auxiliary variable  admits to 
after applying the linear forward operator. Therefore, (8) is not strictly 
equivalent to (7). The benefit of introducing the auxiliary variable in 
this usual way is that we can introduce the inpainting networks (See the 
 related subproblem).

Thus, the augmented Lagrangian function of (8) could be written as 
follow:

𝐿( , ,,Λ) =𝜆‖‖⋆ + 𝛽‖ −  +
Λ1
𝛽
‖

2
𝐹 +

𝛽
2
‖−+

Λ2
𝛽
‖

2
𝐹

+
𝛽
2
‖() −() +

Λ3
𝛽
‖

2
𝐹 +𝜓1()+𝜓2()

+𝜇
( 1
2
‖()−‖2𝐹 +

𝜌
2
‖‖

2
𝐹

)

,

(9)

where 𝛽 is the nonnegative penalty parameter, Λ1, Λ2, and Λ3 are the 
multipliers.

Then, following standard steps of the ADMM [35], each variable is 
updated by iteratively solving the corresponding subproblem.

1) The  subproblem is

min


𝜆‖‖⋆ + 𝛽‖ − 𝑘 +
Λ𝑘1
𝛽

‖

2
𝐹 , (10)

where 𝑘 is the number of the iteration, and by the application of tensor 
singular value thresholding (t-SVT) [25], the closed-form solution of 
each  could be exactly determined as

𝑘+1 = t-SVT 𝜆
𝛽

(

𝑘 −
Λ1
𝛽

)

≜ 
(

 − 𝜆
𝛽

)

 , (11)

where  , ,  derive from the tensor singular value decomposition (t-
SVD) of 𝜙𝑖(𝑘) −

𝚲𝑘𝑣,𝑖
𝛽𝑣𝑖
.

2) The subproblem of  at the k-th iteration is

min


𝛽‖𝑘 − −
Λ𝑘1
𝛽

‖

2
𝐹 +

𝛽
2
‖−𝑘−

Λ𝑘2
𝛽

‖

2
𝐹

+
𝛽
2
‖()−(𝑘)−

Λ𝑘3
𝛽

‖

2
𝐹 + 𝜇

(1
2
‖() − ‖2𝐹 +

𝜌
2
‖‖

2
𝐹

)

.

(12)

Denoting ∗ as the adjoint operator of , and letting  = 𝜇 +
𝛽(𝑘) + Λ𝑘3 ,  = 𝛽(𝑘+1 + 𝑘) + Λ𝑘1 + Λ𝑘2 , the solution of (12) can be 
calculated as

𝑘+1=
(

(2𝛽 + 𝜇𝜌) +(𝜇+𝛽)∗
)−1

(

∗()+
)

, (13)

where  is the identity mapping operator and (⋅)−1 denote the inverse 
of an operator

3) The  subproblem can be rewritten as

min


2
𝛽
‖ − 𝑘+1 +

Λ𝑘2
𝛽

‖

2
𝐹 + 𝜓1(). (14)

Under the PnP framework, the CNNs could serve as the proximal opera-
tor of regularization 𝜓1(⋅), i.e., Prox𝜓2 ∶ ℝ𝑛1×𝑛2×𝑛3 → ℝ𝑛1×𝑛2×𝑛3 . Feeding 
 into the CNN pretrained for denoising, we obtain the solution of the 
-subproblem as

𝑘+1 = Denoising 1
𝛽

(

𝑘+1 −
Λ𝑘2
𝛽

)

. (15)

Pattern Recognition 172 (2026) 112612 

5 



Y. Hu et al.

4) Similarly, the subproblem of  can be formulated as

min

𝜓2() +

𝛽
2
‖() −(𝑘+1) +

Λ𝑘3
𝛽

‖

2
𝐹 . (16)

As discussed in [19], we can find that (16) is an inpainting problem 
and can be solved by plugging in an inpainting CNN as follows,
𝑘+1 = Inpainting

(

(𝑘+1) −
Λ𝑘3
𝛽

)

. (17)

5) Finally, multipliers in our method are updated as
⎧

⎪

⎨

⎪

⎩

Λ𝑘+11 = Λ𝑘1 + 𝛽(
𝑘+1 − 𝑘+1)

Λ𝑘+12 = Λ𝑘2 + 𝛽(
𝑘+1 − 𝑘+1)

Λ𝑘+13 = Λ𝑘3 + 𝛽((𝑘+1) −(𝑘+1)).
(18)

The whole optimization scheme based on the ADMM framework is 
described in Algorithm 1.

Algorithm 1 ADMM for solving (7).
Input: (), 𝜆, 𝜇, 𝛽, 𝜌, 𝑘max, 𝑘 = 0
Initialization: : 0 = 0 = 0 = 0 = (), Λ1 = Λ2 = Λ3 = 0.
1: while 𝑘 < 𝑘max do
2:  Update 𝑘+1 using (11).
3:  Update 𝑘+1 using (13).
4:  Update 𝑘+1 using (15).
5:  Update 𝑘+1 using (17).
6:  Update {Λ𝑖}3𝑖=1 using (18).
7: end while
Output: 

5.  Convergence analysis

Now we present the fixed-point analysis of Algorithm 1, whose out-
line follows the counterpart in [36]. We reformulate our optimization 
problem into (20), a similar formulation as presented in [36]. Building 
on this, we introduce the key assumptions for our proof, discuss the rea-
sonableness, and present the main theorem in Section 5.2. Due to space 
constraints, the necessary lemmas and the detailed proof of the main 
theorem are provided in Supplementary Material. 

5.1.  Problem reformulation

Firstly, by the tensor vectorization operation, the model in (8) can 
be reformulated as
min
𝐱,𝐲,𝐳,𝐰

𝜆‖𝐰‖⋆ + 𝜓1(𝐲) + 𝜓2(𝐳) + 𝜇
( 1
2
‖𝐀𝐱 − 𝐨‖2𝐹 +

𝜌
2
‖𝐱‖2𝐹

)

,

s.t.
⎡

⎢

⎢

⎣

𝐰
𝐲
𝐀𝐳

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝐱
𝐱
𝐀𝐱

⎤

⎥

⎥

⎦

,
(19)

where 𝐀 denotes the projection operator, 𝐱,𝐲,𝐳, 𝐰, and 𝐨 are the vector-
ization of  ,  , ,  , and . Let

𝐞 =
⎡

⎢

⎢

⎣

𝐰
𝐲
𝐳

⎤

⎥

⎥

⎦

, 𝑟(𝐞) =
⎡

⎢

⎢

⎣

𝜆‖𝐰‖⋆
𝜓1(𝐲)
𝜓2(𝐳)

⎤

⎥

⎥

⎦

, 𝐯 =
⎡

⎢

⎢

⎣

𝐱
𝐱
𝐱

⎤

⎥

⎥

⎦

,

we can rewrite (19) as follows
min
𝐞,𝐯

𝜇𝑓 (𝐯) + 𝑟(𝐞),

s.t. 𝐞 = 𝐋𝐯,
(20)

where 𝐋 =
⎡

⎢

⎢

⎣

𝐈
𝐈

𝐀

⎤

⎥

⎥

⎦

, and 𝑓 (⋅) denotes a scalar-valued function satis-

fying:

𝑓 (𝐯) = 1
2
‖𝐀[0 0 𝐈]𝐯− 𝐨‖2𝐹 +

𝜌
2
‖[0 0 𝐈]𝐯‖2𝐹

= 1
2
‖(𝐱) −‖2𝐹 +

𝜌
2
‖𝐱‖2𝐹 ,

Then the augmented Lagrangian function of (20) can be written as

𝐿(𝐞, 𝐯, 𝛌) = 𝜇𝑓 (𝐯) + 𝛽
2
‖𝐋𝐞 − 𝐋𝐯 + 𝛌‖22 + 𝑟(𝐞), (21)

where 𝛌 =
[

𝛌1
𝛽

𝛌2
𝛽

𝛌3
𝛽

]⊤
 is the Lagrangian multiplier, {𝛌𝑖}3𝑖=1 are the 

vectorization of {Λ𝑖}3𝑖=1 in (9), and without the loss of generality, the pa-
rameters relating to the multipliers are set to the same value denoted as 
𝛽. Moreover, according to the standard steps of the ADMM, each vari-
able is updated by iteratively solving corresponding subproblems shown 
as follow:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐞𝑘+1 = argmin
𝐞

( 𝛽
2
‖

‖

‖

𝐋𝐞 − 𝐋𝐯𝑘 + 𝛌𝑘‖‖
‖

2

2
+ 𝑟(𝐞)

)

𝐯𝑘+1=argmin
𝐯

(

𝜇𝑓 (𝐯) + 𝛽
2
‖

‖

‖

𝐋𝐞𝑘+1 − 𝐋𝐯 + 𝛌𝑘‖‖
‖

2

2

)

𝛌𝑘+1 = 𝛌𝑘 + 𝐋𝐞𝑘+1 − 𝐋𝐯𝑘+1

. (22)

Let denoting 𝐏𝜆𝜎 =
⎡

⎢

⎢

⎣

Prox𝜆
𝐃𝜎

𝐇

⎤

⎥

⎥

⎦

, where the Prox𝜆 denotes the t-

SVT operator in (11), 𝐃𝜎 (⋅) is the CNN pretrained for denoising as in
(15), 𝐇(⋅) is the CNN for recovering utilized in (17). Then, based on the 
PnP framework, the corresponding solutions could be formulated as
⎧

⎪

⎨

⎪

⎩

𝐞𝑘+1 = 𝐏𝜆𝜎 (𝐋𝐯𝑘 − 𝛌𝑘)

𝐯𝑘+1 = Prox𝜇𝑓 (𝐋𝐞𝑘+1 + 𝛌𝑘)

𝝀𝑘+1 = 𝛌𝑘 + 𝐋𝐞𝑘+1 − 𝐋𝐯𝑘+1
, (23)

where Prox𝜇𝑓  is the proximal operator of the subproblem of 𝐯.
Similar to the interpretation in [36], we call the method formulated 

in (23) alternating directions method of multipliers for DAP+ (ADMM-
DAP+) and say its fixed point is (𝐯⋆, {𝛌⋆𝑖 }3𝑖=1) if
{

𝐯⋆ = 𝐏𝜆𝜎(𝐋𝐯⋆ − 𝛌⋆)
𝐯⋆ = Prox𝜇𝑓 (𝐯⋆ + 𝛌⋆)

. (24)

Let 𝐞𝑘 = 𝐯𝑘 = 𝐯⋆ and 𝛌𝑘𝑖 = 𝛌⋆𝑖  (𝑖 = 1, 2, 3), then we can get 𝐞𝑘+1 = 𝐯𝑘+1 =
𝐯⋆ and 𝛌𝑘+1𝑖 = 𝛌𝑘𝑖 = 𝛌⋆𝑖  (𝑖 = 1, 2, 3). Furthermore, according to the equiv-
alence of plug-and-play alternating directions method of multipliers 
(PNP-ADMM) and plug-and-play Douglas–Rachford splitting (PNP-DRS) 
verified in [36], let 𝐮𝑘 = 𝐋𝐯𝑘 − 𝛌𝑘, we can obtain the corresponding 
Douglas–Rachford splitting for DAP+ (DRS-DAP+) which is formulated 
as
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐯
𝑘+1
2 = Prox𝜇𝑓 (𝐮𝑘)

𝐯𝑘+1 = 𝐏𝜆𝜎(2𝐋𝐯
𝑘+1
2 − 𝐮𝑘)

𝐮𝑘+1 = 𝐮𝑘 + 𝐋𝐯𝑘+1 − 𝐋𝐯
𝑘+1
2

(25)

In addition, we interpret this method as a fixed-point iteration and re-
gard 𝐮⋆ as its fixed point if
{

𝐯⋆ = Prox𝜇𝑓 (𝐮⋆)
𝐯⋆ = 𝐏𝜆𝜎(2𝐋𝐯⋆ − 𝐮⋆)

. (26)

Equivalently, (25) can be rewriten as follows
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐯
𝑘+1
2 = Prox𝜇𝑓 (𝐮𝑘)

𝐯𝑘+1 = 𝐏𝜆𝜎(2𝐋𝐯
𝑘+1
2 − 𝐮𝑘)

𝐮𝑘+1 = 𝐮𝑘 + 𝐋𝐏𝜆𝜎 (2𝐋𝐯
𝑘+1
2 − 𝐮𝑘) − 𝐋Prox𝜇𝑓 (𝐮𝑘)

(27)

Now we can convert the iterations of 𝐮 into:
𝐮𝑘+1 =1

2
𝐮𝑘 + 1

2
(2𝐋Prox𝜇𝑓 − 𝐈)(2𝐋𝐏𝜆𝜎 − 𝐈)𝐮𝑘, (28)

according to (25). As 𝐋 is a operator, we denote that 𝐁 = 𝐋𝐏𝜆𝜎 , Then
(28) can be rewritten as
𝐮𝑘+1 = 𝐌(𝐮𝑘), (29)

where 𝐌 = 1
2 𝐈 +

1
2 (2𝐋Prox𝜇𝑓 − 𝐈)(2𝐁 − 𝐈), and the subsequent analysis 

will be carried out by studying the contractiveness of the operator 𝐌.
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5.2.  Key assumption and main theorem

It should be noted that if only a denoiser is considered in our method, 
the convergence analysis of Algorithm 1 would extremely follow the cor-
responding part in [36], but the primary difference between this work 
and typical PnP-based methods makes the analysis more complex, so 
new assumptions is required, and we need to verify their reasonability.

We assume 𝐁 =
⎡

⎢

⎢

⎣

Prox𝜆
𝐃𝜎

𝐋𝐇

⎤

⎥

⎥

⎦

∶ ℝ𝑑 → ℝ𝑑 satisfies

‖

(

𝐁 − 𝐈
)

(𝐱1) −
(

𝐁 − 𝐈
)

(𝐱2)‖2 ≤ 𝜖2‖𝐱1 − 𝐱2‖22, (A)

for all 𝐱1, 𝐱2 ∈ ℝ𝑑 for some 𝜖 ≥ 0. Subsequently, it is rational to say 
that 𝐋𝐇 is close to the identity when the recovering CNNs are well-
trained. Thirdly, Prox𝜆 is essentially a t-SVT operator (although it is 
directly applied to the third-order tensor, it can also be viewed as a 
mapping: ℝ𝑑 → ℝ𝑑 with the implicit employment of reshape transfor-
mations, whose operator norms are equal to 1, between the vector and 
the tensor. Here the vectorization and its inverse operation are denoted 
as vec(⋅) and vec−1(⋅), respectively), which can be formulated as:
Prox𝜆() = t-SVT𝜆() ≜  ∗  ∗ 𝐻 , (30)

where  , ,𝐻  are attained by the t-SVD of  , and  is an f-diagonal 
tensor obtained satisfying (𝑖, 𝑖, 𝑘) = max{̃(𝑖, 𝑖, 𝑘) − 𝜆, 0}, where ̃ is the 
Discrete cosine transformed (along the third mode) tensor of . By the 
Lemma 3.19 in [9], we can write that 
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where (𝑖)’s (𝑖 = 1, 2, 3,… , 𝑛3) are the 𝑖-th frontal slices of ,  ∈
ℝ𝑛1×𝑛2×𝑛3 . Similarly, by the unitary invariance of Frobenius norm, we 
denotes the 𝐂𝑛 as DCT matrix and write as :
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where ̃ is the discrete cosine transformed (along the third mode) tensor 
of  . Then we sort all the singular values in descending order of all ̃(𝑖)’s 
as 𝑠1 ≥ 𝑠2 ≥ ⋯ ≥ 𝑠𝑘1 ≥ 𝜆 ≥ ⋯ ≥ 𝑠𝑘2 > 𝑠𝑘2+1 = 0 and consider the unitary 
invariance of orthogonal matrix, then we can directly have
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and

‖Prox𝜆()‖2𝐹 =
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Then it is easy to obtain

‖(Prox𝜆 − 𝐈)()‖2𝐹 =
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It is evident that Prox𝜆 will be close to identity with 𝜆 close to 0. Fur-
thermore, by reshaping 1 and 2 into the vector 𝐱1 and 𝐱2 and utilizing 

the 𝓁2 norm of the vectors, (35) can be formulated as:

‖(Prox𝜆 − 𝐈)(𝐱1)‖2 =

√

√

√

√

√𝑘1𝜆2 +
𝑘2
∑

𝑘=𝑘1+1
(𝑠𝑥𝑘)

2, (36)

and for 𝐱2:

‖(Prox𝜆 − 𝐈)(𝐱2)‖2 =

√

√

√

√

√𝑙1𝜆2 +
𝑙2
∑

𝑙=𝑙1+1
(𝑠𝑦𝑙 )

2. (37)

where (𝑘1, 𝑘2, {𝑠𝑥𝑘}), (𝑙1, 𝑙2, {𝑠
𝑦
𝑙 }) are respectively the numbers of singular 

values of 𝐱1 and 𝐱2 that are greater than 𝜆𝑖 and 0, as well as the 𝑘∕𝑙-th 
(𝑘∕𝑙 = 1,⋯ , 𝑘2∕𝑙2) largest singular values, and we can directly get:

‖𝐱1‖2 =

√

√

√

√

𝑘2
∑

𝑘=1
(𝑠𝑥𝑘)

2, ‖𝐱2‖2 =

√

√

√

√

𝑙2
∑

𝑙=1
(𝑠𝑦𝑙 )

2. (38)

According to the triangle inequality:
(

‖𝐱1‖2−‖𝐱2‖2
)2 ≤ ‖𝐱1−𝐱2‖22 ≤

(

‖𝐱1‖2 + ‖𝐱2‖2
)2, (39)

then

‖(Prox𝜆 − 𝐈)(𝐱1)−(Prox𝜆 − 𝐈)(𝐱2)‖22 ≤
(

‖(Prox𝜆 − 𝐈)(𝐱1)‖2 + ‖(Prox𝜆 − 𝐈)(𝐱2)‖2
)2.

Therefore, the third part of Assumption (A):
‖(Prox𝜆 − 𝐈)(𝐱1)−(Prox𝜆 − 𝐈)(𝐱2)‖22 ≤ 𝜖2‖𝐱1 − 𝐱2‖22 (40)

will be hold if the 𝜆, 𝑘1, 𝑙1, {𝑠𝑥𝑘}(𝑘 = 1, 2,⋯ , 𝑘2) and {𝑠𝑦𝑙 }(𝑙 = 1, 2,⋯ , 𝑙2)
satisfy the following inequality:

(

√

√

√

√

√𝑘1𝜆2+
𝑘2
∑

𝑘=𝑘1+1
(𝑠𝑥𝑘)2+

√
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(𝑠𝑦𝑙 )2

)

2

≤ 𝜖2
(

√

√

√

√

𝑘2
∑

𝑘=1
(𝑠𝑥𝑘)2−

√

√

√

√

𝑙2
∑

𝑙=1
(𝑠𝑦𝑙 )2

)

2

.

⇔
(

‖(Prox𝜆−𝐈)(𝐱1)‖2 + ‖(Prox𝜆 − 𝐈)(𝐱2)‖2
)2 ≤ 𝜖2(‖𝐱1‖2 − ‖𝐱2‖2)2

(41)

The Assumption (A) is reasonable based on the above discussion.
Theorem 2  (Convergence of DAP+). Assume that 𝐁 satisfies assumption
(A) for some 𝜖 ≥ 0. 𝑓 in (20) is 𝜌-strongly convex and differentiable. Then

𝐌 = 1
2
𝐈 + 1

2
(2𝐋Prox𝜇𝑓 − 𝐈)(2𝐁 − 𝐈) (42)

satisfies

‖𝐌(𝐱1) −𝐌(𝐱2)‖ ≤ 1 + 𝜖 + 𝜖𝜇𝜌 + 2𝜖2𝜇𝜌
1 + 𝜇𝜌 + 2𝜖𝜇𝜌

‖𝐱1 − 𝐱2‖

for all 𝐱1, 𝐱2 ∈ ℝ𝑑 . The coefficient is less than 1 if
𝜖

(1 + 𝜖 − 2𝜖2)𝜌
< 𝜇, 𝜖 < 1.

Owing to the limitation of space, the proof of Theorem 2 is presented in 
Supplementary Material.

6.  Experiments results

With a series of experiments, we assess the performance of the pro-
posed degradation accordant plug-and-play for LRTR (DAP+) and com-
pare it with other state-of-the-art methods. Compared methods1 are: 
a Tucker decomposition based-method, HaLRTC [23]; a t-SVD-based 
method that utilizes the tensor nuclear norm as the convex surrogate for 
the tensor tubal rank, TNN [10]; a dictionary-learning-induced method 

1 As some compared methods only consider noise-free tensor completion. We 
remark here that it is necessary and easy to modify their methods for the noisy 
tensor completion problem by replacing the indicator function in their objective 
function with the weighted Frobenius norm. Meanwhile, the hard projection 
step of the intermediate variable should be correspondingly changed to be in 
the same manner as (13).
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Fig. 3. The PSNR and SSIM values of results by various methods on CAVE dataset (SR = 0.05 & 𝜎 = 10.)

Fig. 4. Pseudo color images of restored results by various methods on MSIs Balloons and Superballs (SR = 5% & 𝜎 = 10).

based on the t-SVD framework, DTNN[25]; a tensor ring decomposition-
based method with high computational efficiency, FaNRTC [20]; a t-
SVD-based method with a balanced-unfolding strategy, LTNN [13]; a 
method combining nonconvex regularization and dictionary learning 
within the t-SVD framework, RTCDLN [12]; a t-SVD-based method that 
generates sparsity-inducing regularizers with closed-form thresholding 

functions, GTNN [37]; a method that exploits local smoothness as well 
as the lowr-rankness based the high-order t-SVD framework, TCTV [4]; 
a PnP-based method that combines the tensor low-rank prior and a 
data-driven prior by utilizing a deep denoiser, DP3LRTC [17]; and a 
PnP-based method that combines the tensor low-rank prior and a data-
driven prior by utilizing a deep inpainter, DAPLRTC [19]. As some of the
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Fig. 5. The PSNR and SSIM values of results by various methods on 8 color videos (SR = 0.2 & 𝜎 = 20).

Fig. 6. Visual results by various methods on the color video Miss A (SR = 20% & 𝜎 = 20).

Fig. 7. The restored results by various methods on the HSV data (SR = 20% & 𝜎 = 20).

compared methods are originally designed for the noise-free case, we 
have modified the constraint in their model with the Gaussian noise 
taken into account for fairness.

The multidimensional visual datasets, including multispectral im-
ages (MSIs) from the CAVE dataset2, color images from the Urban100 
dataset [14], color videos from the Yuv dataset3, and hyper-spectral 
video (HSV)4 are chosen to evaluate the performance of different meth-
ods. Additionally, the Supplementary Material provides experimental 
results on the grayscale videos from the Yuv dataset and demonstrates 
the practical value of our method with applications in compressive sens-
ing magnetic resonance imaging (CS-MRI). 

We remark here that different types of data for experiments in this 
work are not included in the training set of the denoiser or inpainter 
employed in our algorithm. It should also be noted that we reshape the 
color videos (CV) and HSV data into third-order tensors in the corre-
sponding experiments.

For MSIs data, we consider three numerical metrics: the Peak signal-
to-noise ratio (PSNR), the structural similarity index (SSIM), and the 
mean spectral angle mapper (SAM), to evaluate the reconstructed result 
of all the methods. For other data, PSNR and SSIM are utilized to mea-
sure the effectiveness of each method, and except for the color image 
and MSI, the gradient magnitude similarity deviation (GMSD) [38] is 
also utilized. Higher PSNR, SSIM values and lower SAM, GMSD values 

2 http://www.cs.columbia.edu/CAVE/databases/multispectral/
3 http://trace.eas.asu.edu/yuv/
4 http://openremotesensing.net/knowledgebase/hyperspectral-video/

indicate better performance. As the PSNR, SSIM, and GMSD are designed 
to measure the quality of natural images, we compute them slice by 
slice for our multidimensional visual data and then report the average
value.

A CNN denoiser is considered in our method: DRUNet in [18], and 
two CNN inpainters are employed in our method: i) CRUNet in [19] for 
random missing, ii) LBAM [39] for structural missing. All experiments 
were conducted on the platform of Windows 10 with an RTX 2080Ti 
GPU, AMD Ryzen9 3950X CPU, and 32RAM.

6.1.  Parameter setting

Referring to the augmented Lagrangian function of our model in (9), 
the parameters that need to be specified are 𝜆, 𝜇, 𝛽 and 𝜌, then let the 
thresholding 𝛾 = 𝜆∕𝛽, where 𝛾 can be singly used for solving the sub-
problem of  . In all experiments, 𝜌 is set to 10−4. For MSIs, grayscale 
videos and color videos, (𝜆, 𝜇, 𝛽) are set to (1,1,1), and 𝛾 ∈ [0.5, 0.7]
,[0.1, 0.4], and [0.9, 1] respectively. For HSV data, (𝜆, 𝜇, 𝛽) are set to 
(1,10,10) and 𝛾 ∈ [5, 10]. Meanwhile we set (𝜆, 𝜇, 𝛽) to (1,1,1) and 
𝛾 = 0.1.

6.2.  Multi-spectral image (MSI)

The CAVE dataset with 32 MSIs of the size 256 × 256 × 31 is con-
sidered in this part. The observation tensors are obtained by i) adding 
zero-mean Gaussian noise with different standard deviations (𝜎) and 
ii) uniformly random sampling with different sampling rates (SRs), re-
spectively. As MSIs are highly inner correlated, we test all the methods 
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Fig. 8. The recovered results by different methods on the color images (#82, #84, and #87 in Urban100 datasets) with structural missing and noisy level 𝜎 = 15.

Table 2 
Quantitative results of various methods averaged across 32 multispectral images (MSIs) with varying SRs and 
𝜎s. The best and second best values are highlighted by boldface and underline, respectively.
SR & 𝜎  3% & 5  5% & 10  10% & 15

Time
 Method  PSNR↑  SSIM↑  SAM↓  PSNR↑  SSIM↑  SAM↓  PSNR↑  SSIM↑  SAM↓

 Observed  14.39  0.197  -  14.47  0.197  -  14.65  0.183  -  -
 HaLRTC  19.20  0.600  29.898  21.52  0.662  26.148  23.80  0.705  23.693  28.3
 TNN  23.91  0.590  30.958  26.12  0.585  31.494  26.22  0.494  32.767 18.39
 DTNN  27.03  0.726  26.974  28.18  0.724  26.386  29.73  0.738  25.155  252.0
 FaNTRC  26.21  0.663  23.998  27.87  0.696  20.565  28.41  0.711  20.728  11.3
 LTNN  27.89  0.745  18.064  28.35  0.677  22.625  27.42  0.773 17.037  113.6
 RTCDLN  24.23  0.608  30.628  26.12  0.663  27.269  28.42  0.740  21.866  279.9
 TCTV  27.98  0.808  20.810  29.09 0.827  20.580 30.30 0.835  19.771  128.5
 GTNN  21.43  0.574  35.734  23.53  0.617  33.660  26.23  0.672  30.468  48.3
 DP3LRTC 28.28 0.822 10.521 29.23  0.809  13.999  29.24  0.731  20.292  186.1
 DAPLRTC  27.39  0.812  11.418  28.66  0.806 13.668  29.09  0.731  19.067  25.4
 DAP+  29.73  0.872  9.595  32.14  0.897  8.159  33.79  0.915  6.848  90.2

with some challenging combinations of the SR and 𝜎 and we list aver-
age quantitative metrics of the results by different methods in Table 2. 
We also report PSNR and SSIM values of the results by different meth-
ods on 32 MSIs with SR = 0.05, 𝜎 = 10 in Fig. 3. Then we concate-
nate the 25-th, 15-th, and 8-th bands of results by all methods on the 
MSIs (Balloons, Superballs) to get Pseudo-color images and show them in 
Fig. 4. It can be observed that the proposed method demonstrates supe-
rior performance among these methods, owing to its inherent strength 
to simultaneously reconstruct both high-frequency and low-frequency 
information. Consequently, the missed structural information is accu-
rately reconstructed, and the noise artifacts are effectively mitigated, as 

demonstrated in Fig. 4. Conversely, it is evident that methods primar-
ily leveraging tensor low-rank priors exhibit limitations in noise removal 
and the accurate recovery of geometric information. DAPLRTC struggles 
with the noise corruption, whereas DP3LRTC generates overly-smooth 
results, which can be attributed to their incomplete consideration of the 
degradation within the PnP framework.

6.3.  Color video

8 color videos of the size 144 × 176 × 3 (color) × 50 (frame) are se-
lected to measure the performance of different methods. Firstly, we
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Table 3 
Quantitative results of various methods averaged across 8 color videos with varying SRs and 𝜎s. The best and 
second best values are highlighted by bold and underlined, respectively.
SR & 𝜎  5% & 10  10% & 15  20% & 20

Time (s)
 Method  PSNR↑  SSIM↑  GMSD↓  PSNR↑  SSIM↑  GMSD↓  PSNR↑  SSIM↑  GMSD↓
 Observed  6.36  0.019  -  6.59  0.026  -  7.07  0.037  -  -
 HaLRTC  19.43  0.574  0.156  21.67  0.592  0.126  23.06  0.531  0.105 51.7
 TNN  20.57  0.508  0.123  25.96  0.615  0.080  24.84  0.503  0.089  101.0
 DTNN  21.89  0.702  0.184  22.86  0.715  0.146  25.25  0.708  0.091  367.6
 FaNTRC 26.16  0.692  0.100  26.81  0.684  0.092  27.90  0.730  0.083  41.3
 LTNN  23.73  0.609  0.116  25.94  0.609  0.087  26.01  0.574  0.086  768.4
 RTCDLN  24.38  0.723  0.132  27.01  0.786  0.095  29.15 0.825 0.069  485.4
 TCTV  25.04 0.772  0.100  27.97  0.782  0.077 29.56  0.792  0.071  275.8
 GTNN  25.29  0.713  0.113  27.53  0.764  0.085  27.37  0.643  0.086  61.2
 DP3LRTC  25.10  0.738  0.106 28.24 0.822 0.071  28.31  0.736  0.074  194.9
 DAPLRTC  25.85  0.761 0.085  26.89  0.723  0.074  26.20  0.603  0.077  101.9
 DAP+  28.61  0.838  0.068  30.14  0.861  0.061  30.82  0.862  0.056  65.4

Table 4 
Quantitative results of all methods on the HSV data with varying SRs and 𝜎s. The best and second best values 
are highlighted via boldface and underline, respectively.
SR & 𝜎  5% & 10  10% & 15  20% & 20

Time
 Method  PSNR↑  SSIM↑  GMSD↓  PSNR↑  SSIM↑  GMSD↓  PSNR↑  SSIM↑  GMSD↓
 Observed  9.18  0.020  -  9.40  0.034  -  9.87  0.058  -  -
 HaLRTC  15.24  0.428  0.228  19.10  0.564  0.154  21.62  0.583  0.110  69.7
 TNN  22.39  0.677  0.121  26.85  0.738  0.081  25.31  0.642  0.084  151.7
 DTNN  26.31  0.834  0.086  27.52  0.819  0.072  27.30  0.752  0.070  1338.5
 FaNTRC  28.51  0.860 0.074  29.36  0.878  0.064  29.59  0.887  0.060 38.0
 LTNN  23.53  0.712  0.128  25.89  0.702  0.097  25.41  0.653  0.093  767.1
 RTCDLN  25.01  0.807  0.146  27.97  0.875  0.103  30.94 0.913  0.073  774.5
 TCTV  28.19  0.871  0.079  30.23 0.889  0.063 31.56  0.904  0.054  353.3
 GTNN  27.42  0.833  0.105  29.93  0.852  0.072  24.80  0.613  0.092  89.8
 DP3LRTC  28.21  0.868  0.087  30.24  0.875  0.070  30.66  0.872  0.064  387.8
 DAPLRTC  28.76 0.875 0.074  29.89  0.865  0.071  29.73  0.856  0.063  226.5
 DAP+  30.11  0.907  0.065  31.54  0.926  0.053  32.74  0.938  0.046  130.1

reshape these data into tensors of the size 144 × 176 × 150. It can be ob-
served from Table 3 that our method obtains the best metrics for all 
cases. Fig. 5 displays the PSNR and SSIM values of the results by differ-
ent methods on color video data with SR = 0.2, 𝜎 = 20. Fig. 6 shows 
the reconstructed results by different methods on the color video Miss-A
with SR = 0.2 and 𝜎 = 20, and it is evident that our method obtains a 
clear result. Results by other methods, even including the deep denoiser-
based method DP3, are not satisfactory for remaining noise or inferior 
completion effectiveness.

6.4.  Hyper-spectral video (HSV)

In this experiment, a hyper-spetral video5 of size 480 × 752 ×
20(band) × 20 (frame) is selected as a 4D data to test the strength of 
different methods. Considering the computational limitation, all spa-
tial slices of HSV are downsampled by us, and then we reshape it into 
a smaller tensor of size 120 × 120 × 400. The sampling rates (SR) and 
noise level 𝜎 are the same as in the experiments on color videos and 
the quantitative results and visual results by all considered methods are 
listed in Table 4 and Fig. 7, respectively. It is explicit that our method 
outperforms other methods both quantitatively and visually.

6.5.  Color image with structural missing

In this part, we test all the methods on color images from Urban100 
datasets [14] with structural missing and Gaussian noise corruptions 
with the noise level 𝜎 = 15 in all RGB channels. Table 5 exhibits the 
quantitative metrics by different methods on color images (#68,#82, 
#84, #87 in Urban100 datasets) with different types of missing

5 http://openremotesensing.net/knowledgebase/hyperspectral-video/

areas. Fig. 8 shows the corresponding reconstructed results on the 
color images (#82, #84, #87) by all methods. 

It could be obviously observed that our method made more accurate 
results in more intricate structural-missing situations, and DP3LRTC fails 
to the structural information while DAPLRTC struggles hard with noises.

6.6.  Ablation study

Our method consists of three important modules, including the low-
rankness (LR) part, denoiser (Dn), and inpainter (Ipt). We conduct the 
ablation study by testing different combinations of these three regular-
izers on whole MSIs in CAVE dataset with SR = 5% and noise level 𝜎
= 10. We can see that our method without the low-rankness regular-
ization, which considers the decoupled data degradation process, could 
also generate a good result, and obviously, results of the model when 
all priors are considered outperform other cases, which could clearly 
demonstrate the effect of our model. Meanwhile, we also vary the low-
rank regularization with LRMF[40], HaLRTC[23], TNN[10], DCT-based 
TNN (DCTNN) [11] to examine the effectiveness of different low-rank 
tensor regularizers. We show all quantitative metrics in Table 6, the re-
sults by the model incorporating the considered DCTNN in this work 
have an improvement over others.

6.7.  Parameter analysis and convergence behaviour

We conduct experiments on the grayscale video named Carphone
with SR = 10% and 𝜎 = 15 to test effects from different values of pa-
rameters 𝛽 and 𝜇, which affect the performance at most. In Fig. 9, We 
report the PSNR and SSIM values of the restored results for different 𝛽/𝜇, 
with all other parameters held constant. Obviously, the effectiveness of 
our method is sensitive to 𝛽 and 𝜇, and it would be better to adjust their
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Table 5 
Quantitative results by various methods on color images (#68,#82, #84, and #87 in Urban100 
datasets) with different structural missing areas and noise level 𝜎 = 15. The best and second best 
values are highlighted by boldface and underline, respectively.
 Mask Type  Type1  Type2  Type 3  Type 4

Time (s)
 Method  PSNR↑  SSIM↑  PSNR↑  SSIM↑  PSNR↑  SSIM↑  PSNR↑  SSIM↑

 Observed  12.81  0.465  17.03  0.567  18.44  0.619  14.39  0.552  -
 HaLRTC  12.88  0.488  23.44  0.666  24.23  0.730  21.40  0.669  6.2
 TNN  21.38  0.619  22.97  0.625  23.09  0.680  21.03  0.624  0.4
 DTNN  22.46  0.670  25.36  0.729  24.66  0.771  22.07  0.710  157.5
 FaNTRC  12.88  0.493  22.98  0.686  23.39  0.746  20.32  0.682  4.6
 LTNN  22.07  0.653  24.12  0.665  24.03  0.725  21.78  0.663  7.4
 RTCDLN  12.80  0.516  19.07  0.697  20.47  0.752  15.04  0.661  89.3
 TCTV  23.43  0.729  25.48  0.772  27.30  0.837  23.81  0.788  10.0
 GTNN  22.16  0.641  23.85  0.638  23.41  0.692  22.93  0.670  3.7
 DP3LRTC  21.68 0.786 29.39 0.952 28.34 0.869 24.17 0.883  47.1
 DAPLRTC 23.97  0.728  25.38  0.741  26.43  0.796  23.89  0.762 3.0
 DAP+  27.29  0.908  32.37  0.970  30.66  0.933  26.87  0.928  18.1

Table 6 
Quantitative results by various combinations of different terms across 32 MSIs in the Cave dataset with SR = 
5% and 𝜎 = 10. The best values are highlighted in bold.

 LR  DCTNN  DCTNN  DCTNN  LRMF  HaLRTC  TNN  DCTNN
 [11]  [40]  [23]  [10]  (Ours)

 DN √ √ √ √ √ √ √

 Ipt √ √ √ √ √ √ √

 PSNR↑  27.33  28.03  29.91  29.20  30.63  31.23  31.45  31.95  31.91  32.14
 SSIM↑  0.739  0.759  0.746  0.802  0.793  0.867  0.871  0.888  0.889  0.897
 SAM ↓  23.313  12.446  18.067  9.853  16.478  10.010  10.410  8.721  8.992  8.159

Fig. 9. The PSNR and SSIM values of results by our method with different 𝜇, 𝛽 on the Video Carphone (SR = 10%, 𝜎 = 15).

Fig. 10. The relative changes of the variables  ,  ,  ,  on the video data 
𝐶𝑎𝑟𝑝ℎ𝑜𝑛𝑒 with SR=5% and 𝜎 = 10.

values near 1. Meanwhile, in Fig. 10, we plot relative changes of vari-
ables in our algorithm on the video data 𝐶𝑎𝑟𝑝ℎ𝑜𝑛𝑒 with SR = 5% and 
𝜎 = 10. We could not only theoretically establish the convergence of our 
model, but also empirically see from Fig. 10 that all variables converge 
rapidly and meet the stop criteria at the 28-th iteration (the convergence 
criteria is set to 10−3).

7.  Conclusions

We propose a novel low-rank noisy tensor completion method for 
multi-dimensional visual data. First, the DCT-based TNN is adopted to 
characterize the global high-correlated structure of tensors. Then, we 
resort to the plug-and-play framework to introduce data-driven priors 
expressed by convolutional neural networks. Unlike previous methods 
using CNN denoiser, we decouple the degradation into two parts, i.e., 
the loss of data values and the impact of noise, by formulating two 
implicit regularizers in our model. Thus, after developing an ADMM-
based algorithm, it is convenient for us to plug in a CNN denoiser and a 
CNN inpainter with degradation accordance. Furthermore, the conver-
gence of the solution algorithm is theoretically substantiated. Numer-
ical experiments are conducted on various types of multi-dimensional 
images to demonstrate that our method can outperform state-of-the-
art methods, additionally, the great performance on CS-MRI demon-
strates the proposed model’s ability to generalize across other applica-
tions for multi-dimensional imaging data. However, for tasks involving 
different degradation processes, the proposed approach still requires re-
formulating the model and re-designing the solving algorithm. Addition-
ally, compared to existing methods with supervised learning based deep

Pattern Recognition 172 (2026) 112612 

12 



Y. Hu et al.

neural networks, the runtime of the proposed method is slower, which 
constitutes a key limitation in applications requiring real-time process-
ing. In the future, we will focus on generalizing this framework to other 
tensor recovery tasks, not limited to imaging data. Furthermore, im-
proving the computational efficiency of our method is also an important 
consideration for future research.
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