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Tangent Space Based Alternating Projections for
Nonnegative Low Rank Matrix Approximation

Guangjing Song, Michael K. Ng, and Tai-Xiang Jiang

Abstract—In this paper, we develop a new alternating projection method to compute nonnegative low rank matrix approximation for
nonnegative matrices. In the nonnegative low rank matrix approximation method, the projection onto the manifold of fixed rank matrices
can be expensive as the singular value decomposition is required. We propose to use the tangent space of the point in the manifold to
approximate the projection onto the manifold in order to reduce the computational cost. We show that the sequence generated by the
alternating projections onto the tangent spaces of the fixed rank matrices manifold and the nonnegative matrix manifold, converge
linearly to a point in the intersection of the two manifolds where the convergent point is sufficiently close to optimal solutions. This
convergence result based inexact projection onto the manifold is new and is not studied in the literature. Numerical examples in data
clustering, pattern recognition and hyperspectral data analysis are given to demonstrate that the performance of the proposed method
is better than that of nonnegative matrix factorization methods in terms of computational time and accuracy.

Index Terms—Alternating projection method, manifolds, tangent spaces, nonnegative matrices, low rank, nonnegativity.
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1 INTRODUCTION

NONNEGATIVE data matrices appear in many data anal-
ysis applications. For instance, in image analysis, im-

age pixel values are nonnegative and the associated non-
negative image data matrices can be formed for clustering
and recognition [1], [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12]. In text mining, the frequencies of terms in docu-
ments are nonnegative and the resulted nonnegative term-
to-document data matrices can be constructed for clustering
[13], [14], [15], [16]. In bioinformatics, nonnegative gene
expression values are studied and nonnegative gene expres-
sion data matrices are generated for diseases and genes
classification [17], [18], [19], [20], [21]. Low rank matrix
approximation for nonnegative matrices plays a key role in
all these applications. Its main purpose is to identify a latent
feature space for objects representation. The classification,
clustering or recognition analysis can be done by using these
latent features.

Nonnegative Matrix Factorization (NMF) has emerged
in 1994 by Paatero and Tapper [22] for performing environ-
mental data analysis. The purpose of NMF is to decompose
an input m-by-n nonnegative matrix A ∈ Rm×n+ into m-by-
r nonnegative matrix B ∈ Rm×r+ and r-by-n nonnegative
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matrix C ∈ Rr×n+ : A ≈ BC, and more precisely

min
B,C≥0

‖A−BC‖2F , (1)

where B,C ≥ 0 means that each entry of B and C is
nonnegative, ‖ · ‖F is the Frobenius norm of a matrix, and
r (the low rank value) is smaller than m and n. Lee and
Seung [8] proposed a simple yet effective algorithm with
multiplicative update (MU) rules to solve model (1), i.e.,
minimizing the Frobenius norm between the given nonneg-
ative matrix A and its approximation BC. Their emphasis
on the potential value of the parts-based representation
brought by NMF largely popularized it.

So far, numerous amounts of effort have been devoted to
solve (1). Several well-known and widely used NMF algo-
rithms have been presented, to name a few, the hierarchical
alternating least squares (HALS) [23], the alternating non-
negative least squares (ANLS) [24], the accelerated versions
of MU and HALS [24], the projected gradient (PG) method
and its accelerated version (A-PG) [25], the Nesterov’s opti-
mal gradient method (NeNMF) [26], the active set method
[27], and the version accelerated via block principal pivoting
[28]. In general, the solution of those iterative algorithms
may vary with different initializations. Many approaches
focused on the initialization of NMF based on k-means
and spherical k-means [29], rank-one approximations [30],
the nonnegative singular value decomposition (NNSVD)
[31]. Meanwhile, additional constraints can be imposed as
regularization into (1), e.g., the sparsity [32], [33], [34], the
orthogonality [4], [35], [36], the symmetry [7], [37], [38], [39],
the separability [40], [41], [42], the discriminant [43], [44],
[45], the local topological property [46], [47], [48], [49], etc.
Moreover, the factorization paradigm of NMF is not limited
in the format of (1) and new ones, such as the nonnegative
matrix tri-factorization [4], [50], [51], the deep nonnegative
matrix factorization [52], [53], [54], the non-negative tensor
factorization [55], [56], [57], the recent pioneering disen-
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tangled factorization [58], are constantly emerging. Accord-
ingly, above mentioned NMF techniques and their variants
have shown promising capacity on different applications in
various fields, from text data mining [13], [15], [16], [51],
image classification [6], [44], and face recognition [2], [5],
[11], [12], [43], to multi-view clustering [45], [48], [52], [59],
blind source separation [9], [17], [60], [61], social computing
[39], [50]. For a comprehensive review of the development
of NMF, we refer to the recently edited books [62], [63] and
review papers [64], [65].

In [66], Song and Ng proposed a new algorithm for com-
puting nonnegative low rank matrix (NLRM) approxima-
tion for nonnegative matrices. This approach is completely
different from NMF, aiming to find a nonnegative low rank
matrix X such that the difference between X and the given
nonnegative matrix A is as small as possible. The distance
‖A −X‖2F can be smaller than ‖A −BC‖2F , where B and
C are two nonnegative matrices determined via solving
(1). This implies that directly finding A could obtain a
better low rank matrix approximation, which would be very
important in many applications [56], [67]. Mathematically,
the nonnegative low rank matrix approximation can be
formulated as the following optimization problem

min
rank(X)=r,X≥0

‖A−X‖2F. (2)

The convergence of the their algorithm is studied and
proved. Experimental results for synthetic data and face
images are presented to demonstrate the performance of
NLRM is better than state-of-the-art NMF methods. In ad-
dition, the NLRM method admits a matrix singular value
decomposition (SVD) automatically which provides a sig-
nificant index based on singular values that can be used to
identify important singular basis vectors, while this infor-
mation cannot be obtained by the classical NMF methods.

1.1 The Contribution

In the algorithm proposed in [66], a projection on the fixed-
rank matrices manifold and a projection onto the nonneg-
ative matrices manifold are used alternately to compute a
nonnegative low rank approximation of the given nonnega-
tive matrix. The computational cost of the above alternating
projection method is dominant by the calculation of the
singular value truncations of the matrices derived at each
iteration. The computation burden could be very high when
the matrix size is relatively large.

In this paper, also considering the nonnegative low-rank
matrix approximation, we propose to use the tangent space
of the point in the manifold to approximate the projection
onto the manifold that can reduce the computational cost.
We show that the sequence generated by the new alternating
projections converges linearly to a point in the intersection
of the two manifolds. Moreover, the convergent point is
proved sufficiently close to one of the optimal solutions.
Numerical examples will be presented to demonstrate that
the computational time of the proposed tangent space based
method is less than that of the original alternating projection
method proposed in [66]. Moreover, experimental results in
data clustering, pattern recognition and hyperspectral data
analysis, are given to demonstrate that the performance of

the proposed method is better than that of other nonnega-
tive matrix factorization methods in terms of computational
time and accuracy.

The rest of this paper is organized as follows. In Section
2, we propose tangent space based alternating projection
method. In Section 3, we show the convergence of the pro-
posed method. In Section 4, numerical examples are given
to show the advantages of the proposed method. Finally,
some concluding remarks are given in Section 5.

2 NONNEGATIVE LOW RANK MATRIX APPROXIMA-
TION

In this paper, we are interested in the m × n fixed-rank
matrices manifold

Mr :=
{
X ∈ Rm×n, rank(X) = r

}
, (3)

the m× n non-negativity matrices manifold

Mn :=
{
X ∈ Rm×n,Xij ≥ 0, i = 1, · · · ,m, j = 1, · · · , n

}
,

(4)

and the m× n nonnegative fixed rank matrices manifold

Mrn =Mr ∩Mn =
{
X ∈ Rm×n, rank(X) = r, Xij ≥ 0,

i = 1, ...,m, j = 1, ..., n} . (5)

The proof ofMrn is a manifold can be found in [66]. Let X ∈
Rm×n be an arbitrary matrix in the manifoldMr. Assume
that the SVD of X is denoted as: X = UΣVT where U ∈
Rm×r , Σ ∈ Rr×r , and V ∈ Rn×r . Then by Proposition 2.1
in [68] the tangent space ofMr at X can be expressed as

TMr (X) = {UWT + ZVT }, (6)

where W ∈ Rn×r and Z ∈ Rm×r are arbitrary. Here
·T denotes the transpose of a matrix. For a given m-by-n
matrix Y, the orthogonal projection of Y onto the subspace
TMr (X) can be written as

PTMr (X)(Y) = UUTY + YVVT −UUTYVVT . (7)

The alternating projection method studied in [66] is based
on projecting the given nonnegative matrix onto the m ×
n fixed-rank matrices manifoldMr and the non-negativity
matrices manifold Mn iteratively. The projection onto the
fixed rank matrix set Mr is derived by the Eckart-Young-
Mirsky theorem [69] which can be expressed as follows:

π1(X) =
r∑
i=1

σi(X)ui(X)vTi (X), (8)

where σi(X) is the i-th singular value of X, ui(X) and vi(X)
are their corresponding singular vectors. The projection onto
the nonnegative matrix setMn is expressed as

π2(X) =

{
Xij , if Xij ≥ 0,
0, if Xij < 0.

(9)

Moreover, π(X) refers to a matrix onMrn which is closest
to the given nonnegative matrix X, i.e.,

π(X) = argmin
Y∈Mrn

‖X−Y‖2F , (10)

whereMrn is the nonnegative fixed rank matrices manifold
given as in (5).
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(a)

(b)

Fig. 1. The comparison between (a) the original alternating projection
method and (b) the proposed TAP method.

2.1 Projections Based on Tangent Spaces

The main aim of this section is to introduce the Tangent
space based Alternating Projection (TAP) method. In the
original alternating projection (AP) method proposed in
[66], the projection onto the fixed rank matrix manifold in
computed by the singular values truncation operator given
in (8). Unfortunately, it is expensive when the matrix size
is big. Then in this section, we will make use of tangent
spaces to design the TAP method to compute the nonnneg-
ative low rank matrix approximation which can reduce the
computational cost.

The difference between the AP method and the TAP
method is illustrated in Figure 1 and Figure 2. For the TAP
method, the given nonnegative matrix X0 = A was first
projected onto the manifoldMr by π1(·), i.e., X1 = π1(X0),
and then X2 is derived by projecting X1 onto the manifold
Mn by π2(·). The first two steps are same as the original
AP method. The difference between the two methods starts
from the third step. In the TAP method, the point X2 is
first projected onto the tangent space of the manifold Mr

at X1 by the orthogonal projection PTMr (X1)(·), and then
the derived point is projected from the tangent space to
the manifold Mr, i.e., X3 = π1(PTMr (X1)(X2)). Thus the
sequence generated by the TAP method can be derived as
follows:

X0 = A, X1 = π1(X0), X2 = π2(X1),

X3 = π1(PTMr (X1)(X2)), X4 = π2(X3), · · · ,
X2k+1 = π1(PTMr (X2k−1))(X2k)), X2k+2 = π2(X2k+1), · · ·

where PTMr (X2k−1))(X2k) denotes the orthogonal projec-
tions of X2k onto the tangent space of Mr at X2k−1. The
algorithm can be summarized as the following algorithm.

Let’s analyze the computational cost of each step of the
TAP algorithm. Suppose the skinny SVD decompositions of

Fig. 2. The zoomed region in Figure 1(b).

Algorithm 1 Tangent spaces based Alternating Projection
(TAP) Method
Input: Given a nonnegative matrix A ∈ Rm×n this algo-
rithm computes nearest rank-r nonnegative matrix.
1: Initialize X0 = A;
2: X1 = π1(X0) and X2 = π2(X1)
3: for k=1,2,...,
4: X2k+1 = π1(PTMr (X2k−1))(X2k))
5: X2k+2 = π2(X2k+1);
6: end
Output: X2k+1 when the stopping criterion is satisfied.

X2k−1 are given as X2k−1 = UkΣkV
T
k , k = 1, · · · . By (6),

the tangent space ofMr at X2k−1 can be expressed as

TMr (X2k−1) = {UkW
T + ZVT

k },

where W ∈ Rn×r and Z ∈ Rm×r are arbitrary. By (7), X2k

can be projected onto the subspace TMr(X2k−1) as follows:

PTMr(X2k−1)
(X2k) = UkU

T
kX2k + X2kVkV

T
k

−UkU
T
kX2kVkV

T
k .

Suppose the QR decompositions of (I−UkU
T
k )X2kVk and

(I−VkV
T
k )X2kUk are given as

(I−UkU
T
k )X2kVk = QkRk

and

(I−VkV
T
k )XT

2kUk = Q̂kR̂k,

respectively. Recall that UT
kQk = VT

k Q̂k = 0, then by a
direct computation, we have

PTMr(X2k−1)
(X2k)

= UkU
T
kX2k(I−VkV

T
k ) + (I−UkU

T
k )X2kVkV

T
k

+ UkU
T
kX2kVkV

T
k

= UkR̂
T
k Q̂T

k + QkRkV
T
k + UkU

T
kX2kVkV

T
k

=
(

Uk Qk

)( UT
kX2kVk R̂T

k

Rk 0

)(
VT
k

Q̂T
k

)
:=
(

Uk Qk

)
Mk

(
VT
k

Q̂T
k

)
.

Let Mk = ΨkΓkΦ
T
k be the skinny SVD of Mk which can

be computed using O(r3) flops. Note that (Uk,Qk) and(
Vk, Q̂k

)
are orthogonal, then the skinny SVD of

PTMr(X2k−1)
(X2k) = ΩkΘkΥ

T
k

can be computed by

Ωk = (Uk,Qk) Ψk,Θk = Γk and Υk =
(
Vk, Q̂k

)
Φk.
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It follows that the overall computational cost of
π1(PTMr(X2k−1)

(X2k)) can be expressed as two matrix-
matrix multiplications. In addition, the calculation pro-
cedure involves the QR decomposition of two matrices
of sizes m × r and n × r matrices, and the SVD of a
matrix of size 2r × 2r. The total cost per iteration is of
4mnr + O(r2m + r2n + r3). In contrast, the computation
of the best rank-r approximation of a non-structured m× n
matrix costs O(mnr)+mn flops where the constant in front
ofmnr can be very large. In practice, the cost per iteration of
the proposed TAP method is less than that of original alter-
nating projection method. In Section 4, numerical examples
will be given to demonstrate the total computational time
of the proposed TAP method is less than that of the original
alternating projection method.

3 THE CONVERGENCE ANALYSIS

In this section, we mainly consider the convergence of the
proposed TAP method. The convergence of the original
alternating projection method relate to two manifolds has
been proved in [70]. Known from that, the angle of a point
in the intersection of two manifolds plays a key role in the
whole proof process. In our setting, for B ∈ Mrn, its angle
α(B) can be defined as

α(B) = cos−1(σ(B)) (11)

where

σ(B) = lim
ξ→0

sup
B1∈F ξ1 (B),B2∈F ξ2 (B)

{ 〈B1 −B,B2 −B〉
‖B1−B‖F ‖B2−B‖F

}
,

with

F ξ1 (B) = {B1 | B1 ∈Mr\B,‖B1 −B‖F ≤ ξ,
B1 −B⊥TMr∩Mn

(B)},

F ξ2 (B) = {B2 | B2 ∈Mn\B,‖B2 −B‖F ≤ ξ,
B2 −B⊥TMr∩Mn

(B)},

and TMr∩Mn
(B) is the tangent space ofMr ∩Mn at point

B. The angle can be calculated by the two points in Mr

andMn. A point B inMrn is nontangential if α(B) has a
positive angle, i.e., 0 ≤ σ(A) < 1.

In the following, the main convergence results of Algo-
rithm 1 can be listed as follows.

Theorem 3.1. Let Mr, Mn and Mrn be given as (3), (4)
and (5), the projections onto Mr and Mn be given as (8) and
(9), respectively. Suppose that P ∈ Mrn is a non-tangential
intersection point, then for any given ε > 0 and 1 > c > σ(P),
there exist an ξ > 0 such that for any A ∈ Ball(P, ξ) (the ball
neighborhood of P with radius ξ contains the given nonnegative
matrix A), the sequence Xk generated by Algorithm 1 converges
to a point X∞ ∈Mrn, and satisfy
(1) ‖X∞ − π(A)‖F ≤ ε‖A− π(A)‖F ,
(2) ‖X∞ −Xk‖F ≤ const · ck‖A− π(A)‖F ,
where π(A) is defined in (10).

When the points on the tangent spaces are used as
approximation of the points in the manifold, the following

results can help us to study the distances related to the proof
of Theorem 3.1.

Lemma 3.2 (Proposition 4.3 and Theorem 4.1 in [70]). Let
π1(·) and π(·) be defined as (8) and (10), and P ∈Mr . For each
0 < ε < 3

5 , there exist an s(ε) > 0 and an ε(ε) > 0, such that
for any given Z ∈ Ball(P, s(ε)),

‖π1(Z)− PTMr (π(Z))(Z)‖F < 4
√
ε‖Z− π(Z)‖F , (12)

and

‖π(π1(Z))− π(Z)‖F < ε(ε)‖Z− π(Z)‖F . (13)

Lemma 3.3 (Proposition 2.4 in [70]). Let P ∈ Mr be
given. For each ε > 0, there exists s > 0 such that for all
C ∈ Ball(P, s) ∩Mr, we have:
(i) minD′∈TMr(C)

‖D − D′‖F ≤ ε‖D − C‖F , ∀ D ∈
Ball(P, s) ∩Mr.
(ii) ‖D − π1(D)‖F ≤ ε‖D − C‖F , ∀ D ∈ Ball(P, s) ∩
TMr (C).

For a point Z around P ∈ Mr , the distance between its
projected point on the manifold and the projected point on
the tangent space can be estimated as follows. The proof can
be found in Appendix.

Lemma 3.4. Let PTMr
(·) and π1(·) be given as (7) and (8),

and P ∈ Mr . For each 0 < ε < 3
5 , there exist an s(ε) > 0

and a point Q ∈ Ball(P, s(ε)) ∩Mr such that for any given
Z ∈ Ball(P, s(ε)), we have

‖π1(Z)− PTMr (Q)(Z)‖F < 4
√
ε‖Z−Q‖F . (14)

Lemma 3.5 (Theorem 4.5 in [70]). Suppose P is a nontangen-
tial point with σ(P) < c. Then there exists an s > 0 such that
for all Z ∈Mn ∩Ball(P, s), we have

‖π1(Z)− π(Z)‖F < c‖Z− π(Z)‖F . (15)

Suppose that Q ∈ Mr ∩ Ball(P, s1(ε)) is defined as
Lemma 3.4, then the distance between π(π1(PTMr (Q)(Z)))
and π(Z) can be estimated as follows. And the proof can be
found in Appendix.

Lemma 3.6. Let P ∈ Mrn be given. For each 0 < ε < 3
5 ,

there exist ε1(ε) > 0, ε2(ε) > 0 and s1(ε) > 0 such that for all
Z ∈ Ball(P, s1(ε)),

‖π(π1(PTMr (Q)(Z)))− π(Z)‖F ≤ε1(ε)‖Z− π(Z)‖F
+ ε2(ε)‖Q− π(Z)‖F .

In order to prove the convergence of Algorithm 1, we
also need to estimate the distance between π1(PTMr (Q)(Z))
and π(Z). The proof can be found in Appendix.

Lemma 3.7. Suppose P is a nontangential point in Mrn with
σ(P) < c, and Q ∈ Mr. Then there exists an s > 0 such that
when Z = π2(Q) ∈ Mn ∩ Ball(P, s) and PTMr (Q)(Z) ∈
TMr

(Q) ∩Ball(P, s), we have

‖π1(PTMr (Q)(Z))− π(Z)‖F < c‖Z− π(Z)‖F . (16)

With the above tools in hand, we can list the proof of
Theorem 3.1 as follows.

Proof of Theorem 3.1 Note that Mrn is a smooth manifold
[66] and P ∈ Mrn, then there exists an s′ such that π is
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continuous on Ball(P, s′). In other words, we can find a
constant α > 0 such that

‖π(X)− π(X′)‖F ≤ α‖X−X′‖F ,∀ X,X′ ∈ Ball(P, s′).
(17)

Suppose that ε < 1, and set σ(P) < c < 1 and

ε =
1− c

2(3− c)
ε, ε2(ε) =

1− c
2 + 2α

ε,

where α is a constant given as in (17). It follows Lemma
3.5-3.7 that there exist some possibly distinct radii which
can guarantee (15)-(16) are satisfied. Let s denote the min-
imum of these possibly radii and pick r < s(1−ε)

4(2+ε) , so
that π(Ball(P, r)) ⊆ Ball(P, s4 ). Then ‖π(A) − P‖F < s

4
follows from the latter condition. Denote l = ‖A− π(A)‖F
and note that

l = ‖A−P+P−π(A)‖F ≤ ‖A−P‖F+‖P−π(A)‖F ≤ r+
s

4
.

As π(A) ∈Mrn and note that X1 = π1(A), we have

‖X1 −A‖F = ‖π1(A)−A‖F ≤ ‖π(A)−A‖F = l

and

‖X1 − π(X1)‖F ≤ ‖X1 − π(A)‖F
≤ ‖X1 −A‖F + ‖A− π(A)‖F ≤ 2l.

In order to prove {Xk} derived by Algorithm 1 is conver-
gent, we need to prove {Xk} is a Cauchy sequence. By
Lemma 3.7, there exist an c1 such that

‖X2k+1 − π(X2k+1)‖F ≤ ‖X2k+1 − π(X2k)‖F
≤ c1‖X2k − π(X2k)‖F . (18)

In addition, by Lemma 3.5, there exist an c2 such that

‖X2k − π(X2k)‖F ≤ ‖X2k − π(X2k−1)‖F
≤ c2‖X2k−1 − π(X2k−1)‖F . (19)

Set c = max{c1, c2}, combine (18) and (19) together gives

‖Xk − π(Xk)‖F ≤ c‖Xk−1 − π(Xk−1)‖F . (20)

Then {Xk} is a Cauchy sequence if and only if

{Xk}∞k=1 ⊆ Ball(P, s) (21)

is satisfied. The remaining task is to show (21) is satisfied by
induction. For k = 1,

‖X1 −P‖F ≤ ‖X1 −A‖F + ‖A−P‖F ≤ l +
r

2

≤ 2r +
s

4
≤ s(1− ε)

2(2 + ε)
+
s

4
< s.

Assume that (21) is satisfied when n = k, then it follows
from (20) that

‖Xk − π(Xk)‖F ≤ ck‖X1 − π(X1)‖F ≤ 2lck. (22)

For an arbitrary k and i = 1 or 2, we have

‖Xk−2 − π(Xk−1)‖F
= ‖Xk−2 − π(πi(Xk−2))‖F
= ‖Xk−2 − π(Xk−2) + π(Xk−2)− π(πi(Xk−2))‖F
≤ ‖Xk−2 − π(Xk−2)‖F + ‖π(Xk−2)− π(πi(Xk−2))‖F
≤ ‖Xk−2 − π(Xk−2)‖F + α‖Xk−2 − πi(Xk−2)‖F
≤ (1 + α)‖Xk−2 − π(Xk−2)‖F .

The second part of the second inequality is derived by the
continuous of π, the third inequality is derived by

‖Xk−2 − πi(Xk−2)‖F ≤ ‖Xk−2 − π(Xk−2)‖F , i = 1, 2.

In addition, when k is even, by lemma 3.2, we have

‖π(Xk)− π(Xk−1)‖F < ε(ε)‖Xk−1 − π(Xk−1)‖F . (23)

When k is odd, applying Lemma 3.6 gives

‖π(Xk)− π(Xk−1)‖F
< ε1(ε)‖Xk−1 − π(Xk−1)‖F + ε2(ε)‖Xk−2 − π(Xk−1)‖F
< ε1(ε)‖Xk−1 − π(Xk−1)‖F

+ ε2(ε)(1 + α)‖Xk−2 − π(Xk−2)‖F
≤ 2ε1(ε)ck−1l + 2ε2(ε)(1 + α)ck−2l

= (ε1(ε)c+ ε2(ε)(1 + α))2ck−2l.

Set ε = max{ε(ε), ε1(ε)}, then for an arbitrary k, we have

‖π(Xk)− π(Xk−1)‖F ≤ (εc+ ε2(ε)(1 + α))2ck−2l. (24)

By (24) and Lemma 3.2, we have

‖π(Xk)− π(A)‖F
≤ ‖π(A)− π(X1)‖F + ‖π(X2)− π(X1)‖F

+ ‖
k∑
j=3

π(Xj)− π(Xj−1)‖F

≤ εl + 2εl +
k∑
j=3

(ε1(ε)c+ ε2(ε)(1 + α))2cj−2l

≤ 3εl +
2(ε1(ε)c+ ε2(ε)(1 + α))

1− c
l

=
3ε(1− c) + 2εc+ (1 + α)ε2(ε)

1− c
l ≤ εl. (25)

Thus,

‖P−Xk‖F ≤ ‖P− π(A)‖F + ‖π(A)− π(Xk)‖F
+ ‖π(Xk)−Xk‖F ≤ s/4 + εl + 2l < s,

which shows that (21) is satisfied.
It follows from (24) that the sequence (π(Xk))∞k=1 is a

Cauchy sequence which converges to a point Z∞. Note
that (22) is satisfied, the sequence (Xk)∞k=1 also converges.
In addition, Z∞ = π(Z∞) can be derived by noting that
the projection is local continuous. Moreover, by taking the
limitation of (25) we can get (i). For (ii). Note that

‖π(Xk)−X∞‖F ≤
∞∑

j=k+1

‖π(Xj)− π(Xj−1)‖F

≤2lεck

1− c
+

2(1 + α)lε2(ε)ck−1

1− c
,

and combine with (22), we can get

‖Xk −X∞‖F ≤ ‖Xk − π(Xk)‖F + ‖π(Xk)−X∞‖F

≤
(

2l +
2lε

1− c
+

2(1 + α)lε2(ε)

1− c

)
ck

= βckl,

with a constant β as desired.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3224052

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on February 08,2023 at 04:48:43 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

4 EXPERIMENTAL RESULTS

The main aim of this section is to demonstrate that (i) the
computational time requried by the proposed TAP method
is faster than that by the original alternating projection
(AP) method with about the same approximation ability;
(ii) the performance of the proposed TAP method is better
than that of nonnegative matrix factorization methods in
terms of computational time and accuracy for examples in
data clustering, pattern recognition and hyperspectral data
analysis.

The experiments in Subsection 4.1 are performed under
Windows 10 and MATLAB R2020a running on a desktop
(Intel Core i7, @ 5.1GHz, 32.00G RAM) and experiments in
Subsections 4.2-4.6 are performed under Windows 10 and
MATLAB R2020a running on a desktop (AMD Ryzen 9 3950,
@ 3.49GHz, 64.00G RAM).

4.1 The First Experiment
The synthetic matrices are of the sizes 200-by-200, 400-by-
400 and 800-by-800 and for each size we run nonnega-
tive matrix factorization algorithms (A-MU [24], A-HALS
[24], A-PG1 [25], NeNMF [26], and NNSVDLRC [31]) 10
times. In the experiment, we randomly generated n-by-n
nonnegative matrices A where their matrix entries follow
a uniform distribution in between 0 and 1. We employed
the proposed TAP method and the original alternating pro-
jection (AP) method [66] to test the relative approximation
error ‖A −Xc‖F /‖A‖F , where Xc are the computed rank
r solutions by different methods. The stopping criteria of
each method is that the successive relative approximation
error is less than 10−5 or the maximum number (MaxIter) of
iterations (104 or 102) is attained. In Tables 1 and 2, the same
randomly initial guess is employed in A-MUm A-HALS, A-
PG1, NeNMF. In Tables 3 and 4, different randomly initial
guesses are employed in A-MUm A-HALS, A-PG1, NeNMF
for each trial. However, for NNSVDLRC, which works on
generating initial factor matrices, the initial guesses are get
from NNSVDLRT and then input into A-HALS [24].

Tables 1-4 shows the relative approximation error of the
computed solutions from the proposed TAP method and
the other testing methods for synthetic data sets of different
sizes. We have the following results.

• For the TAP and AP methods, the non-negative con-
straint are only added to the low-rank matrix itself,
while non-negative constraints are simultaneously
added to the two low rank factor matrices. Thus,
the relative approximation errors of TAP and AP
are always lower than those of NMF methods. These
results are confirmed in the tables. Because of tangent
space method, the computational time required by
the proposed TAP method is less than that required
by AP method.

• We find in the tables that the relative approximation
errors computed by the TAP method is the same as
those by the AP method. It implies that the proposed
TAP method can achieve the same accuracy of clas-
sical alternating projection.

• NMF algorithms can be sensitive to initial guesses,
see Tables 1-4. We illustrate this phenomena by dis-
playing the mean relative approximation error and

the range containing both the minimum and the
maximum relative approximation errors by ten initial
guesses randomly generated. According to the tables,
this phenomena is still valid when different (or same)
randomly randomly initializations are used in NMF
methods in each trial or the maximum number (Max-
Iter) of iterations is set to be 104 or 102. However, the
computational time required by the TAP method is
smaller than those required by NMF methods.

4.2 The Second Experiment

4.2.1 Face Data

In this subsection, we consider two frequently-used face
data sets, i.e., the ORL face date set1 and the extended Yale B
face data set 2. The ORL face data set contains images from
40 individuals, each providing 10 different images with the
size 112× 92 . In the extended Yale B face data set, we take
a subset which consists of 38 people and 64 facial images
with different illuminations for each individual. Each testing
image is reshaped to a vector, and all the image vectors
are combined together to form a nonnegative matrix. Here
we perform NMF algorithms and TAP algorithm to obtain
low rank approximations with a predefined rank r. There
are several NMF algorithms to be compared, namely mul-
tiplicative updates (MU) [8], [71], accelerated MU (A-MU)
[24], hierarchical alternating least squares (HALS) algorithm
[23], accelerated HALS (A-HALS) [24], projected gradient
(PG) method [25], accelerated PG (A-PG) [25], NeNMF [26],
and NNSVDLRC [31].

Approximation: Firstly, we compare the low rank ap-
proximation results by different methods with respect to
different predefined ranks r. We report the relative approx-
imation errors in Table 5. For ORL data set, we set r to be
10 and 40 because face data contains 40 individuals and
each individual has 10 different images. Similarly, r is set
to be 38 and 64 for the extended Yale B data set. In the
numerical results, we compare the relative approximation
error: ‖Xc −A‖F /‖A‖F . For the TAP and AP methods the
nonnegative low rank approximation is directly computed,
while for the NMF methods, we multiply the factor matri-
ces. We can see from the table that the relative approxima-
tion errors by TAP and AP methods are lower than those by
NMF methods.

The relative approximation errors on these two face
data sets with respect to different ranks r are plotted in
Figure 3. We can see that as r increases, the gap of relative
approximation errors between TAP (or AP) method and
NMF methods becomes larger. The total computational time
required by the proposed TAP method (2.84 seconds) is less
than that (17.44 seconds) required by the AP method. The
proposed TAP method is more efficient than the AP method.

Recognition: Next, we test the face recognition per-
formance with respect to TAP approximations and NMF
approximations. We use the k-fold cross-validation strategy.
For each data set, the data is split into k (k = 10 for
the ORL data set and k = 64 for the Yale B data set)
groups and each group contains one facial image of each

1. http://www.uk.research.att.com/facedatabase.html
2. http://vision.ucsd.edu/∼leekc/ExtYaleDatabase/ExtYaleB.html
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TABLE 1
The relative approximation error and computation time on the synthetic data sets with MaxIter = 104. The best values are respectively highlighted

by bolder fonts. Here the same randomly initialization is used for NMF methods in each trial.

200-by-200 matrix

Relative approximation error Computation time (s)

Method r = 10 r = 20 r = 40 r = 10 r = 20 r = 40

TAP 0.4574 0.4158 0.3426 0.02 0.01 0.02

AP 0.4574 0.4158 0.3426 0.03 0.02 0.03

A-MU: mean 0.4588 0.4244 0.3717 15.18 8.82 8.97
A-MU: range [0.4588,0.4589] [0.4242,0.4246] [0.3713,0.3720] [14.55,15.44] [8.72,9.00] [8.78,9.14]

HALS: mean 0.4588 0.4243 0.3710 16.29 16.35 16.26
HALS: range [0.4588,0.4589] [0.4242,0.4245] [0.3707,0.3712] [16.05,16.72] [16.16,16.48] [16.05,16.50]

A-PG1: mean 0.4588 0.4243 0.3711 15.40 9.46 9.64
A-PG1: range [0.4588,0.4589] [0.4242,0.4244] [0.3708,0.3714] [15.19,15.54] [9.16,10.08] [9.55,9.72]

NeNMF: mean 0.4588 0.4245 0.3723 0.51 0.59 0.72
NeNMF: range [0.4588,0.4589] [0.4243,0.4247] [0.3716,0.3728] [0.45,0.92] [0.45,0.77] [0.51,0.91]

NNSVDLRC: mean 0.4588 0.4243 0.3712 21.19 20.33 19.07
NNSVDLRC: range [0.4588,0.4588] [0.4243,0.4243] [0.3711,0.3712] [20.77,21.81] [19.91,21.30] [17.98,19.58]

400-by-400 matrix

Relative approximation error Computation time (s)

Method r = 20 r = 40 r = 80 r = 20 r = 40 r = 80

TAP 0.4560 0.4153 0.3419 0.03 0.03 0.06

AP 0.4560 0.4153 0.3419 0.04 0.05 0.13

A-MU:mean 0.4593 0.4288 0.3840 8.77 9.02 9.42
A-MU:range [0.4592,0.4593] [0.4287,0.4290] [0.3838,0.3844] [8.62,8.86] [8.91,9.14] [9.33,9.52]

HALS:mean 0.4592 0.4283 0.3823 16.11 15.69 15.89
HALS:range [0.4591,0.4592] [0.4282,0.4284] [0.3822,0.3825] [15.96,16.34] [15.39,16.12] [15.73,16.09]

A-PG1:mean 0.4592 0.4286 0.3836 9.05 9.17 10.00
A-PG1:range [0.4592,0.4593] [0.4285,0.4287] [0.3834,0.3838] [8.85,9.15] [9.06,9.31] [9.74,10.20]

NeNMF:mean 0.4593 0.4291 0.3856 0.74 0.89 0.92
NeNMF:range [0.4593,0.4594] [0.4289,0.4293] [0.3852,0.3859] [0.56,0.99] [0.71,1.20] [0.84,1.12]

NNSVDLRC:mean 0.4592 0.4283 0.3822 16.62 15.83 15.83
NNSVDLRC:range [0.4591,0.4592] [0.4282,0.4284] [0.3820,0.3824] [15.97,18.55] [15.31,17.03] [15.76,15.99]

800-by-800 matrix

Relative approximation error Computation time (s)

Method r = 40 r = 80 r = 160 r = 40 r = 80 r = 160

TAP 0.4551 0.4145 0.3411 0.14 0.16 0.33

AP 0.4551 0.4145 0.3411 0.20 0.28 0.68

A-MU:mean 0.4607 0.4346 0.3977 9.12 9.44 11.32
A-MU:range [0.4606,0.4607] [0.4345,0.4347] [0.3976,0.3978] [9.05,9.19] [9.28,9.76] [11.08,11.51]

HALS:mean 0.4603 0.4334 0.3945 14.58 15.03 15.20
HALS:range [0.4603,0.4604] [0.4334,0.4335] [0.3944,0.3946] [14.29,14.90] [14.87,15.17] [15.00,15.39]

A-PG1:mean 0.4605 0.4339 0.3980 9.58 10.41 11.16
A-PG1:range [0.4605,0.4606] [0.4339,0.4340] [0.3977,0.3985] [9.44,9.78] [10.25,10.54] [10.99,11.38]

NeNMF:mean 0.4609 0.4356 0.3996 1.08 1.30 2.51
NeNMF:range [0.4609,0.4610] [0.4354,0.4357] [0.3993,0.3997] [0.93,1.18] [1.11,1.40] [2.41,2.64]

NNSVDLRC:mean 0.4603 0.4334 0.3946 14.83 15.09 15.30
NNSVDLRC:range [0.4603,0.4604] [0.4334,0.4335] [0.3945,0.3947] [14.43,15.06] [14.94,15.25] [15.09,15.50]

individual. For instance, the ORL data set is split into k = 10
groups and each group contains 40 facial images. Then, we
circularly take one group as a test data set and the remaining
groups as a training data set until all the groups have
been selected as the test data. Given the original training
data Atrain with the size m × n, where n indicates the
pixels of each face image and m is the amount of training
samples, we first perform NMF and TAP (or AP) algorithms
to obtain non-negative low rank approximations Atrain ≈
BNMFtranCNMFtrain and Atrain ≈ UTAPtrainΣTAPtrainVTAPtrain
respectively with rank r. The new representations of Atrain
are given by UT

NMFtrainAtrain and UT
TAPtrainAtrain respectively

by the NMF methods and the TAP (or AP) method. The

nearest neighbor (NN) classifier is adopted by recognized
the testing data based on the distance between their repre-
sentations and the projected training data.

The face recognition results are exhibited in Table 6.
From this table, we can see that the accuracies based
on TAP approximations are higher than those based on
NMF approximations. To further investigate how the rank
r affects the recognition results, we plot the recognition
accuracy on the extended Yale B data set with respect to r
in Figure 4. It can be found that the recognition accuracy
based on TAP and AP approximations is always better
than those based on NMF approximations. Meanwhile, to
see the features learned by different methods, we exhibit
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TABLE 2
The relative approximation error and computation time on the synthetic data sets with MaxIter = 102. The best values are respectively highlighted

by bolder fonts. Here the same randomly initialization is used for NMF methods in each trial.

200-by-200 matrix

Relative approximation error Computation time (s)

Method r = 10 r = 20 r = 40 r = 10 r = 20 r = 40

TAP 0.4574 0.4158 0.3426 0.01 0.01 0.01

AP 0.4574 0.4158 0.3426 0.01 0.01 0.03

A-MU:mean 0.4593 0.4262 0.3766 0.08 0.11 0.11
A-MU:range [0.4591,0.4594] [0.4259,0.4264] [0.3760,0.3771] [0.07,0.09] [0.10,0.12] [0.11,0.12]

HALS:mean 0.4596 0.4258 0.3742 0.02 0.03 0.05
HALS:range [0.4593,0.4599] [0.4253,0.4260] [0.3738,0.3746] [0.01,0.04] [0.02,0.03] [0.04,0.05]

A-PG1:mean 0.4590 0.4252 0.3746 0.11 0.16 0.20
A-PG1:range [0.4589,0.4592] [0.4249,0.4254] [0.3742,0.3751] [0.09,0.19] [0.15,0.18] [0.20,0.22]

NeNMF:mean 0.4591 0.4251 0.3735 0.07 0.14 0.27
NeNMF:range [0.4590,0.4592] [0.4249,0.4254] [0.3732,0.3738] [0.05,0.12] [0.11,0.18] [0.24,0.30]

NNSVDLRC:mean 0.4592 0.4255 0.3734 0.05 0.04 0.06
NNSVDLRC:range [0.4592,0.4592] [0.4254,0.4255] [0.3734,0.3734] [0.03,0.14] [0.03,0.04] [0.06,0.07]

400-by-400 matrix

Relative approximation error Computation time (s)

Method r = 20 r = 40 r = 80 r = 20 r = 40 r = 80

TAP 0.4560 0.4153 0.3419 0.02 0.03 0.06

AP 0.4560 0.4153 0.3419 0.03 0.05 0.12

A-MU:mean 0.4600 0.4309 0.3887 0.31 0.30 0.33
A-MU:range [0.4598,0.4601] [0.4307,0.4311] [0.3883,0.3890] [0.30,0.34] [0.29,0.31] [0.31,0.35]

HALS:mean 0.4601 0.4300 0.3853 0.05 0.10 0.23
HALS:range [0.4600,0.4602] [0.4298,0.4302] [0.3852,0.3856] [0.05,0.06] [0.09,0.10] [0.23,0.25]

A-PG1:mean 0.4598 0.4306 0.3893 0.50 0.52 0.69
A-PG1:range [0.4597,0.4599] [0.4303,0.4307] [0.3890,0.3897] [0.49,0.56] [0.51,0.53] [0.66,0.72]

NeNMF:mean 0.4596 0.4296 0.3856 0.22 0.42 0.72
NeNMF:range [0.4595,0.4597] [0.4295,0.4298] [0.3852,0.3859] [0.19,0.30] [0.38,0.44] [0.65,0.85]

NNSVDLRC:mean 0.4599 0.4298 0.3852 0.07 0.13 0.29
NNSVDLRC:range [0.4599,0.4599] [0.4298,0.4298] [0.3851,0.3853] [0.07,0.08] [0.12,0.13] [0.28,0.33]

800-by-800 matrix

Relative approximation error Computation time (s)

Method r = 40 r = 80 r = 160 r = 40 r = 80 r = 160

TAP 0.4551 0.4145 0.3411 0.11 0.13 0.26

AP 0.4551 0.4145 0.3411 0.15 0.22 0.53

A-MU:mean 0.4614 0.4364 0.4010 0.83 0.95 1.50
A-MU:range [0.4614,0.4615] [0.4363,0.4364] [0.4008,0.4012] [0.80,0.89] [0.94,0.99] [1.48,1.55]

HALS:mean 0.4614 0.4350 0.3970 0.23 0.45 0.98
HALS:range [0.4613,0.4615] [0.4349,0.4352] [0.3969,0.3971] [0.22,0.23] [0.44,0.46] [0.97,1.00]

A-PG1:mean 0.4610 0.4352 0.4047 1.60 1.68 2.47
A-PG1:range [0.4610,0.4611] [0.4351,0.4352] [0.4044,0.4049] [1.57,1.65] [1.66,1.71] [2.45,2.50]

NeNMF:mean 0.4610 0.4356 0.3996 0.77 1.03 2.02
NeNMF:range [0.4609,0.4610] [0.4354,0.4357] [0.3993,0.3997] [0.70,0.81] [0.91,1.09] [1.92,2.13]

NNSVDLRC:mean 0.4610 0.4347 0.3968 0.35 0.64 1.31
NNSVDLRC:range [0.4610,0.4611] [0.4347,0.4348] [0.3968,0.3969] [0.31,0.42] [0.58,0.69] [1.24,1.38]

the column vectors of BNMFtrain and singular vectors of
UTAPtrain in Figure 5. These vectors are reshaped to the same
size as facial images and their values are normalized to
[0,255] for the display purpose. We see that the nonnegative
low rank matrix approximation methods do not give the
part-based representations, but provides different important
facial representations in the recognition.

4.2.2 Document Data
In this subsection, we use the NIST Topic Detection and
Tracking (TDT2) corpus as the document data. The TDT2
corpus consists of data collected during the first half of
1998 and taken from 6 sources, including 2 newswires

(APW, NYT), 2 radio programs (VOA, PRI) and 2 television
programs (CNN, ABC). It consists of 11201 on-topic docu-
ments which are classified into 96 semantic categories. In
this experiment, the documents appearing in two or more
categories were removed, and only the largest 30 categories
were kept, thus leaving us with 9394 documents in total.
Then, each document is represented by the weighted term-
frequency vector [16], and all the documents are gathered
as a matrix Adoc of size 9394 × 36771. By using the pro-
cedure given in [16], we compute the projected results
UT

TAPATAP = ΣTAPVT
TAP, and then use k-means cluster-

ing method and Kuhn-Munkres algorithm to find the best
mapping which maps each cluster label to the equivalent
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TABLE 3
The relative approximation error and computation time on the synthetic data sets with MaxIter = 104. The best values are respectively highlighted

by bolder fonts. Here different randomly initializations are used in NMF methods in each trial.

200-by-200 matrix

Relative approximation error Computation time (s)

Method r = 10 r = 20 r = 40 r = 10 r = 20 r = 40

TAP 0.4574 0.4158 0.3426 0.01 0.01 0.01

AP 0.4574 0.4158 0.3426 0.01 0.01 0.02

A-MU:mean 0.4588 0.4245 0.3721 3.85 4.14 4.20
A-MU:range [0.4588,0.4589] [0.4243,0.4247] [0.3718,0.3723] [3.71,3.93] [4.08,4.22] [4.14,4.26]

HALS:mean 0.4588 0.4243 0.3711 0.79 1.20 2.25
HALS:range [0.4588,0.4589] [0.4241,0.4244] [0.3706,0.3713] [0.76,0.82] [1.18,1.23] [2.17,2.32]

A-PG1:mean 0.4588 0.4243 0.3713 4.69 4.53 4.83
A-PG1:range [0.4588,0.4589] [0.4242,0.4245] [0.3710,0.3717] [4.61,4.77] [4.40,4.68] [4.65,4.96]

NeNMF:mean 0.4588 0.4246 0.3723 0.48 0.51 0.56
NeNMF:range [0.4588,0.4590] [0.4244,0.4249] [0.3718,0.3728] [0.45,0.69] [0.45,0.71] [0.45,0.72]

NNSVDLRC:mean 0.4588 0.4243 0.3710 0.80 1.22 2.26
NNSVDLRC:range [0.4588,0.4589] [0.4243,0.4245] [0.3709,0.3713] [0.79,0.81] [1.18,1.25] [2.18,2.35]

400-by-400 matrix

Relative approximation error Computation time (s)

Method r = 20 r = 40 r = 80 r = 20 r = 40 r = 80

TAP 0.4560 0.4153 0.3419 0.02 0.03 0.06

AP 0.4560 0.4153 0.3419 0.03 0.05 0.12

A-MU:mean 0.4593 0.4291 0.3846 4.15 4.24 4.43
A-MU:range [0.4593,0.4594] [0.4290,0.4292] [0.3845,0.3847] [4.09,4.24] [4.17,4.30] [4.37,4.49]

HALS:mean 0.4592 0.4284 0.3823 2.65 4.95 7.21
HALS:range [0.4591,0.4592] [0.4283,0.4285] [0.3821,0.3825] [2.61,2.67] [4.89,5.09] [6.93,7.42]

A-PG1:mean 0.4593 0.4288 0.3845 4.54 4.31 4.51
A-PG1:range [0.4592,0.4593] [0.4287,0.4291] [0.3843,0.3847] [4.44,4.81] [4.19,4.43] [4.41,4.58]

NeNMF:mean 0.4593 0.4291 0.3855 0.64 0.71 0.78
NeNMF:range [0.4593,0.4594] [0.4289,0.4294] [0.3851,0.3857] [0.54,0.79] [0.56,0.85] [0.70,0.89]

NNSVDLRC:mean 0.4592 0.4283 0.3825 2.74 5.18 7.30
NNSVDLRC:range [0.4592,0.4592] [0.4283,0.4284] [0.3823,0.3826] [2.70,2.81] [5.11,5.25] [7.07,7.42]

800-by-800 matrix

Relative approximation error Computation time (s)

Method r = 40 r = 80 r = 160 r = 40 r = 80 r = 160

TAP 0.4551 0.4145 0.3411 0.10 0.13 0.27

AP 0.4551 0.4145 0.3411 0.15 0.22 0.54

A-MU:mean 0.4608 0.4350 0.3984 4.29 4.47 5.60
A-MU:range [0.4608,0.4609] [0.4348,0.4351] [0.3983,0.3986] [4.20,4.36] [4.36,4.68] [5.39,6.28]

HALS:mean 0.4603 0.4335 0.3948 7.17 7.45 7.62
HALS:range [0.4603,0.4604] [0.4334,0.4335] [0.3947,0.3948] [7.03,7.38] [7.24,7.57] [7.50,7.76]

A-PG1:mean 0.4606 0.4342 0.4001 4.43 4.86 5.63
A-PG1:range [0.4606,0.4607] [0.4342,0.4343] [0.3999,0.4004] [4.29,4.56] [4.76,4.99] [5.43,5.82]

NeNMF:mean 0.4609 0.4354 0.3995 0.85 1.09 2.05
NeNMF:range [0.4608,0.4610] [0.4352,0.4356] [0.3991,0.3997] [0.74,0.96] [1.00,1.18] [1.99,2.13]

NNSVDLRC:mean 0.4604 0.4335 0.3949 7.23 7.53 7.70
NNSVDLRC:range [0.4604,0.4604] [0.4335,0.4336] [0.3947,0.3950] [7.11,7.40] [7.41,7.63] [7.62,7.85]

label from the document corpus. For NMF methods, we
scale each column of BNMF such that their `2 norms are
equal to 1, and the corresponding scaled CNMF is used for
clustering and label assignment. To quantitatively evaluate
the clustering performance of each method, we selected
two metrics, i.e., the accuracy and the normalized mutual
information (NMI) (we refer to [46] for detailed discussion).
According to Table (7), it is clear that nonnegative low
rank matrix approximation can provide more effective latent
features (UT

TAPATAP = ΣTAPVT
TAP) for document clustering

task. Note that the computational time required by the
proposed TAP method (309.22 seconds) is less than that
(3417.33 seconds) required by the AP method. Again the

results demonstrate that the proposed TAP method is more
efficient than the AP method.

4.3 Separable Nonnegative Matrices

In this subsection, we compare the performance of the
nonnegative low rank matrix approximation method and
separable NMF algorithms. Here we generate two kinds of
synthetic separable nonnegative matrices.

• (Separable) The first case A = BC + N is generated
the same as [40], in which B ∈ R200×20 is uniform
distributed and C = [I20,H

′] ∈ R20×210 with H′
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TABLE 4
The relative approximation error and computation time on the synthetic data sets with MaxIter = 102. The best values are respectively highlighted

by bolder fonts. Here different randomly initializations are used in NMF methods in each trial.

200-by-200 matrix

Relative approximation error Computation time (s)

Method r = 10 r = 20 r = 40 r = 10 r = 20 r = 40

TAP 0.4574 0.4158 0.3426 0.01 0.01 0.01

AP 0.4574 0.4158 0.3426 0.01 0.01 0.02

A-MU:mean 0.4593 0.4261 0.3765 0.08 0.11 0.12
A-MU:range [0.4591,0.4596] [0.4258,0.4265] [0.3761,0.3768] [0.07,0.09] [0.11,0.12] [0.12,0.12]

HALS:mean 0.4596 0.4258 0.3743 0.02 0.03 0.05
HALS:range [0.4594,0.4600] [0.4255,0.4260] [0.3739,0.3748] [0.01,0.02] [0.02,0.03] [0.04,0.05]

A-PG1:mean 0.4591 0.4252 0.3745 0.10 0.16 0.21
A-PG1:range [0.4589,0.4593] [0.4248,0.4255] [0.3739,0.3755] [0.09,0.11] [0.16,0.17] [0.21,0.23]

NeNMF:mean 0.4591 0.4251 0.3734 0.05 0.15 0.28
NeNMF:range [0.4590,0.4593] [0.4250,0.4254] [0.3729,0.3740] [0.05,0.06] [0.12,0.17] [0.24,0.30]

NNSVDLRC:mean 0.4592 0.4255 0.3734 0.03 0.04 0.06
NNSVDLRC:range [0.4592,0.4592] [0.4255,0.4255] [0.3734,0.3735] [0.02,0.03] [0.03,0.04] [0.06,0.06]

400-by-400 matrix

Relative approximation error Computation time (s)

Method r = 20 r = 40 r = 80 r = 20 r = 40 r = 80

TAP 0.4560 0.4153 0.3419 0.02 0.03 0.06

AP 0.4560 0.4153 0.3419 0.04 0.05 0.12

A-MU:mean 0.4600 0.4309 0.3887 0.32 0.32 0.35
A-MU:range [0.4599,0.4603] [0.4306,0.4310] [0.3883,0.3892] [0.31,0.32] [0.31,0.33] [0.34,0.40]

HALS:mean 0.4602 0.4301 0.3854 0.06 0.10 0.24
HALS:range [0.4601,0.4603] [0.4298,0.4303] [0.3852,0.3856] [0.05,0.06] [0.10,0.11] [0.23,0.26]

A-PG1:mean 0.4598 0.4307 0.3892 0.51 0.55 0.72
A-PG1:range [0.4597,0.4598] [0.4304,0.4309] [0.3889,0.3894] [0.50,0.54] [0.54,0.56] [0.70,0.74]

NeNMF:mean 0.4596 0.4295 0.3855 0.24 0.46 0.78
NeNMF:range [0.4595,0.4597] [0.4293,0.4297] [0.3851,0.3857] [0.21,0.28] [0.44,0.47] [0.71,0.90]

NNSVDLRC:mean 0.4599 0.4298 0.3852 0.08 0.14 0.29
NNSVDLRC:range [0.4599,0.4599] [0.4297,0.4298] [0.3851,0.3852] [0.07,0.08] [0.13,0.14] [0.26,0.31]

800-by-800 matrix

Relative approximation error Computation time (s)

Method r = 40 r = 80 r = 160 r = 40 r = 80 r = 160

TAP 0.4551 0.4145 0.3411 0.10 0.13 0.27

AP 0.4551 0.4145 0.3411 0.15 0.22 0.53

A-MU:mean 0.4615 0.4363 0.4009 0.83 0.96 1.50
A-MU:range [0.4614,0.4615] [0.4362,0.4365] [0.4008,0.4011] [0.82,0.84] [0.95,0.97] [1.49,1.52]

HALS:mean 0.4614 0.4350 0.3970 0.23 0.45 0.98
HALS:range [0.4613,0.4615] [0.4349,0.4351] [0.3968,0.3973] [0.22,0.23] [0.44,0.47] [0.96,1.00]

A-PG1:mean 0.4610 0.4351 0.4047 1.61 1.71 2.50
A-PG1:range [0.4610,0.4611] [0.4350,0.4352] [0.4045,0.4050] [1.59,1.64] [1.69,1.75] [2.48,2.53]

NeNMF:mean 0.4609 0.4354 0.3995 0.79 1.09 2.04
NeNMF:range [0.4609,0.4610] [0.4352,0.4356] [0.3991,0.3997] [0.76,0.82] [1.00,1.18] [1.99,2.13]

NNSVDLRC:mean 0.4610 0.4347 0.3968 0.36 0.67 1.36
NNSVDLRC:range [0.4610,0.4611] [0.4347,0.4348] [0.3967,0.3969] [0.30,0.38] [0.63,0.78] [1.25,1.47]

TABLE 5
The relative approximation error on the Yale-B data set and the ORL

data set. The best values and the second best values are respectively
highlighted by bolder fonts and underlines.

Dataset r MU A-MU HALS A- PG A-PG Ne- NNSV- AP TAPHALS NMF DLRC

Extented- 38 0.186 0.182 0.181 0.182 0.187 0.184 0.182 0.181 0.164 0.164
ed Yale B 64 0.160 0.157 0.152 0.152 0.159 0.159 0.159 0.151 0.131 0.131

ORL 10 0.206 0.206 0.205 0.205 0.206 0.206 0.205 0.205 0.204 0.204
40 0.159 0.156 0.155 0.155 0.160 0.158 0.154 0.154 0.147 0.147

containing all possible combinations of two non-
zero entries equal to 0.5 at different positions. The
columns of BH′ are all the middle points of the
columns of B. Meanwhile, the i-th column of N, de-
noted as ni, obeys ni = σ(mi − w̄) for 21 ≤ i ≤ 210,
where σ > 0 is the noise level, mi is the i-th column
of B, and w̄ denotes the average of columns of B.
This means that we move the columns of A toward
the outside of the convex hull of the columns of B.

• (Generalized separable) The second case is generated
almost the same as the first case but simultaneously
considering the separability of rows, known as gen-
eralized separable NMF [42]. For this case, the size of

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3224052

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on February 08,2023 at 04:48:43 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE 6
The recognition accuracy on the Yale-B data set and the ORL data set. The best values and the second best values are respectively highlighted

by bolder fonts and underlines.

Dataset Parameter MU A-MU HALS A-HALS PG A-PG NeNMF NNSVDLRC AP TAP

Yale B r = 38 61.061% 61.143% 61.637% 62.253% 58.306% 60.074% 61.102% 62.130% 66.776% 67.681%
r = 64 69.942% 70.477% 72.821% 72.821% 65.502% 68.586% 69.572% 72.656% 76.563% 76.809%

ORL r = 10 95.750% 96.250% 96.250% 96.250% 96.500% 96.500% 95.750% 96.000% 96.750% 96.750%
r = 40 98.250% 98.000% 98.250% 98.500% 79.250% 98.250% 97.750% 98.500% 98.500% 98.500%

TABLE 7
The accuracy and NMI values of the document clustering results on the TDT2 data set.

Metric MU A-MU HALS A-HALS PG A-PG NeNMF NNSVDLRC AP TAP

Accuracy 52.800% 50.724% 54.322% 53.108% 54.205% 51.661% 54.68% 47.23% 61.294% 61.326%
NMI 0.674 0.651 0.663 0.643 0.681 0.661 0.693 0.667 0.728 0.728
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(a) The ORL data set
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(b) The extended Yale B data set

Fig. 3. Relative approximation errors on the ORL data set (a) and the
extended Yale B data set (b), with respect to the different ranks r.

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0

0.2

0.4

0.6

0.8

MU
A-MU
HALS
A-HALS
PG

A-PG1
NeNMF
NNSVDLRC
AP
TAP

Fig. 4. The recognition accuracy (%) on the extended Yale-B data set
with respect to rank r.

A is set as 78×55 with column-rank 10 and row-rank
12, being the same as [42].

Firstly, we test the approximation ability of TAP and
AP methods, NMF methods, and the successive projection

MU HALS PG NeNMF

A-MU A-HALS A-PG NNSVDLRC

AP TAP

Fig. 5. The first 20 singular vectors of the results by the TAP (or AP)
method and the columns of left factor matrices resulted by NMF methods
when the rank r = 20. These vectors are reshaped to the size of facial
images and their values are adaptively normalized.

algorithm (SPA) [40], [41] for separable NMF for synthetic
separable data. For the generalized separable case, we com-
pare the TAP (or AP) method with SPA, the generalized SPA
(GSPA) [42], and the generalized separable NMF with a fast
gradient method (GS-FGM) [42]. Note that when we apply
SPA on the generalized separable matrix, we run it firstly
to identify the important columns and with the transpose
of the input to identify the important rows. This variant is
referred to SPA*. The noise level σ is logarithmic spaced in
the interval [10−3, 1]. For each noise level, we independently
generate 25 matrices for both separable and generalized
separable cases, respectively. We report the averaged ap-
proximation error in Figures 6 and 7. It can be found that
TAP and AP methods can achieve the lowest average errors
in the testing examples.

The approximation errors of TAP and AP methods are
much lower than separable and generalized separable NMF
methods when the noise level is high. Note that the average
computational time required by the proposed TAP method
(0.0064 seconds) is less than that (0.0165 seconds) required
by the AP method. It is interesting whether a better non-
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T

Fig. 6. Average relative approximation error on separable matrices
(Case 1), with respect to the different values of σ.

T

Fig. 7. Average relative approximation error on generalized separable
matrices (Case 2), with respect to the different values of σ.

T

T

T
T

T

T

Fig. 8. Average accuracy (left) and distance to ground truth (right) for the
different algorithms on generalized separable matrices (Case 2), with
respect to the different σs.

negative low rank matrix approximation could contribute
to a better separable (or generalized separable) NMF re-
sult. To further investigate whether nonnegative low rank
matrix approximation could help separable and generalized
separable NMF methods, we conduct the experiments with
inputting the nonnegative low rank approximation to sep-
arable and generalized separable NMF methods. We adopt
the accuracy and the distance to ground truth defined in
Eqs. (16) and (17) of [42] as the quantitative metrics. The ac-
curacy reports the proportion of correctly identified row and
column indices while the distance to ground truth reports
the relative errors between the identified important rows
(columns) to the ground truth important rows (columns).
We present the computational results in Figure 8. When
the noise level is between 0.1 and 1, the nonnegative low
rank matrix approximation by our TAP method obviously
enhances the accuracy and decrease the distance between
the identified rows (columns) to the ground truth.

4.4 Symmetric Nonnegative Matrices for Graph Clus-
tering
In this subsection, we test TAP and AP methods on the
symmetric matrices. It can readily be found that the output
of TAP and AP algorithms would be symmetric if the
input matrix is symmetric since that the projection onto
the nonnegative matrix manifold or the low rank matrix
manifold would never affect the symmetry. Here symmetric

NMF methods are the coordinate descent algorithm (de-
noted as “CD-symNMF ”) [38], the Newton-like algorithm
(denoted as “Newton-symNMF”) [37], and the alternating
least squares algorithm (denoted as “ALS-symNMF”) [37].

We perform experiments by using symmetric NMF
methods, TAP and AP methods on the synthetic graph data,
which is reproduced from [72] with six different cases. The
data points in 2-dimensional space are displayed in the first
row of Figure 9. Each case contains clear cluster structures.
By following the procedures in [37], [72], a similarity matrix
A ∈ Rn×n, where n represents the number of data points,
is constructed to characterize the similarity between each
pair of data points. Each data point is assumed to be only
connected to its nearest nine neighbors. Given a specific pair
of the i-th and j-th data points xi and xj , we firstly construct
the distance matrix D ∈ Rn×n withDij = Dji = ‖xi−xj‖22.
Then, the similarity matrix is given as

Aij =

 0, if i = j,

e
(
−Dij
σiσj

)
, if i 6= j,

(26)

where σi is the Euclidean distance between the i-th data
point xi and its 9-th neighbor. Then, we perform NMF, TAP
and AP methods for A.

The clustering results of the symmetric NMF methods
and nonnegative low rank matrix approximation are ob-
tained by using the k-means method on B and U respec-
tively. The clustering results are shown in Figure 9. CD-
symNMF method fails in most examples except the example
in the second column. Both Newton-symNMF and ALS-
symNMF methods fail in the example in the fifth column.
However, TAP and AP methods perform well for all the
examples. The average computational time required by the
proposed TAP method (0.0321 seconds) is less than that
(0.1035 seconds) required by the AP method. The proposed
TAP is faster than the AP method.

4.5 Orthogonal Decomposable Non-negative Matrices

In this subsection, we test TAP and AP methods and orthog-
onal NMF (ONMF) methods [4], [35] on the approximation
of the synthetic data and the unmixing of hyperspectral
images. The orthogonal NMF method is a multiplicative
updating algorithm proposed by Ding et al. [4]. We refer to
Ding-Ti-Peng-Park (DTPP)-ONMF. A multiplicative updat-
ing algorithm utilizing the true gradient in Stiefel manifold
is proposed in [35]. We refer to SM-ONMF.

We construct an orthogonal nonnegative matrix B ∈
R100×10, whose transpose is shown in Figure 10. Then a
matrix C ∈ R10×30 is generated with entries uniformly
distributed in [0, 1]. Then, we obtain an orthogonal de-
composable matrix A = BC ∈ R100×30. Next, a noise
matrix based on MATLAB command σ × rand(100, 30) is
added to A. We set σ = 0, 0.02, 0.04, · · · , 0.1. The relative
approximation errors of the results by different methods are
shown in Table 8. We can see that the approximation errors
of TAP and AP methods are the lowest among the testing
examples.

As a real-world application of ONMF, hyperspectral im-
age unmixing aims at factoring the observed hyperspectral
image in matrix format into an endmember matrix and
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Fig. 9. The graph clustering results by the TAP (or AP) method and symmetric NMF methods on 6 cases of synthetic graph data. Different color
represents different clusters.

Fig. 10. An illustration of the generated BT .

TABLE 8
The relative approximation errors (×100) on the orthogonal symmetric

matrix data. The best values and the second best values are
respectively highlighted by bolder fonts and underlines.

σ 0 0.02 0.04 0.06 0.08 0.1

DTPP-ONMF 0.022 2.730 5.231 7.567 9.465 11.232
SM-ONMF 0.016 2.741 5.169 7.533 9.424 14.180

AP 0.000 2.364 4.471 6.529 8.215 9.700
TAP 0.000 2.364 4.471 6.529 8.215 9.700

an abundance matrix. The abundance matrix is indeed the
classification of the pixels to different clusters, with each
corresponding to a material (endmember). In this part, we
use a sub-image of the Samson data set [73], consisting of
95 × 95 = 9025 spatial pixels and 156 spectral bands. We
form a matrix A of size 9025 × 156 to represent this sub-
image. Three different materials, i.e., “Tree”, “Rock”, and
“Water”, are in this sub-image, and we set the rank r as
3. The factor matrices B ∈ R9025×3 and C ∈ R3×156 can
be obtained by the orthogonal NMF methods. We use k-
means and do hard clustering on B ∈ R9025×3 to obtain the
abundance matrix, and we can obtain the i-th feature image
by reshaping its i-th column to a 95×95 matrix. Each row of

TABLE 9
The quantitative metrics of the unmixing results on the hyperspetral
image Samson. The best values and the second best values are

respectively highlighted by bolder fonts and underlines.

Metric DTPP-ONMF SM-ONMF AP TAP

SAD 0.3490 0.4389 0.0765 0.0765
Similartity 0.5887 0.5640 0.9383 0.9383

C represents the spectral reflectance of on material (“Tree”,
“Rock”, or “Water”). As for TAP and AP methods, we
apply singular value decomposition on approximated non-
negative low rank matrices to obtain the left singular value
matrices which contain the first 3 left singular vectors. Then,
we use k-means and do hard clustering on the left singular
matrices to cluster three materials and obtain abundance
matrices and endmember matrices.

To quantitatively evaluate the umixing results, we em-
ploy two metrics. The first one is the spectral angle distance
(SAD) as follows:

SAD =
1

r

r∑
i=1

arccos

(
sTi ŝi

‖si‖2‖ŝi‖2

)
,

where {si}ri=1 are the estimated spectral reflectance (rows
of the endmember matrix) and {ŝi}ri=1 are the groundtruth

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3224052

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on February 08,2023 at 04:48:43 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

Fig. 11. Left: Abundance maps of Rock, Tree, and Water; Right: Re-
flectance of Rock, Tree, and Water. From top to bottom: groundtruth,
DTPP-ONMF, SM-ONMF, AP, TAP.

TABLE 10
Data sets for community detection.

Data set Karate Dolphins Friendship6 Friendship7 Football Polbooks
[75] [76] [77] [77] [78] [79]

# samples 34 62 68 68 115 105
# clusters 2 2 6 7 12 3

spectral reflectance. The second one is the similarity of the
abundance feature image [74] as follows:

Similarity =
1

r

r∑
i=1

aTi âi
‖ai‖2‖âi‖2

,

where {ai}ri=1 are the estimated abundance feature
(columns of the abundance matrix) and {âi}ri=1 are the
groundtruth ones. We note that a larger Similarity and a
smaller SAD indicate a better unmixing result. We exhibit
the quantitative metrics in Table 9. We can evidently see
that the proposed TAP and AP methods obtain the best
metrics. Meanwhile, we illustrate the estimated spectral
reflectance and abundance feature images in Figure 9. It can
be found from the second row that DTPP-ONMF and SM-
ONMF perform well for the materials “Rock” and “Tree”
but poor on “Water”. TAP and AP methods unmix these
three materials well, but the proposed TAP method (the
computational time = 0.1492 seconds) is faster than the AP
method (the computational time = 0.3738 seconds).

4.6 Other Applications
As we discussed in the introduction part, the NMF has been
utilized in a wide range of applications. In this part, we se-
lect two representative examples, i.e., multi-view clustering
and community detection, and show how our TAP could be
applied for these tasks.

4.6.1 Community Detection

The community detection aims at figuring out groups of
nodes with dense internal connections and sparse exter-
nal connections, for real-world complex interaction systems
characterized by complex networks. When the network
G = (V, E) with n = |V| nodes and m = |E| edges is
described by an adjacency matrix A, which is symmetric,
the community detection is a direct application of graph
clustering on symmetric nonnegative matrices in Sec. 4.4. In
this part, we select 6 widely-used real networks, listed in
Table 10, for evaluation. As the superiority of our TAP over
traditional symmetric NMF methods has been illustrated in
Sec. 4.4, we consider two more recent methods, i.e., the deep
nonlinear reconstruction method [80] (denoted as “DNR”)
and the deep autoencoder-like nonnegative matrix factor-
ization method [53] (denoted as “DANMF”). We perform
all the methods with feeding them the adjacency matrix
A. The clustering results of our TAP is obtained by using
the k-means method on U while clustering results of DNR
and DANMF are obtained by using the k-means method
on their factors. We run DNR and DANMF 20 times with
different random initializations and the k-means method is
also conducted 20 times on U for our TAP. Two quantitative
metrics, i.e., the accuracy and the NMI, are reported in
Table 11. We can see that our method achieves comparable
performance compared with DANMF and obtains the best
results for many cases.

4.6.2 Multi-View Clustering

Compared to traditional data that describes objects from
single perspective, multi-view data, collected from differ-
ent sources in diverse domains (or obtained from various
feature collectors), is semantically richer, more useful, how-
ever more complex. The goal of multi-view clustering is to
explore the underlying structure of data by leveraging het-
erogeneous information of different views. In this part, we
conduct experiments on the following multi-view datasets,
which are commonly used in the literature.
• 3 source data set3 (3sourse): This data set consists of
169 news reported by three news organizations, i.e., BBC,
Reuters, and The Guardian. Each news was manually anno-
tated with one of six topical labels.
• BBC data set4 (BBC): It is collected from the BBC news
website. BBC data set consists of 685 documents. Each
document was split into four segments and was manually
annotated with one of five topical labels.
• Handwritten digit 2 source data set5 (HW2sources): This
is a handwritten numerals (0−9) data set containing 2000
samples and 10 digits from two sources, i.e., MNIST Hand-
written Digits and USPS Handwritten Digits.
• Yale-B 3 views 6 (Yale-B3): This data set is constructed via
extracting three kinds of features , i.e., intensity, LBP [81],
and Gabor [82], from 165 facial images (15 individuals) of
the Yale B facial image data set.
The statistics of above data sets are summaries in Table 12.

3. http://mlg.ucd.ie/datasets/3sources.html
4. http://mlg.ucd.ie/datasets/segment.html
5. https://cs.nyu.edu/roweis/data.html
6. https://github.com/hdzhao/DMF MVC/blob/master/data/

yale mtv.mat
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TABLE 11
The quantitative metrics (mean values and standard deviations) of community detection results. The best values are highlighted by bolder fonts.

Method Metrics Karate [75] Dolphins [76] Friendship6 [77] Friendship7 [77] Football [78] Polbooks [79]

DNR Accuracy 88.53% (0.112) 93.15% (0.039) 72.03% (0.068) 75.51% (0.047) 87.09% (0.041) 74.38% (0.017)
NMI 0.607 (0.287) 0.667 (0.109) 0.714 (0.046) 0.736 (0.038) 0.893 (0.018) 0.467 (0.019)

DANMF Accuracy 100.00% (0.000) 98.39% (0.000) 80.22% (0.018) 92.10% (0.014) 86.22% (0.022) 82.33% (0.013)
NMI 1.000 (0.000) 0.889 (0.000) 0.814 (0.031) 0.877 (0.021) 0.877 (0.013) 0.535 (0.016)

TAP Accuracy 100.00% (0.000) 98.39% (0.000) 81.52% (0.050) 80.29% (0.050) 90.70% (0.014) 82.86% (0.000)
NMI 1.000 (0.000) 0.889 (0.000) 0.764 (0.044) 0.763 (0.037) 0.918 (0.011) 0.571 (0.000)

TABLE 12
Multi-view data sets.

Data set # samples # views # clusters

3sources 169 3 6
BBC 685 4 5

HW2sources 2000 2 10
Yale-B2 165 3 15

Our TAP is designed for the approximation of single-
view matrices and it is interesting to extend our method
for multi-view clustering. It would be our future research
direction. As we can see in Sec. 4.3, here our method could
be helpful when it serves as a preprocessing step. That
is, we apply our nonnegative low rank matrix approxima-
tion method firstly on data matrices with different views,
the performance of the subsequent multi-view clustering
method could be improved. In order to validate this pre-
processing procedure, we compare multi-view clustering
methods with and without the preprocessing by our method
on above data sets. Selected multi-view clustering methods
are the multiview concept clustering (denoted as “MVCC”)
[48] method , which is based on the matrix concept factor-
ization with the local manifold regularization, the graph-
based multi-view clustering (denoted as “GMC”) method
[83], and a deep matrix factorization (DMF) [52] method.
In Table 13, we report quantitative metrics, i.e., the accuracy
and the NMI, of all results on four data sets. As the results of
DMF and MVCC would vary with different initializations,
we run DMF and MVCC 10 trails and report the mean value
and the standard deviation. We can see that, compared with
GMC, MVCC is more suitable for the data sets 3sources and
BBC. With the help of our TAP, all the methods obtain better
results. Some improvements brought in by our method
are significant, e.g., the MVCC on HW2sources, GMC on
3sources and BBC, and DMF on Yale-B2. Meanwhile, when
the data matrices are preprocessed by our method, the
standard deviations also become smaller in many cases.

5 CONCLUSION

In this paper, we have proposed a new alternating pro-
jection method to compute nonnegative low rank matrix
approximation for nonnegative matrices. Our main idea is
to use the tangent space of the point in the fixed-rank matrix
manifold to approximate the projection onto the manifold in
order to reduce the computational cost. Numerical examples
in data clustering, pattern recognition and hyperspectral
data analysis have shown that the proposed alternating
projection method is better than that of nonnegative matrix
factorization methods in terms of accuracy, and the compu-
tational time required by the proposed alternating projection
method is less than that required by the original alternating
projection method.

Moreover, we have shown that the sequence generated
by the alternating projections onto the tangent spaces of the
fixed rank matrices manifold and the nonnegative matrix
manifold, converge linearly to a point in the intersection of
the two manifolds where the convergent point is sufficiently
close to optimal solutions. Our theoretical convergence
results are new and are not studied in the literatures. We
remark that Andersson and Carlsson [70] assumed that the
exact projection onto each manifold and then obtained the
convergence result of the alternating projection method.
Because of our proposed inexact projection onto each mani-
fold, our proof can be extended to show the sequence gener-
ated by alternating projections on one or two nontangential
manifolds based on tangent spaces, converges linearly to a
point in the intersection of the two manifolds.

As a future research work, it is interesting to study (i)
the convergence results when inexact projections on several
manifolds are employed, and (ii) applications where the
other norms (such as l1 norm) in data fitting instead of
the Frobenius norm. It is necessary to develop the related
algorithms for such manifold optimization problems. Mean-
while, it will also be interesting to extend our method for the
case where multiple data matrices need to be processed.
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