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DELTA: Deep Low-Rank Tensor Representation
for Multi-Dimensional Data Recovery

Guo-Wei Yang, Liqiao Yang, Tai-Xiang Jiang, Guisong Liu, and Michael K. Ng

Abstract—Low-rank tensor recovery methods within the tensor singular value decomposition (t-SVD) framework have demonstrated
considerable success by leveraging the inherent low-dimensional structures of multi-dimensional data. However, previous approaches
in this framework often rely on linear transforms or, in some cases, nonlinear transforms constructed with fully connected networks
(FCNs). These methods typically promote a global low-rank structure, which may not fully exploit the nature of multiple subspaces in
real-world data. In this work, we propose a nonlinear transform to capture long-range dependencies and diverse patterns across
multiple subspaces of the data within the t-SVD framework. This approach provides a richer and more nuanced representation
compared to the localized processing typically seen in FCN-based transforms. In the transform domain, we construct a low-rank
self-representation layer that fully exploits the multi-subspace structure inherent in tensor data. Instead of merely enforcing overall
low-rankness, our method minimizes the nuclear norm of a self-representation tensor, allowing for a more precise and joint
characterization of multiple subspaces. This results in a more accurate representation of the data’s intrinsic low-dimensional structures,
leading to superior recovery performance. This new framework, termed the DEep Low-rank Tensor representAtion (DELTA), is
evaluated across several typical multi-dimensional data recovery applications, including tensor completion, robust tensor completion,
and spectral snapshot imaging. Experiments on various real-world multi-dimensional data illustrate the superior performance of our
DELTA.

Index Terms—Tensor singular value decomposition, Low-rank tensor representation, Deep nonlinear transform, multi-dimensional
data recovery

✦

1 INTRODUCTION

R ECOVERING multi-dimensional data from degraded ob-
servations or compressed measurements is an essen-

tial task for many real-world applications, e.g., computer
vision [1], [2], [3], compressive sensing magnetic resonance
imaging (MRI) [4], hyperspectral analysis [5], and intelligent
transportation [6]. Generally, it is necessary to fully explore
the prior knowledge to tackle this typical inverse problem.
As multi-dimensional data are always internally correlated
in real-world scenarios and naturally in the tensor format,
the tensor low-rank prior (i.e., the low-dimensional struc-
ture) is widely utilized (see [7], [8], [9], [10]).

Although the tensor format has shown superiority over
the matrix format in characterizing the inner structure of
multi-dimensional data, the definition of the tensor rank
is not unique and varies depending on tensor decompo-
sition schemes, widely used examples being the CANDE-
COMP/PARAFAC decomposition [11], [12], Tucker decom-
position [13], tensor train decomposition [14], tensor ring
decomposition [15], and tensor singular value decomposi-
tion (t-SVD) [16], [17], [18]. This work focuses on the t-
SVD framework, in which the tensor-tensor product (t-prod)
is well defined with a tensor algebraic framework that is
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highly analogous to the matrix case. Meanwhile, it has been
shown to be capable of capturing the spatial-shifting corre-
lation and characterizing the intrinsic structure of a third-
order tensor. Nonetheless, the t-SVD has been effectively
extended for higher-order tensors [19], [20]. The superiority
of tensor modeling capacity based on the t-SVD framework
has been theoretically analyzed [21], [22] and empirically
validated in a wide range of real-world applications.

In t-SVD, equipped with the t-prod, the tensor tubal-rank
[8], [23] can be derived. Similarly to the matrix case, one can
minimize the tubal nuclear norm (TNN) to fully enhance the
tensor low-rankness of the underlying data. Benefiting from
the particular design of the t-prod, minimizing the TNN
only requires three steps: (i) applying the discrete Fourier
transformation (DFT) along the third mode, (ii) minimizing
the matrix nuclear norm, which can be readily accomplished
by the singular value thresholding operation [24], of the
frontal slices, and (iii) applying the inverse DFT along the
third mode. More mathematical details will be provided
in Section 2. Moreover, [25] noted that the t-prod can be
defined with any linear invertible transform. Subsequently,
numerous efforts have been made to find substitutes that
are more suitable for multi-dimensional data [9], [26], [27],
[28], [29]. To capture the implicit low-rank nature of the data,
nonlinear transforms [10], [30], [31], [32] have recently been
considered by incorporating different deep neural networks.
The evolution of transforms (including the proposed one in
this paper) in the t-SVD framework is summarized in Fig. 1.

Previous t-SVD based recovery methods (whether using
fixed transforms or learned transforms via fully-connected
networks [30]) typically impose a global low-rank constraint
on the entire tensor. This can be viewed as finding a single
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Fig. 1: Representative works on transforms within the t-SVD framework.
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Fig. 2: (a) Illustration of tensor self-representation (top) and a visualization of a union-of-subspaces partition on Yale
B (bottom). The partitions {Xk}5k=1 of the whole face data tensor X can be obtained directly from the block-diagonal
structure of the representation coefficient tensor Z . We note that our method does NOT require this explicit partition, and
it is used herein only for visualization and quantitative analysis. (b, c) Accumulated energy (AccEgy) curves of different
approaches on two datasets. For singular values {σi} (sorted non-increasing), AccEgy(k) =

∑k
i=1 σ

2
i

/∑
j σ

2
j , plotted

versus the percentage of singular values. Matrix case (black): “Single Subspace” indicates the SVD of the mode-2 unfolding
of the whole data X , whereas “Multi-subspace” first computes SVDs on the mode-2 unfolding of each partition (subtensor)
and then concatenates and sorts all singular values to form one AccEgy curve. Tensor case (blue/red): After mapping
to the transform domain, linear DFT for blue and our nonlinear transform for red, we compute SVD per frontal slice.
For “Single Subspace” we form an AccEgy curve for each slice and plot the mean across all n3 slices. For “Multi-subspace”
(dashed blue and red), at each slice index we take the slice from every partition, compute their SVDs, concatenate and sort
the singular values for that slice, form one AccEgy curve, and then plot the mean over slices. The faster rise of dashed
lines (multi-subspace) over solid lines (single subspace) confirms the benefit of multi-subspace modeling. Furthermore, the
hierarchy of the curves shows that tensor-native models (blue, red) outperform matrix-based ones (black), and that our
nonlinear DELTA (red) provides the most compact representation compared to the linear DFT-based model (blue).

low-dimensional subspace (or manifold) where all samples
reside. While this is reasonable due to the inner correlations
in real-world data (e.g., temporal continuity in videos or
spectral correlation in hyperspectral images), these data
often lie in a union of multiple fine subspaces rather than
a single global one. A representative example is face data.
Face images from a dataset share similar spatial geometries
and thus lie in a subspace whose dimension is much smaller
than the ambient image space [33], [34]. However, face
images of different individuals will lie in their own distinct,
smaller subspaces [35]. The challenge of modeling multiple
subspaces has been studied in the matrix setting via low-
rank representation (LRR) [36], and later extended to tensors
through tensor low-rank representation (TLRR) within the
t-SVD framework [22]. As shown in Fig. 2-(a), after ap-
propriate permutations of lateral slices in the data tensor,
enforcing low-rankness on a self-representation coefficient
tensor induces a block-diagonal structure, corresponding to
the multiple subspaces.

To quantitatively illustrate the benefits of modeling these
fine subspaces, we analyze the Yale B face dataset and the

claire video sequence. For this analysis only1, we partition
the data into subsets of lateral slices based on the block-
diagonal self-representation structure. The plots of the accu-
mulation energy (AccEgy) in Fig. 2-(b) and -(c) reveal three
consistent findings. First, multi-subspace cases (dashed
lines) exhibit significantly faster AccEgy growth than single-
subspace counterparts (solid lines), confirming that union-
of-subspaces modeling more compact representations. Sec-
ond, Tensor-native cases (blue and red) achieve faster sin-
gular value decay than the matrix case (black), highlighting
the benefit of preserving multi-way tensor structures. Third,
within tensor methods, the proposed DELTA with nonlinear
transform (red) yields the most compact representation,
outperforming the linear DFT-based tensor case (blue).
These findings provide strong empirical motivation for a
framework that combines multi-subspace modeling, tensor-
native representations, and nonlinear transforms.

The main challenge, therefore, is to develop a unified
framework that simultaneously models the tensor data,

1. We note that this explicit partition is not required in LRR, TLRR,
or our proposed method. It is used here purely for visualization and
quantitative analysis.

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2025.3630339

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



3

captures complex nonlinear dependencies, and exploits the
multi-subspace structure of multi-dimensional data for re-
covery tasks. In the literature, deep matrix methods like
[37], [38] handle nonlinearity and multiple subspaces in
a matrix setting but do not leverage the rich structural
information preserved in multiple tensor subspaces. Tensor-
based methods [22], [39] leverage tensor algebra for multi-
subspace modeling but lack the capacity for nonlinear fea-
ture extraction critical for many real-world data.

To address this gap, we develop a novel DEep Low-rank
Tensor representAtion (DELTA) framework in this paper.
Our DELTA operates within the tensor algebraic skeleton of
the t-SVD. We propose and develop an effective nonlinear
transform to deal with both local and long-range nonlinear
patterns. We construct a low-rank self-representation tensor
(multiple subspaces of low-rank) that can be obtained by
minimizing its nuclear norm in the underlying tensor data.
The main contributions of this paper are given as follows:

• We propose a novel group-tube nonlinear transform
combining a 1D spectral/temporal global transform
with a 2D spatial transform. The 1D transform uti-
lizes the encoder architecture of the Transformer
model [40], incorporating multi-head attention to
accurately capture complex nonlinear characteristics
and intricate intrinsic features across diverse data
types, particularly as the properties of the third di-
mension vary significantly. To further exploit local
homogeneity, we leverage the 3D convolution [41]
with 3× 3× 1 kernels as the spatial local transform.
Our proposed nonlinear transform can effectively
capture the correlations among global and neighbor-
ing tubes within the multi-dimensional data, carv-
ing out data features at a more granular level and
thereby yielding a more compact representation.

• In the deep transform domain, a self-representation
tensor is established, seamlessly embedded into the
nonlinear transform-based t-SVD framework. This
allows for the efficient characterization of the sub-
space distribution by simultaneously identifying the
low-rank representation. Thus, the multi-subspace
structure of the multi-dimensional data can be effec-
tively captured by enhancing its low-rankness in the
deep transform domain.

• We apply our deep low-rank tensor representation,
which incorporates the newly proposed deep nonlin-
ear transform and deep self-representation, for multi-
dimensional data recovery. All the learnable param-
eters, i.e., the network parameters in the nonlinear
transform and deep representation coefficients, can
be inferred directly from the degraded data itself in a
zero-shot learning manner, using only the observed
data. Extensive numerical experiments on various
real-world multi-dimensional data for different re-
covery tasks demonstrate that our method outper-
forms state-of-the-art methods. Furthermore, discus-
sions show that our method is scalable to higher-
order tensors.

The rest of this article is organized as follows. Sec-
tion 2 gives the basic notations and preliminaries. Sec-
tion 3 presents the proposed DEep Low-rank Tensor Rep-

resentAtion (DELTA). We show experimental results and
discussions in Section 4. Finally, conclusions are drawn in
Section 5.

2 PRELIMINARIES

We use lowercase letters, e.g., x, to denote scalars, boldface
lowercase letters, e.g., x, for vectors, boldface uppercase
letters, e.g., X, for matrices, and boldface calligraphic letters,
e.g., X , for tensors. As for third-order tensors, we use
X (k) to denote the k-th frontal slice, i.e., X (k) = X (:, :, k).
A frequently used matricization operation is the mode-3
unfolding, which maps the (i, j, k)-th element of a tensor
X ∈ Rn1×n2×n3 to the matrix’s (k, l)-th element satisfying
l = (j − 1)n1 + i. We use unfold3 and fold3 to denote it
and its inverse operation, respectively. The mode-3 tensor-
matrix product of a tensor X ∈ Rn1×n2×n3 with a matrix
A ∈ Rm×n3 is denoted by X ×3A and is of size n1×n2×m.
Element-wise, we have (X ×3 A)ijk =

∑n3

n=1 xijnakn. The
mode-3 tensor-matrix product can also be equivalently ex-
pressed in terms of the mode-3 unfolding as Y = X ×3A ⇔
unfold3(Y) = A · unfold3(X ), where · is the matrix
product. More details of tensor basics can be found in [42].

Definition 2.1 (Frontal-slice-wise product [25]). Given two
third-order tensors X ∈ Rn1×n2×n3 and Y ∈ Rn2×n4×n3 , the
frontal-slice-wise product X ⊙ Y is defined by

(X ⊙ Y)
(k)

= X (k)Y(k), (1)

for k ∈ {1, 2, . . . , n3}. The symbol ⊙ is also referred to as the
face-wise product in [25].

Next, we restate definitions of the linear transform-based
t-SVD.

Definition 2.2 (Linear transform based t-prod [25]). Let
L ∈ Cn3×n3 be a linear invertible transform matrix. The lin-
ear invertible transform L based tensor-tensor product (t-prod)
between two tensors A ∈ Rn1×n2×n3 and B ∈ Rn2×n4×n3 is
denoted as C ∈ Rn1×n4×n3 = A ∗L B, and is defined by

C = A ∗L B = ((A×3 L)⊙ (B ×3 L))×3 L
−1, (2)

Definition 2.3 (Tensor conjugate transpose [25]). Given a
linear invertible transform matrix L ∈ Cn3×n3 , the tensor
conjugate transpose of A ∈ Rn1×n2×n3 , denoted as AH ∈
Rn2×n1×n3 , satisfies (A×3 L)

(k)
=

((
AH ×3 L

)(k))H
for

k = 1, 2, · · · , n3.

Definition 2.4 (Orthogonal tensor [25]). A tensor O is called
an orthogonal tensor if it satisfies O ∗L OH = I , where I is the
identity tensor satisfying that (I ×3 L)

(k) is an identity matrix
for k = 1, 2, · · · , n3.

Definition 2.5 (f -diagonal tensor [17]). A tensor A is called
f -diagonal tensor if each frontal slice A(k) is a diagonal matrix.

Definition 2.6 (Linear transform based t-SVD [25]). For A ∈
Rn1×n2×n3 , the linear transform based t-SVD of A is given by

A = U ∗L S ∗L VH , (3)

where U ∈ Rn1×n1×n3 and V ∈ Rn2×n2×n3 are orthogonal
tensors, and S ∈ Rn1×n2×n3 is an f -diagonal tensor.
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When L is the discrete Fourier transform (DFT) matrix,
the definition of the t-prod and t-SVD reduces to its original
version proposed in [17]. With this foundational definition,
the algebraic framework of third-order tensors can be well
derived, and it is analogous to the matrix case.

Definition 2.7 (tensor tubal-rank [43]). The tensor tubal-rank
of a tensor A ∈ Rn1×n2×n3 , denoted as rankt(A), is defined
as the number of non-zero singular tubes in S , where S is from
the linear transform based t-SVD of A : A = U ∗L S ∗L VH .
Formally, we can write

rankt(A) = #{i,S(i, i, :) ̸= 0}. (4)

Alternatively, in the transform domain, rankt(A) =
maxk rank((A×3 L)

(k)).

Definition 2.8 (Tubal Nuclear Norm (TNN) [8]). The tensor
nuclear norm of a tensor A ∈ Cn1×n2×n3 , denoted as ∥A∥TNN,
is defined as the sum of singular values of all the frontal slices of
A, i.e.,

∥A∥TNN =
∑n3

k=1

∥∥∥(A×3 F)
(k)

∥∥∥
∗
, (5)

where F ∈ Cn3×n3 is a discrete Fourier transform (DFT) matrix.

Definition 2.9 (Linear transform based TNN [25]). The
transform based tubal nuclear norm of a tensor A ∈ Cn1×n2×n3 ,
denoted as ∥A∥L-TNN, is defined as the sum of singular values of
all the frontal slices of A in the transform domain, i.e.,

∥A∥L-TNN =
∑n3

k=1

∥∥∥(A×3 L)
(k)

∥∥∥
∗
, (6)

where L ∈ Cn3×n3 , acting as the transform, is a linear invertible
matrix.

From Def. 2.9, we can see that the TNN, which is
widely used as the convex surrogate of the tensor tubal-
rank defined within t-SVD, can be directly computed in the
transform domain. This also enables a flexible utilization of
semi- or non-invertible transforms [28], [30], [44] wherein
the low-rank promotion can be well established in the
transform domain.

A tensor space is defined as a set S = {S ∈ Rn1×1×n3},
which is closed under finite tensor addition and scalar
multiplication. A set of tensors {D(1), . . . ,D(p)} ⊆ S, where
D(t) is the t-th lateral slice of D ∈ Rn1×p×n3 , is linearly
independent if there is no non-zero tensor C ∈ Rp×1×n3

satisfying D ∗L C = 0.

Definition 2.10 (Tensor subspace [22], [39]). Given a set
{D(1), . . . ,D(p)} ⊆ S whose elements are linearly independent,
the set

KL = {Y|Y = D ∗L C, ∀C ∈ Rp×1×n3} (7)

is called a tensor subspace of dimension dim(KL) = p. The
tensors D(1), . . . ,D(p) form the basis spanning KL.

Based on the definition of a tensor subspace, we now
clarify how data may be distributed with respect to such
subspaces. In the simplest case, given a tensor X ∈
Rn1×n2×n3 , all samples lie in the same tensor subspace:
there exists a basis tensor D ∈ Rn1×p×n3 such that every
sample frontal slice can be written as X (:, i, :) = D(i) ∗L
C(i), i = 1, . . . , n2, where C ∈ Rp×n2×n3 contains the coef-
ficient tensors corresponding to each slice. This describes a

single subspace model in which one shared low-dimensional
structure explains the entire dataset.

However, in many practical scenarios, real multi-
dimensional data are not well modeled by a single subspace.
Instead, the data may be better described as lying in a union
of multiple independent tensor subspaces, where different
subsets of the data are generated from distinct subspaces
with their own bases. Formally, the multiple subspaces can
be written as X = [X1, . . . ,Xk], Xj(:, ij , :) ∈ KL

j , where
each KL

j is a low-dimensional tensor subspace spanned by
its own basis Dj ∈ Rn1×pj×n3 . That is, for each subset
Xj , every slice satisfies Xj(:, i, :) = (Dj)(i) ∗L (Cj)(i), i =
1, . . . ,mj , with Cj ∈ Rpj×mj×n3 containing the coefficients
for the j-th subspace. It is worth noting that the assumption
of independence among different subspaces is not strict.
In fact, its vector counterpart has long been a standard
assumption in sparse and low-rank data analysis [22].

3 METHODOLOGY

In this work, we propose a novel DEep Low-rank Tensor
representAtion (DELTA), the outline of which is shown in
Fig. 3, for multi-dimensional data recovery. This framework
consists of two key components within the tensor algebraic
skeleton of the t-SVD: (i) deep nonlinear transform (Sec-
tion 3.1) and (ii) the low-rank self-representation of multiple
subspaces in the transform domain (Section 3.2).

3.1 Multi-Head Attention-Based Group-Tube Deep Non-
linear Transform

The motivation behind designing a nonlinear transform in
this work is to overcome the limitations of existing trans-
forms in modeling complex multi-dimensional data. Lin-
ear transforms, such as DFT and discrete cosine transform
(DCT) utilized in [8], [9], rely on fixed global bases and can
only capture linear relationships between input and output,
making them insufficient for representing the intricate non-
linear structures inherent in real-world data [10], [30], [31],
[32]. Although nonlinear transforms, e.g., fully connected
networks (FCNs) [10], [30], have been introduced to replace
the linear transform for nonlinear feature extraction, their re-
liance on local connections limits their ability to model long-
range dependencies. Meanwhile, most existing transform-
based methods consider single tube transforms (along the
third dimension), neglecting the homogeneity along the first
and second dimensions.

To capture long-range dependencies and diverse pat-
terns across different subspaces of the multi-dimensional
data, within the transform-based t-SVD tensor skeleton,
we propose and develop two structurally symmetric deep
3D transforms to replace the linear transform L and its
inverse L−1, respectively. Given a tensor X ∈ Rn1×n2×n3 ,
we denote the forward and backward transforms as F and
B, respectively. Both F and B consist of two components:
a 1D spectral/temporal transform that exploits the internal
correlation of the global features within each tube, and a 2D
spatial local transform that explores the correlation between
neighboring tubes.
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Fig. 3: Overall framework of DELTA. The input tensor X is first processed by the forward transform F(·), where Conv3D(·)
captures spatial homogeneity along the first and second modes, and the Multihead(·) models long-range dependencies
along the third mode. The self-representation tensor enforces low-rankness to reveal multi-subspace structure. Finally, the
backward transform B(·) maps the low-rank representation back to the original data domain.

3.1.1 1D Spectral/Temporal Transform

To extract long-range nonlinear dependencies, we adapt
the multi-head attention mechanism [40] to implement the
1D spectral/temporal transform. Specifically, given a third-
order tensor input Xin ∈ Rn1×n2×n3 , the query, key, and value
are linearly projected from Xin as

Q ∈ Rn3×n1n2 = Wqunfold3(Xin),
K ∈ Rn3×n1n2 = Wkunfold3(Xin),
V ∈ Rn3×n1n2 = Wvunfold3(Xin),

(8)

where Wq,Wk,Wv ∈ Rn3×n3 are the learnable weight
matrices. Then, the self-attention is computed as

Attention(Q,K,V) = tanh(
QK⊤

n1n2
)V. (9)

Here, we use tanh instead of the softmax function as the lat-
ter’s sparse attention (caused by exponential amplification
of high scores) may suppress critical high-frequency details,
while tanh enables dense feature interactions through non-
normalized outputs within [−1, 1], avoiding over-sparsity
and being helpful for identifying independent subspaces.

To further model the hierarchy and diverse patterns and
benefit the subspace identification in the subsequent part,
we further consider the multi-head attention and obtain
queries, keys, and values as

Qi ∈ R
n3
s ×n1n2 = Wq

i unfold3(Xin),

Ki ∈ R
n3
s ×n1n2 = Wk

i unfold3(Xin),

Vi ∈ R
n3
s ×n1n2 = Wv

i unfold3(Xin),

(10)

where Wq
i ,W

k
i ,W

v
i ∈ R

n3
s ×n3 are learnable weight ma-

trices, for i = 1, 2, · · · , s = #heads. Then, our 1D
spectral/temporal transform MultiHead : Rn1×n2×n3 →
Rn1×n2×n3 is constructed as

MultiHead(Xin) = fold3 (Concat(head1, ...,heads)) ,
(11)

where each head is computed in parallel, i.e.,

headi = Attention(Qi,Ki,Vi). (12)

3.1.2 2D Spatial Transform

While the 1D spectral/temporal transform with multi-head
attention effectively captures long-range spectral or tem-
poral dependencies and diverse patterns across different
subspaces along the third mode, multi-dimensional data
also exhibit local homogeneity, such as spatial smoothness

in images. To complement this, we incorporate a 3D con-
volution [41] layer as a 2D spatial transform, which cap-
tures local spatial features and enhances the representation
along the spatial dimensions. Specifically, given an input
Xin ∈ Rn1×n2×n3 , the output of this 3D convolutional neural
network (CNN) layer is given as

Conv3D(Xin) ∈ Rn1×n2×n′
3 = σ (Xin ⊛123 hk) ,

where ⊛123 indicates the 3D convolution, hks denote the
convolution kernels of size 3 × 3 × 1, σ is the nonlinear
activation function, and n′

3 is determined by the number
of convolution kernels. In this work, we select the leaky
rectified linear unit (Leaky ReLU) [45] as the nonlinear
activation function.

3.1.3 Proposed Forward and Backward Transforms
Equipped with the above modules, we then formulate the
forward and backward transforms. Denoting a single for-
ward transform layer as

fi(·) = MultiHead (Conv3D(·)) , (13)

and a single backward transform layer with a symmetrical
structure as

bi(·) = Conv3D (MultiHead(·)) , (14)

the group-tube deep nonlinear transform based forward
transform F : Rn1×n2×n3 → Rn1×n2×ñ3 and the backward
transform B : Rn1×n2×ñ3 → Rn1×n2×n3 are formulated as{

F(·) = fm ◦ fm−1 ◦ · · · ◦ f1(·),
B(·) = bl ◦ bl−1 ◦ · · · ◦ b1(·),

(15)

where m and l denote the number of forward and backward
transform layers, respectively. From our ablation study in
Section 4.4.4, a small value of m and l is adequate in our
framework. Generally, a larger ñ3 in the transform domain
could introduce redundancy and help to obtain a better low-
rank representation [28], [30]. Therefore, we set ñ3 = 4n3

by adjusting the number of convolution kernels across this
work.

This simple and novel design allows the proposed non-
linear transform to effectively model both long-range inter-
actions along the third mode and local correlations between
tubes, providing an accurate and compact representation
of complex multi-dimensional data. To further validate its
superior ability to represent the implicit low-rankness (i.e.,
the nonlinear inner correlations) of third-order tensor data,
we show the low-rankness via the AccEgy in the transform
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domain with respect to different transforms in Fig. 4. From
the AccEgy curves shown in Fig. 4, we can see that with the
proposed forward and backward transforms, the AccEgy
curve accumulates much more rapidly than others, showing
that the energy concentrates on bigger singular values and
thus yielding a more compact representation in the trans-
form domain.

Video data (claire) HSI data (Pavia)

Fig. 4: The AccEgy of different types of tensor data with
respect to different transforms within the t-SVD framework.

3.2 Deep Low-Rank Tensor Self-Representation

The key motivation is that most existing tensor low-rank
recovery methods are limited to characterizing data within
a single subspace distribution via regularizing the entire
low-rankness of the tensor data. In practice, it is necessary
to exploit the nature of multiple subspaces of real-world
data. For example, the surveillance video illustrated in Fig.
2 shows that different moving objects in various temporal
intervals result in the formation of multiple subspaces.
Here we construct a low-rank tensor self-representation in
the deep transform domain to tackle the multi-subspace
structure. A more fine-grained characterization of multiple
subspaces, rather than the overall low-dimensional space,
in which the union of these subspaces resides, can generate
better recovery results as the prior information of the data
is depicted more meticulously, see our experimental results
in Section 4.

3.2.1 Deep Tensor Self-Representation
In [36], [37], [46], self-representation methods have been
studied under the matrix setting. The methods [37], [38]
are to construct a matrix self-representation in the deep
transform domain to handle situations where data points
do not exactly reside in a union of linear subspaces. By
using linear transforms under the t-SVD framework, tensor
self-representation methods have also been developed, see
[22], [39]. Here, the main contribution is to utilize nonlinear
transforms developed in Section 3.1 to establish a deep
tensor self-representation for the multi-subspace structure.
With the deep nonlinear forward transform F , the deep ten-
sor self-representation is established in the deep transform
domain as follows:

F (X ) = F (X )⊙ Ẑ, (16)

where Ẑ ∈ Rn2×n2×ñ3 is the self-representation tensor in
the transform domain. In the original domain, our deep ten-
sor self-representation is formulated as X = B(F (X )⊙ Ẑ).

Remark 3.1. When the data tensor X is corrupted with outliers
or noise, we need to consider an additional error tensor E in
the original domain. We note that adding E in the original
domain does not affect the self-representation format of (16) in
the transform domain. Therefore, there is no need to minimize
both distances in the transform domain and original domain as
the deep transforms F and B are not ensured to be invertible.
This is different from the matrix or linear t-prod based tensor self-
representation cases.

Note that Ẑ is defined in the transform domain. Accord-
ing to Definition 2.7, the tubal-rank of the self-representation
tensor in the original domain (potential exists) is equiva-
lent to maxk rank(Ẑ(k)). In the following, we analyze the
frontal-slice-wise low-rank property of Ẑ .

3.2.2 Low-Rankness of Representation Coefficients
We start with the linear-transform based t-SVD case and
provide the following theorem.

Theorem 3.1. Given the tensor data X , which is partitioned
as X = [X1, . . . ,Xk], where the lateral slices of each block
Xj ∈ Rn1×mj×n3 are drawn from tensor subspace KL

j with
dim(KL

j ) = pj . If the subspaces {KL
1 , . . . ,KL

k } are independent,
the optimal minimizer Z∗ of the following problem

min
Z

∥Z∥L-TNN s.t. X = X ∗L Z

is block-diagonal and satisfies rankt(Z∗) =
∑k

j=1 pj .

The proof of Theorem 3.1, provided in Appendix A, is an
extension of the proof of Theorem 3 in [22], with figuring out
the correlation between the rank of Z and the dimension-
ality of subspaces under linear invertible transform L. By
the specific design of the linear transform-based t-SVD, the
above theorem is valid in both the original and transform
domains (with the linear transform L).

Then, we show that Theorem 3.1 can be generalized
for deep nonlinear tensor self-representation. To accomplish
this, the definition of the tensor subspace should be defined
with respect to the deep nonlinear transforms F and B.

For a linear invertible transform matrix L ∈ Cn3×n3 , the
tensor subspace definition in Definition 2.9 can be equiva-
lently reformulated in the transform domain as

KL = {Y | Y ×3 L = (D ×3 L)⊙ Ĉ, ∀Ĉ ∈ Rp×1×n3}, (17)

where Ĉ = C ×3 L. An implicit requirement in (17) is that
Y×3L×3L

−1 = Y . To extend this formulation beyond linear
transforms, we replace L and L−1 by a pair of nonlinear
mappings F and B, and assume (idealized) B(F(X )) = X
holds. Then, we generalize the tensor subspace as

KF,B = {Y = B(F(Y))|F(Y) = F(D)⊙Ĉ, ∀Ĉ ∈ Rp×1×ñ3},
(18)

where tensors F(D(1)), . . . ,F(D(p)) form the basis span-
ning KF,B in the transform domain. Ideally, one would re-
quire B(F(X )) = X , but since F and B are not guaranteed
to be invertible in practice, this identity should be regarded
as a modeling generalization rather than a strict equality.

Remark 3.2. We assume that the deep nonlinear transforms F
and B satisfy B

(
F(X )

)
= X theoretically. In practice, it is

difficult to guarantee such semi-invertibility for arbitrary tensors.
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However, under our self-supervised learning scheme (see next
subsection), it suffices to require approximate semi-invertibility
within a local neighborhood of each target tensor. Benefiting from
the representation capacity of deep transforms, this requirement
can be well achieved.

Note that since F and B are nonlinear, the subspaces
defined in the transform domain would correspond to more
complex manifolds in the original domain. For the purpose
of theoretical formulation and algorithmic design, it is ad-
equate to model them as linear subspaces in the transform
domain, which provides a unified and tractable framework
for analysis. We are now ready to generalize Theorem 3.1 to
the deep nonlinear setting.

Theorem 3.2. Given the tensor data X and nonlinear transforms
F and B such that B(F(X )) = X , let X̂ = F(X ) be partitioned
as X̂ = [X̂1, . . . , X̂k], where the lateral slices of each block
X̂j are drawn from a tensor subspace KF,B

j ⊆ KF,B in the
transform domain, with dim(KF,B

j ) = pj . If the subspaces
{KF,B

1 , . . . ,KF,B
k } are independent, the optimal minimizer Ẑ∗

of the following problem

min
Ẑ

∑ñ3

k=1

∥∥∥Ẑ(k)
∥∥∥
∗

s.t. X̂ = X̂ ⊙ Ẑ

is block-diagonal and satisfies rankt(Ẑ∗) =
∑k

j=1 pj .

The proof of Theorem 3.2 can be found in Appendix B.

Remark 3.3. Theorem 3.2 reveals one key property of the deep
self-representation coefficient tensor Ẑ : its frontal-slice-wise rank2

equals the sum of the dimensions of the underlying subspaces
in the transform domain. In practice, many real-world tensor
datasets, such as videos, HSI data, and face datasets naturally
occupy a union of low-dimensional subspaces. For instance, Fig. 5
illustrates the block-diagonal structure learned by our method
on the Yale B face dataset, where images of the same person
occupy a single low-rank block. Within each block, face images
from one individual are highly correlated and thus low-rank.
As in [22], the subspace-independence assumption is not strict;
even if all samples lie in a single subspace, the frontal-slice-wise
rank of Ẑ still matches the tubal-rank (dimension of the single
subspace) of the data tensor. In Fig. 6, we illustrate the AccEgy of
representation coefficients in the transform domain learned on a
video, an HSI, and the Yale B face dataset. We can see that, across
different data types and transforms, the representation coefficients
clearly display a pronounced low-rank structure in the transform
domain. Therefore, the low-rankness of Ẑ depends on
the structure of X , and boosting the low-rankness of Ẑ
promotes the low-rankness of the original tensor X by
restricting each subspace.

To achieve this, we minimize the frontal-slice-wise nu-
clear norm of Ẑ as ∑ñ3

k=1
∥(Ẑ)(k)∥∗, (19)

which can be seen as the tubal nuclear norm of the self-
representation tensor in the original domain (potentially
exists).

2. The tubal-rank of a potential self-representation tensor Z corre-
sponding to Ẑ (i.e. F(Z) = Ẑ or B(Ẑ) = Z ) in the transform domain.

DFT FCN DELTA

Fig. 5: The learned block-diagonal structures by TLRR, FCN,
and DELTA on Face dataset (Yale B) of the size 48×100×42.
We show the sample similarity matrices Z̃, which is ob-
tained by Z̃ = 1

2ñ3

∑ñ3

i=1(|Ẑ(:, :, i)|+ |Ẑ(:, :, i)|T ).

Video data (claire) HSI data (Pavia) Face dataset (Yale B)

Fig. 6: The AccEgy of the representation coefficient tensor
with respect to different transforms under the t-SVD frame-
work.

In real-world data, where samples lie on nonlinear,
multi-subspace manifolds, this deep low-rank representa-
tion yields a block-diagonal coefficient tensor whose overall
rank (the sum of the ranks of each diagonal block) is
far smaller than treating all data as a single global sub-
space. When data occupy multiple independent subspaces,
Ẑ naturally decomposes into disjoint diagonal blocks, one
per subspace, with zero weights between blocks. It also
ensures that each sample is reconstructed exclusively from
its own subspace, eliminating redundant information and
yielding more accurate recovery. This advantage stems
from considering the low-rankness of the representation
coefficient tensor rather than the data tensor. Moreover,
as shown in Fig. 6, our learned nonlinear transform further
concentrates singular-value energy in the coefficient tensor,
tightening each subspace’s representation and reinforcing
its low-rank property. Consequently, this deep low-rank
tensor representation more faithfully captures the nonlinear,
multi-subspace manifolds present in real-world data.

3.3 DELTA for Multi-Dimensional Data Recovery

In this section, we describe how to construct the DELTA
model for real-world multi-dimensional data recovery. The
outline of DELTA is shown in Fig. 3. In summary, DELTA
consists of two key components within the tensor algebraic
skeleton of the t-SVD: (i) deep nonlinear transforms, which
combine Conv3D(·) to capture spatial homogeneity along
the first and second modes with Multihead(·) to capture
long-range dependencies along the third mode, and (ii) the
low-rank self-representation of multiple subspaces in the
transform domain. Specifically, we first introduce the objec-
tive function and then present the optimization procedure.
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Ground Truth

Observed

Self-representation tensor

Forward Transform
DFT, DCT, Framelet,

Unitary, FCN, etc.

Backward Transform
DFT, DCT, Framelet,

Unitary, FCN, etc.

Forward Transform
Multi-Head Attention-Based

Group-Tube Deep
Non-Linear Transform

Backward Transform
Multi-Head Attention-Based

Group-Tube Deep
Non-Linear Transform

Fig. 7: The flowchart of our method. The upper row shows the previous methods, which directly minimize the nuclear norm
in the transform domain. The bottom row shows our method that minimizes the nuclear norm of the self-representation
tensor Ẑ .

3.3.1 Objective Function for Multi-Dimensional Data Re-
covery
Following (19) and equipping with the deep nonlinear trans-
form and deep low-rank tensor self-representation, we con-
struct the DEep Low-rank Tensor representAtion (DELTA)
model for real-world multi-dimensional data recovery on
the observed tensor O ∈ Rn1×n2×n3 , as

min
X ,Ẑ,Θ

λ
ñ3∑
k=1

∥∥∥Ẑ(k)
∥∥∥
∗
+ γ

∥∥∥F(X )−F (X )⊙ Ẑ
∥∥∥2
F

+L
(
B(F (X )⊙ Ẑ),O

)
,

(20)

where Θ = {Wq
i ,W

k
i ,W

v
i ,hk} denotes the learnable pa-

rameters of deep nonlinear transform, Ẑ ∈ Rn2×n2×ñ3 is
the self-representation tensor in the deep transform domain,
and λ, γ are nonnegative trade-off parameters.

The second term in Eq. (20) enforces that the transform-
domain self-representation remains close to the true trans-
formed signal, where the low-rank regularization on Z cap-
tures structural redundancy while retaining essential data
details. However, as emphasized in Remarks 3.1 and 3.2,
the deep transforms F and B are generally not guaranteed
to be perfectly invertible. To mitigate this, we introduce
the fidelity term L(B(F(X )),O), which directly penalizes
reconstruction errors in the original domain and is tailored
to the degradation process in each specific application.

Remark 3.4. The fidelity term in DELTA serves two comple-
mentary purposes. First, it preserves the validity of the self-
representation by aligning the learned transform-domain features
with the original data, thereby reducing overfitting and distortions
introduced by nonlinear mappings. Second, it compensates for the
possible irreversibility of the deep transforms F and B, working
jointly with the low-rank constraint on Z to balance structural
regularity in the transform domain with fidelity to observations
in the original domain. Although this introduces an additional
weighting parameter, it is typically insensitive and can be set to
a default value across tasks, with fine-tuning seldom required.
Consequently, the fidelity term is indispensable for ensuring both
robustness and practical applicability of DELTA.

For tensor completion, the fidelity term is defined over
the observed entries and measured by the Frobenius norm.

Specifically, if Ω denotes the index set of observed entries,
the fidelity term L

(
B(F (X )⊙ Ẑ),O

)
is set as

1

2

∥∥∥PΩ

(
B(F (X )⊙ Ẑ)

)
−O)

∥∥∥2
F
, (21)

where PΩ(·) is the projection function that keeps the ele-
ments in the observed set Ω and makes others zero.

For robust tensor completion, the observed entries may
not only be missing but also corrupted by large, sparse
outliers. To handle this, we adopt an l1 norm based fidelity
term as ∥∥∥PΩ

(
B(F (X )⊙ Ẑ)

)
−O)

∥∥∥
1
. (22)

For spectral snapshot imaging, given the observed O ∈
Rn1×n2 . Then the fidelity term is defined as

1

2

∥∥∥∥∥
n3∑
k=1

M(k) ⊙
(
B(F̂(X ))

)(k)
−O

∥∥∥∥∥
2

F

, (23)

where M(k) ∈ Rn1×n2 , constituted of 0 and 1, denotes the
k-th coding mask and ⊙ denotes the element-wise product.

Algorithm 1 DELTA for Multi-Dimensional Data Recovery

Input: The observed tensor O; trade-off parameters λ and
γ; maximum number of iterations tmax.

1: Initialization: X = Init(O), t = 0.
2: while t < tmax do
3: t = t+ 1;
4: Update {Θ,X , Ẑ} via minimizing (20) using Adam

[47];
5: end while

Output: The recovered tensor B(F(X )⊙ Ẑ).

3.3.2 Optimization Procedure

After initializing the latent tensor with the observation O,
we jointly optimize all learnable parameters in Θ, the self-
representation tensor Ẑ , and estimate data X via Adam
[47]. The complete procedure is detailed in Algorithm 1.
Because the objective in Eq. (20) is minimized directly on
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the degraded measurement, the entire process is fully self-
supervised (i.e., a zero-shot learning manner), requiring no
ground-truth reference during training.

Although the nonlinear transforms F and B are applied
to X , the model remains fully differentiable. Therefore,
gradients with respect to X can be efficiently computed via
backpropagation through the deep transforms. This allows
X , Ẑ , and Θ to be jointly and iteratively updated in each
optimization step. At every iteration, Adam updates the
network parameters and self-representation tensor, and then
refines X accordingly. The final restored tensor is obtained
via the operation B(F(X ) ⊙ Ẑ). This unified and fully
differentiable formulation enables efficient self-supervised
learning tailored to the characteristics of each specific de-
graded input.

Fig. 7 illustrates the model and network structure of
our method, focusing on enhancing the low-rankness of the
representation tensor rather than the entire data, allowing
for the depiction of deep multi-subspaces.

Remark 3.5. Compared to matrix-based self-expression methods,
tensor-based self-representation intrinsically preserves the multi-
dimensional structure of data by operating within the tensor
algebra framework. This allows the model to capture higher-
order correlations and complex interdependencies across multiple
modes, such as spatial, temporal, and spectral dimensions, simul-
taneously. For example, in multi-channel video or hyperspectral
data, tensor self-representation can exploit spatial-temporal con-
sistency and spectral correlations more effectively than treating
data as independent matrices. Consequently, tensor formulations
provide richer and more accurate representations, which lead
to improved recovery and analysis performance, especially in
scenarios where data exhibits inherent multi-subspace and multi-
way relationships.

Moreover, the proposed DELTA model can be reduced
to classic shallow representations under specific conditions:

(i) When F and B are set as the discrete Fourier trans-
form (DFT) matrix and its inverse DFT matrix, respec-
tively, DELTA reduces to the tensor low-rank representation
(TLRR) method [22], which explores the multi-subspace
structure of the data using a linear transform.

(ii) When Ẑ is set as the identity matrix, and F and B
are set as fully connected neural networks, DELTA reduces
into the S2NTNN method [30], which minimizes the nuclear
norm of the frontal slices of the nonlinearly transformed
tensor.

(iii) When F and B are set as the DFT matrix and its
inverse DFT matrix, Ẑ is set as the identity matrix, and
minimizing the nuclear norm of the frontal slices of the data
tensor, DELTA reduces into the traditional Tensor Nuclear
Norm (TNN) method [8].

4 NUMERICAL EXPERIMENTS

In this section, we validate the effectiveness and versatility
of our proposed DELTA framework by applying it to three
challenging multi-dimensional data recovery tasks: tensor
completion (TC), robust tensor completion (RTC), and spec-
tral snapshot imaging (SSI). The adaptability of DELTA
is demonstrated by tailoring the fidelity term, L(·, ·), in
Eq. (20) to suit the specific noise model of each application.

Parameters and Network Configuration: In our method, the
parameters λ and γ in Eq. (20) are empirically selected from
the candidate sets {0.1, 1, 10, 100} and {0.01, 0.1, 1, 10}, re-
spectively, to ensure optimal performance across diverse
data and tasks. For the deep nonlinear transforms, the
learnable parameters Θ = {Wq

i ,W
k
i ,W

v
i ,hk} were ini-

tialized from a standard normal distribution. Unless oth-
erwise specified, the layers of F and B for an input tensor
X ∈ Rn1×n2×n3 were consistently set as m = l = 1 and an
expanded channel dimension of ñ3 = 4n3. The optimization
was performed for a maximum of tmax = 3100, 1600, 1600
iterations (respectively for TC, RTC, and SSI) using a learn-
ing rate of 0.002. For the TC and RTC tasks, which in-
volve inpainting missing entries, we initialized the tensor
X using linear interpolation [53]. This strategy provides a
reasonable and structured starting point that can accelerate
convergence. For the SSI task, a simple back-projection of
the compressed measurement [54] was used as the initial
estimate.

All experiments were conducted on a platform equipped
with an Intel (R) Core (TM) i5-10500 CPU, an NVIDIA
RTX 3090 GPU, and 36 GB of RAM. The implementations
of our method and other Python-based competitors were
executed on PyTorch 1.10.0, leveraging both CPU and GPU
capabilities. All MATLAB-based methods were run on MAT-
LAB R2022b using only the CPU. To quantitatively assess
the reconstruction quality, we employ a set of standard
evaluation metrics. For all tasks, we report the peak signal-
to-noise ratio (PSNR) and the structural similarity (SSIM)
[55], where higher values indicate superior performance. For
tasks involving multispectral (MSI) and hyperspectral (HSI)
data, we additionally compute the spectral angle mapper
(SAM) [56]. A lower SAM value signifies a smaller spectral
distortion and thus a more accurate spectral reconstruction.

4.1 Tensor Completion

In this experiment, we evaluate the performance of our
proposed method on the task of tensor completion (TC),
where the goal is to recover a full tensor from a sparse
set of observed entries. Our evaluation is conducted on
four diverse types of data, namely, 31 multispectral im-
ages (MSIs) from the CAVE dataset3, 23 videos from the
ASU Video Trace Library4, a 3D brain MRI scan from the
BrainWeb database5, and a tensor constructed from 100
images of 10 individuals from the Yale B dataset6. We
investigate two distinct missing data scenarios. First, on the
MSI dataset, we simulate a random missing scenario, where
individual pixels are randomly sampled with rates (SR) of
{0.05, 0.1, 0.15, 0.2, 0.25}. Second, we consider a more chal-
lenging case of tube-wise missing, in which tubes along the
third dimension (1 × 1 × n3 fibers) are randomly removed.
This scenario simulates structured data loss in real-world
applications. For instance, in video surveillance, a damaged
sensor may drop an entire pixel trajectory (resulting in a
missing tube of pixel values across time). In hyperspectral

3. https://cave.cs.columbia.edu/repository/Multispectral
4. http://trace.eas.asu.edu/yuv/index.html
5. https://brainweb.bic.mni.mcgill.ca/brainweb/selection normal.

html
6. http://cvc.cs.yale.edu/cvc/projects/yalefacesB/yalefacesB.html
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TABLE 1: Quantitative evaluation of tensor completion methods on the CAVE multispectral image dataset. The table
presents average PSNR, SSIM, and SAM values on 31 images (each of the size 512 × 512 × 31) for both random and
tube-wise missing scenarios. The best and second-best results are highlighted in bold and underlined, respectively.

Missing Sampling Rate 0.05 0.1 0.15 0.2 0.25 Time

Scenario Method PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM (s)

Random Missing

Observed 14.51 0.231 78.1 14.74 0.266 73.8 14.99 0.299 69.5 15.25 0.330 65.4 15.53 0.359 61.6 —
HaLRTC [7] 26.15 0.795 14.4 30.05 0.865 9.4 32.51 0.902 7.4 34.33 0.925 6.3 35.82 0.941 5.5 32
TNN [8] 30.24 0.805 14.5 36.68 0.922 7.7 39.57 0.954 5.8 41.44 0.968 4.8 43.02 0.977 4.1 212
TLRR [22] 32.00 0.881 15.7 35.24 0.933 11.7 37.50 0.956 9.2 39.15 0.967 7.5 40.37 0.974 6.3 794
HLRTF [10] 35.83 0.928 6.7 40.00 0.968 4.6 42.62 0.980 3.8 44.20 0.986 3.2 45.39 0.989 2.9 39
S2NTNN [30] 33.54 0.899 12.0 37.19 0.940 7.9 39.76 0.958 6.0 41.89 0.969 4.8 43.65 0.978 3.8 312
CoNoT [31] 37.20 0.947 6.8 41.05 0.973 4.5 43.42 0.982 3.4 45.29 0.987 2.9 46.77 0.991 2.5 279
TWTC [48] 30.19 0.780 14.4 31.91 0.812 12.6 32.74 0.826 11.9 33.50 0.840 11.3 34.01 0.853 10.4 592
TCTV [49] 34.55 0.934 5.7 38.77 0.966 4.3 41.40 0.978 3.6 43.37 0.985 3.1 44.98 0.988 2.7 367
TNN-G [32] 33.67 0.849 16.3 38.00 0.917 10.1 39.94 0.942 7.5 40.98 0.954 6.2 41.68 0.960 5.6 789
KBR [50] 37.25 0.934 5.9 42.60 0.974 3.9 45.04 0.984 3.2 46.79 0.989 2.8 48.17 0.992 2.5 822
SALTS [51] 39.27 0.959 4.9 44.01 0.984 3.5 46.63 0.991 2.9 48.45 0.994 2.6 49.85 0.995 2.3 2946
LRTFR [52] 35.63 0.902 7.7 37.69 0.929 6.7 39.11 0.944 6.0 39.73 0.949 5.8 40.72 0.957 5.3 129
DELTA 39.96 0.964 4.5 44.50 0.985 3.1 46.92 0.991 2.6 48.56 0.993 2.3 49.72 0.995 2.0 249

Tube-wise
Random Missing

Observed 14.51 0.231 85.4 14.74 0.266 81.0 14.99 0.299 76.5 15.25 0.330 72.0 15.53 0.359 67.5 —
HaLRTC [7] 20.92 0.644 14.8 25.84 0.751 10.3 28.43 0.811 8.3 30.24 0.850 7.0 31.69 0.879 6.2 46
TNN [8] 23.43 0.605 13.6 26.82 0.710 10.0 29.02 0.775 8.1 30.70 0.820 6.8 32.10 0.854 5.8 124
TLRR [22] 26.89 0.752 12.9 29.47 0.844 10.2 31.20 0.888 8.4 32.51 0.915 7.2 33.59 0.932 6.3 991
HLRTF [10] 29.28 0.835 9.5 31.25 0.878 7.1 32.66 0.901 6.0 33.77 0.918 5.2 34.65 0.930 4.6 39
S2NTNN [30] 26.93 0.755 11.8 29.66 0.847 8.6 31.45 0.891 6.9 32.82 0.918 5.8 33.95 0.935 5.0 275
CoNoT [31] 28.01 0.800 10.8 30.57 0.868 7.9 32.38 0.902 6.1 33.73 0.921 5.3 34.92 0.936 4.5 283
TWTC [48] 24.70 0.564 16.5 26.61 0.660 13.5 28.15 0.724 11.1 29.36 0.768 9.5 30.52 0.805 8.2 527
TCTV [49] 26.98 0.736 25.6 29.43 0.813 20.9 31.11 0.843 18.3 32.26 0.869 16.4 33.24 0.890 14.8 367
TNN-G [32] 26.90 0.748 12.4 29.49 0.838 9.6 31.22 0.882 7.8 32.55 0.909 6.5 33.64 0.927 5.6 813
KBR [50] 17.80 0.334 22.3 19.10 0.429 16.3 20.51 0.524 12.5 22.02 0.611 9.8 23.81 0.694 7.8 810
SALTS [51] 22.55 0.655 10.8 27.90 0.786 7.2 31.14 0.855 5.7 33.52 0.896 4.7 35.11 0.921 4.0 2896
LRTFR [52] 27.03 0.690 11.0 29.80 0.775 8.5 31.53 0.820 7.4 32.90 0.854 6.4 34.15 0.882 5.6 129
DELTA 30.79 0.869 6.8 33.40 0.896 5.1 35.75 0.927 4.2 37.42 0.944 3.6 38.89 0.955 3.2 276

imaging, a malfunctioning detector could yield no readings
for a particular spatial location across all spectral bands (one
pixel’s spectral signature is entirely missing).

4.1.1 Compared Methods
We benchmark DELTA against a comprehensive suite of
twelve representative tensor completion methods: a Tucker
decomposition based method HaLRTC [7], a DFT transform-
based TNN [8], a tensor low-rank representation method
TLRR [22], two nonlinear transform based methods, HLRTF
[10] and S2NTNN [30], a coupled nonlinear transform based
method CoNoT [31], a tensor wheel decomposition based
method TWTC [48], a fusing low-rankness and smoothness
method TCTV [49], a group-tube transform based method
TNN-G [32], a Kronecker-basis representation based method
KBR [50], a continuous Tucker decomposition based method
LRTFR [52] and a self-adaptive learnable transform based
method SALTS [51].

4.1.2 Quantitative Analysis
The quantitative results, detailed in Tables 1–4, illustrate
the state-of-the-art performance of our DELTA framework.
On the CAVE MSI dataset under random missing condi-
tions, DELTA is highly competitive, consistently ranking
in the top two alongside SALTS [51] across all sampling
rates while being over 11 times faster. More critically, its
superiority becomes unequivocal in the more difficult tube-
wise missing scenario. Here, DELTA consistently dominates
across different types of data, though the primary competi-
tor for the runner-up position varies. For instance, on MSIs
at SR = 0.25, DELTA surpasses the second-best method,
SALTS, by a substantial 3.78 dB in PSNR. This trend of
clear dominance extends to the other datasets. On MRI at

SR = 0.1, our DELTA outperforms the runner-up, TCTV
[49], by a significant margin of 1.44 dB in PSNR, while on
Yale B face images at SR = 0.5, it again leads the second-
place method, LRTFR [52], by nearly 1.0 dB. Meanwhile,
on video data at SR = 0.3, our DELTA leads the second-
place method, SALTS, by nearly 1.0 dB. It is noteworthy
that some methods that perform well under random missing
conditions, such as KBR [50] and SALTS [51], see a signif-
icant performance degradation in the tube-wise scenario.
This performance discrepancy can be attributed to that such
structural missing affects the learning of key components
in their model. For KBR [50], it distorts the learning of the
specific factor matrix and core tensor in Tucker decomposi-
tion, while for SALTS [51], it hampers the learning of the
transform in the specific mode. In contrast, our DELTA,
equipped with a learnable group-tube transform and multi-
subspace representation, is more robust under structured
missing scenarios.

4.1.3 Qualitative Analysis
The visual comparisons for the tube-wise missing scenario,
presented in Fig. 8, provide compelling qualitative evidence
of DELTA’s superior performance. Across all four types
of data, most competing methods produce reconstructions
suffering from significant artifacts, such as heavy blurring,
loss of fine texture, or residual structural noise. For example,
in the MSI and video reconstructions, many methods fail
to preserve sharp edges and intricate details, resulting in
overly smooth or distorted images. Similarly, when ap-
plied to MRI data, competing techniques often sacrifice fine
anatomical structures for noise removal. In stark contrast,
our DELTA method consistently delivers reconstructions
with exceptional visual fidelity. It effectively restores sharp
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Observed HaLRTC [7] TWTC [48] S2NTNN [30] TNN [8] TNN-G [32] TLRR [22] HLRTF [10]

CoNoT [31] TCTV [49] KBR [50] SALTS [51] LRTFR [52] DELTA GT

Observed HaLRTC [7] TWTC [48] S2NTNN [30] TNN [8] TNN-G [32] TLRR [22] HLRTF [10]

CoNoT [31] TCTV [49] KBR [50] SALTS [51] LRTFR [52] DELTA GT

Observed HaLRTC [7] TWTC [48] S2NTNN [30] TNN [8] TNN-G [32] TLRR [22] HLRTF [10]

CoNoT [31] TCTV [49] KBR [50] SALTS [51] LRTFR [52] DELTA GT

Fig. 8: Visual comparison of tensor completion results under tube-wise missing conditions across different data modalities.
Top: Pseudo-color reconstructions of MSI (superballs, SR=0.05). Second: Frontal slices from an MRI volume (Brain, SR=0.2).
Bottom: Reconstructed 11th frame from a video sequence (akiyo, SR=0.3).

details, accurate colors, and complex textures, from the
anatomical structures in the brain MRI to the facial features
and clothing patterns in the Yale B and video datasets. In
all test cases, the output from DELTA is visually closest to
the ground truth, highlighting its robustness in preserving
critical image features.

4.2 Snapshot Spectral Imaging

We conduct our experiments for SSI using two hyperspectral
images (HSIs) (WDC mall7 and Pavia8), as well as three
multispectral images (MSIs), flowers, toy, and watercolors.
To mitigate the computational burden associated with the
DeSCI method [57] and to accommodate the unique input
requirements of STFormer [54], all datasets are truncated,
retaining only 8 spectral bands. The sampling ratios (SRs) of
the masks are set to 0.1, 0.3, and 0.5.

7. https://engineering.purdue.edu/∼biehl/MultiSpec/
hyperspectral.html

8. http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral
Remote Sensing Scenes

TABLE 2: Quantitative comparison for tensor completion on
MRI data (143× 179× 121) with tube-wise missing entries.
The best and second-best results are highlighted in bold and
underlined, respectively.

Sampling Rate 0.1 0.2 0.3 Time

Method PSNR SSIM PSNR SSIM PSNR SSIM (s)

Observed 10.58 0.316 11.10 0.344 11.68 0.374 —
HaLRTC [7] 16.17 0.261 19.96 0.460 23.05 0.619 5
TNN [8] 18.96 0.278 22.49 0.460 25.52 0.615 54
TLRR [22] 18.94 0.426 19.96 0.509 22.47 0.594 217
HLRTF [10] 17.88 0.378 24.87 0.688 26.43 0.763 23
S2NTNN [30] 18.92 0.449 20.00 0.530 21.53 0.591 55
CoNoT [31] 18.49 0.415 19.31 0.480 23.48 0.614 85
TWTC [48] 20.10 0.321 22.63 0.492 23.75 0.571 105
TCTV [49] 24.16 0.619 27.23 0.744 29.72 0.818 96
TNN-G [32] 18.95 0.425 19.96 0.507 20.74 0.553 244
KBR [50] 17.76 0.240 25.53 0.611 29.73 0.781 527
SALTS [51] 22.44 0.616 26.85 0.773 30.43 0.822 1440
LRTFR [52] 22.01 0.455 28.37 0.777 31.27 0.831 121
DELTA 25.60 0.699 29.97 0.893 32.48 0.932 234

4.2.1 Compared methods

We compare DELTA for SSI with the following methods: two
generalized alternating projection (GAP)-based methods,
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TABLE 3: Quantitative comparison for tensor completion on
the Yale B face dataset (48×100×42) with tube-wise missing
entries. The best and second-best results are highlighted in
bold and underlined, respectively.

Sampling Rate 0.1 0.3 0.5 Time

Method PSNR SSIM PSNR SSIM PSNR SSIM (s)

Observed 7.52 0.035 8.51 0.096 10.01 0.184 —
HaLRTC [7] 9.88 0.118 18.20 0.538 23.17 0.790 1
TNN [8] 15.66 0.252 21.26 0.652 26.09 0.854 5
TLRR [22] 18.04 0.387 20.97 0.644 23.50 0.785 19
HLRTF [10] 19.59 0.510 23.27 0.746 26.12 0.852 9
S2NTNN [30] 17.91 0.409 20.92 0.654 23.46 0.786 22
CoNoT [31] 17.27 0.326 19.37 0.519 21.49 0.672 11
TWTC [48] 16.41 0.295 21.30 0.672 26.57 0.871 15
TCTV [49] 17.04 0.399 20.78 0.624 22.99 0.739 22
TNN-G [32] 18.04 0.398 20.96 0.651 23.46 0.784 16
KBR [50] 15.98 0.248 21.92 0.686 25.57 0.853 22
SALTS [51] 17.18 0.354 23.50 0.756 26.85 0.864 101
LRTFR [52] 19.08 0.494 24.58 0.810 28.01 0.907 78
DELTA 20.21 0.574 24.97 0.844 28.97 0.929 59

TABLE 4: Quantitative comparison of tensor completion
methods on video data with tube-wise missing entries. The
values are the average values over 23 videos, comprising 17
at 144 × 176 × 100 and 6 at 288 × 352 × 50 resolution. The
best and second-best results are highlighted in bold and
underlined, respectively.

Sampling Rate 0.1 0.2 0.3 Time

Method PSNR SSIM PSNR SSIM PSNR SSIM (s)

Observed 6.50 0.019 7.01 0.034 7.58 0.051 —
HaLRTC [7] 17.47 0.357 20.90 0.551 23.12 0.675 12
TNN [8] 20.14 0.436 22.29 0.569 24.20 0.679 67
TLRR [22] 22.29 0.610 24.10 0.727 25.43 0.790 317
HLRTF [10] 22.30 0.598 24.19 0.725 25.66 0.794 20
S2NTNN [30] 22.17 0.576 23.88 0.711 25.18 0.770 80
CoNoT [31] 22.40 0.613 24.14 0.684 25.52 0.751 91
TWTC [48] 18.98 0.333 20.46 0.455 21.96 0.568 226
TCTV [49] 21.36 0.590 23.01 0.659 24.16 0.709 190
TNN-G [32] 22.60 0.630 24.33 0.731 25.96 0.796 171
KBR [50] 17.51 0.321 20.54 0.497 23.94 0.669 249
SALTS [51] 19.64 0.450 23.58 0.682 26.24 0.802 1238
LRTFR [52] 19.83 0.374 22.90 0.577 25.33 0.711 79
DELTA 22.78 0.636 25.23 0.761 27.21 0.834 182

GAP-TV [58] and DeSCI [57]; a plug-and-play method incor-
porating a deep neural network, PnP [59]; the combined TV
and PnP method, PnP-TV [60]; the combined 3DTV and PnP
method, PnP-3DTV; a nonlinear transform-based method,
HLRTF [10]; a continuous Tucker decomposition based
method, LRTFR [52]. For a broader perspective, we also
include STFormer [54], a fully supervised state-of-the-art
deep learning method. It is important to note that STFormer
relies on extensive training with paired ground-truth data,
whereas DELTA and the other benchmarks operate in an
unsupervised, model-based fashion. Therefore, STFormer is
included here primarily as a high-performance reference for
the qualitative visual evaluation.

4.2.2 Results and Analysis
The results for the SSI task, presented in Table 5 and Fig. 9,
unequivocally establish the state-of-the-art performance of
our DELTA framework. Quantitatively, DELTA dominates
across all sampling rates on both HSI and MSI datasets.
The performance gap is often substantial. For instance,
on HSI data, DELTA achieves a remarkable PSNR gain

TABLE 5: Average quantitative results for spectral snapshot
imaging (SSI). The top set of rows presents the performance
on HSIs (WDC mall and Pavia, both 200 × 200 × 8), while
the bottom set shows results on MSIs (flowers, toy, and
watercolors, all 256 × 256 × 8). The best and second-best
results are highlighted in bold and underlined, respectively.

Sampling Rate 0.1 0.3 0.5 Time

Method PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM (s)

GAP-TV [58] 23.75 0.581 9.9 27.36 0.815 8.4 31.21 0.928 6.7 1211
DeSCI [57] 23.21 0.559 8.9 26.92 0.827 7.9 28.10 0.889 6.7 6185
PnP [59] 23.14 0.613 15.7 23.54 0.685 15.8 22.08 0.632 18.9 1
PnP-TV [60] 24.37 0.616 9.1 26.97 0.798 8.8 28.45 0.871 9.0 9
PnP-3DTV [60] 27.39 0.784 5.6 30.48 0.902 6.3 31.80 0.934 6.6 4
HLRTF [10] 28.40 0.814 2.1 31.14 0.881 1.9 34.03 0.937 1.7 7
LRTFR [52] 29.20 0.857 2.1 33.81 0.928 1.9 39.87 0.967 1.7 80
DELTA 29.54 0.881 2.1 38.59 0.984 1.9 43.79 0.995 1.6 36

GAP-TV [58] 22.11 0.723 9.1 27.54 0.885 5.6 29.43 0.925 5.9 831
DeSCI [57] 25.20 0.823 5.8 28.06 0.904 4.7 28.72 0.918 4.8 8487
PnP [59] 20.64 0.791 8.4 25.54 0.861 6.6 24.62 0.839 7.8 1
PnP-TV [60] 25.31 0.816 5.6 28.75 0.906 4.5 30.10 0.931 4.5 9
PnP-3DTV [60] 27.04 0.843 13.1 29.54 0.900 11.1 30.11 0.914 11.8 4
HLRTF [10] 27.33 0.847 6.5 30.19 0.913 5.7 31.77 0.932 5.6 7
LRTFR [52] 28.67 0.882 5.4 31.70 0.935 5.2 32.13 0.940 4.9 85
DELTA 29.52 0.891 4.6 32.29 0.944 4.4 33.82 0.951 4.2 48

of nearly 5 dB against the second-best method, LRTFR
[52], at SR = 0.3. This numerical superiority is visually
corroborated in Fig. 9. While most competing model-based
methods produce reconstructions with noticeable blurring
and loss of fine detail, DELTA restores sharp edges and
intricate textures with exceptional fidelity. Most notably,
the performance of our unsupervised DELTA framework is
visually on par with that of the fully supervised method
STFormer [54]. This result is particularly significant, as it
demonstrates that our method not only outperforms other
model-based techniques by a large margin but also closes
the gap with supervised approaches, offering a powerful
and more flexible state-of-the-art solution for SSI.

4.3 Robust Tensor Completion

This part evaluates our DELTA on the demanding task
of robust tensor completion (RTC), where the objective is
to recover a tensor from incomplete observations that are
further corrupted by sparse noise. We use two MSIs (beads
and flowers) and three videos (akiyo, carphone, and salesman).
We first subsample these data with SRs = 0.1, 0.2, and 0.3
to obtain incomplete tensors, and then add sparse salt-and-
pepper noise to the observed entries with a fixed noise ratio
of 0.1.

4.3.1 Compared Methods

We benchmark DELTA against six methods designed for
RTC: ℓ1-SNN [61], an ℓ1-regularized sum of nuclear norm
method, ℓ1-TRNN [62], an ℓ1-regularized tensor ring nu-
clear norm method, C2FRTRC [63] and its variant HQTRC,
which are M-estimator-based robust tensor ring recovery
methods, the capped Frobenius norm-based CFNRTC [64],
and the continuous Tucker decomposition based method
LRTFR [52].
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Observed GAP-TV [58] DeSCI [57] PnP [59] PnP-TV [60] PnP-3DTV [60]

HLRTF [10] LRTFR [52] DELTA STFormer [54] GT

Fig. 9: Visual comparison of SSI reconstruction methods on the MSI toy dataset with SR = 0.5.

Observed ℓ1-SNN [61] ℓ1-TRNN [62] C2FRTRC [63] HQTRC [63] CFNRTC [64] LRTFR [52] DELTA GT

Observed ℓ1-SNN [61] ℓ1-TRNN [62] C2FRTRC [63] HQTRC [63] CFNRTC [64] LRTFR [52] DELTA GT

Fig. 10: Restoration results of RTC by different methods respectively on MSI beads (composed of the 23-th, 15-th, 1-st bands)
with SR = 0.1 and the 50-th frame of video carphone with SR = 0.3.

4.3.2 Results and Analysis

As illustrated by the quantitative and qualitative results
in Tables 6-7 and Fig. 10, DELTA achieves state-of-the-art
performance in the challenging RTC setting. The numerical
results in the tables show that DELTA consistently out-
performs all competing methods across both data types
and all sampling rates. The performance margin is often
significant; on video data at SR = 0.3, DELTA achieves a
PSNR of 34.55 dB, surpassing the runner-up C2FRTRC [63]
by 2.55 dB while being over 4 times faster. A similar trend
is observed on MSI data, where DELTA leads the second-
best method by 2.1 dB. This robust performance stems from
our model’s ability to accurately characterize the underlying
structure, thus effectively disentangling the low-rank tensor
structure from the sparse noise. The visual results in Fig. 10
corroborate this. While many competing methods either fail
to remove all noise artifacts or excessively blur the image
(e.g., C2FRTRC [64] and LRTFR [52]), DELTA successfully
suppresses the heavy noise while simultaneously restoring
fine structural details and sharp edges. This supports the
framework’s robustness and applicability to real-world sce-
narios with complex corruptions.

4.4 Ablation Study and Discussions

In this part, we conduct a series of ablation studies and
further analyses to deconstruct our DELTA framework. We
investigate the contributions of its core components, analyze
the impact of key architectural choices and hyperparam-
eters, and evaluate its scalability and computational com-
plexity.

TABLE 6: The average quantitative results on video akiyo,
carphone, and salesman (of the size 144× 176× 100) for RTC.
The best and second-best results are highlighted in bold and
underlined, respectively.

Sampling Rate 0.1 0.2 0.3 Time

Method PSNR SSIM PSNR SSIM PSNR SSIM (s)

Observed 6.82 0.013 7.26 0.023 7.74 0.035 —
ℓ1-SNN [61] 21.92 0.669 26.03 0.823 28.92 0.896 61
ℓ1-TRNN [62] 24.70 0.719 24.76 0.723 26.20 0.779 362
C2FRTRC [63] 25.99 0.820 30.21 0.916 32.00 0.934 525
HQTRC [63] 24.11 0.720 26.93 0.822 28.99 0.869 62
CFNRTC [64] 26.81 0.796 27.62 0.825 27.52 0.832 916
LRTFR [52] 26.84 0.827 26.95 0.835 28.05 0.843 86
DELTA 29.60 0.913 31.41 0.936 34.55 0.962 144

TABLE 7: The average quantitative results on MSIs balloons
and beads (of the size 256× 256× 31) for RTC. The best and
second-best results are highlighted in bold and underlined,
respectively.

Sampling Rate 0.1 0.2 0.3 Time

Method PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM (s)

Observed 11.07 0.031 75.1 11.30 0.046 71.1 11.55 0.061 67.5 —
ℓ1-SNN [61] 21.28 0.468 41.7 28.93 0.790 12.3 31.73 0.873 9.4 38
ℓ1-TRNN [62] 27.25 0.672 18.8 27.50 0.683 18.6 29.17 0.733 16.3 381
C2FRTRC [63] 28.80 0.786 11.2 33.33 0.914 7.2 36.98 0.962 4.9 446
HQTRC [63] 26.32 0.696 14.4 29.69 0.800 11.2 32.23 0.863 9.4 42
CFNRTC [64] 26.31 0.752 13.5 26.46 0.765 12.6 26.61 0.767 12.5 813
LRTFR [52] 30.35 0.856 9.4 34.21 0.936 6.6 36.58 0.966 5.2 76
DELTA 33.33 0.925 6.4 36.68 0.964 4.8 39.08 0.977 3.9 65
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TABLE 8: Results of different self-representation (SR) for-
mats on the akiyo video (144 × 176 × 100, SR=0.1). The
best and second-best results are highlighted in bold and
underlined, respectively.

SR format Tensor Nonlinear PSNR SSIM

X = X ⊙ Z — — 21.44 0.447

X(3) = X(3)Z — — 23.16 0.515

X = X ∗DFT Z [22] ✓ — 29.20 0.910

Xθ = XθZ [37] — ✓ 28.83 0.916

F(X ) = F(X )⊙ Ẑ ✓ ✓ 35.25 0.975

4.4.1 Analysis of Self-Representation Format
First, we validate the effectiveness of the deep tensor self-
representation format in (16), i.e., F(X ) = F(X ) ⊙ Ẑ .
We take the video data akiyo of the size 144 × 176 × 100
with a random sampling rate of 0.1 for testing. Four al-
ternatives are considered. The first one omits the nonlinear
transform in (16) and directly applies slice-wise matrix self-
representation, i.e., X = X ⊙ Z . The second one directly
unfolds the data tensor X along the third mode and adopts
the matrix self-representation as X(3) = X(3)Z. The third
one is TLRR [22], which uses the DFT-based tensor self-
representation, i.e., X = X ∗DFT Z . The first three variants
are linear. Then, we consider a nonlinear variant proposed
in [37], which projects the data matrix X(3) via an encoder as
Xθ , where θ indicates the parameter of the encoder9. Then,
the matrix self-representation in the nonlinear latent space
is expressed as Xθ = XθZ.

Table 8 reports the quantitative results. The results
clearly indicate that both nonlinearity and a tensor-
native framework are crucial. Naive matrix-based self-
representation (X(3) = X(3)Z) or slice-wise operations
(X = X ⊙ Z) yield poor performance. While existing
tensor self-representation [22] or nonlinear matrix-based
self-representation [37] methods offer significant improve-
ments, our proposed formulation, which uniquely combines
a tensor-centric framework with deep nonlinear transforms,
achieves substantially better results, yielding a PSNR gain
of over 6 dB against the next-best alternative.

4.4.2 Effect of the Self-Representation Module
Second, we evaluate the effect of the self-representation
module under five transforms: two fixed (DFT [8], DCT
[26]), two data-driven (FCN [30], CoNoT [31]), and our
proposed nonlinear transforms F ,B. Table 9 reports re-
sults with and without SR. Under fixed operators, self-
representation-based variants consistently outperform their
TNN baselines, directly confirming the benefit of low-rank
self-representation. Similar gains appear with data-driven
operators. Moreover, with learnable nonlinear transforms
F ,B, DELTA achieves the best overall performance, high-
lighting both the validity of self-representation and the
superiority of our nonlinear transform design.

9. We adopt the same convolutional structure of the encoder and
decoder in [37]. The encoding step is accomplished by feeding frontal
slices of the video data into the convolutional neural network (CNN)
and reshaping the results into a matrix

TABLE 9: Effectiveness of adding the self-representation
module to various transforms. Tested on MSI balloons
(512× 512× 31, SR=0.1) for random missing TC.

Transforms w/wo Self-Representation PSNR SSIM Time (s)

DFT wo (TNN [8]) 38.87 0.967 205
w 39.78 0.969 826

DCT wo (TNN-DCT [9]) 39.54 0.968 195
w 43.42 0.975 231

FCN wo (S2NTNN [30]) 39.94 0.954 308
w 46.01 0.989 321

CNN wo (CoNoT [31]) 44.09 0.986 274
w 46.23 0.992 175

F & B wo 46.80 0.992 240
w 49.17 0.995 246

TABLE 10: Analysis of the self-representation tensor Z .
Tested on MSI balloons (of the size 512 × 512 × 31, SR=0.1)
and video highway (of the size 144× 176× 100, SR=0.1) for
random missing TC.. Top: Impact of initialization. Bottom:
A factorized Type-II alternative.

Method PSNR SSIM Time (s)

Initialization of
Ẑ in DELTA

i = 1 45.14 0.990 247
i = 0 49.17 0.995 245

i = 10−1 47.58 0.993 246
i = 10−2 48.86 0.994 248
i = 10−3 48.96 0.995 244

i ∼ exp(N (0, 1)) 48.93 0.994 246

Different
types of Ẑ

DELTA 32.82 0.916 92
Type II 33.26 0.921 60

4.4.3 Analysis of the Self-Representation Tensor Ẑ
We further analyze the properties of the self-representation
tensor Ẑ . The top rows of Table 10 show the model’s sen-
sitivity to the initialization value, i, of Ẑ . The performance
is stable and near-optimal for initializations in the range
0 ≤ i < 1, with a significant performance drop only when
i ≥ 1. This suggests that a large initial value can obscure
the original data features, whereas a small value allows the
model to effectively learn the intrinsic structure.

To explore efficiency improvements, we also designed a
factorized “Type II” self-representation, Ẑ = Ẑ1⊙Ẑ2, where
Ẑ1 ∈ Rn2×r×ñ3 and Ẑ2 ∈ Rr×n2×ñ3 are smaller tensors. As
shown in the bottom rows of Table 10, this Type-II model can
achieve slightly better performance with a faster runtime.
However, we observed that its performance can be unstable
and requires manual tuning of the inner rank r, making it
a promising but less robust direction for future work. Our
default DELTA model remains the more stable and reliable
configuration.

4.4.4 Impact of Network Hyperparameters in Transforms

In this part, we analyze the impact of the key architectural
choices within our nonlinear transforms, focusing on how
different values of the head, layer, and kernel size, affect
recovery accuracy and computational efficiency. In the de-
fault settings, we fixed certain parameters as follows: the
number of layers (i.e., m = l in (15)) is set to 1, the number
of heads to 2, and the convolution kernel size to (1,3,3).
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TABLE 11: The parameters ablation study results for TC with tube-wise missing entries on video akiyo with SR=0.1. The
best and the second-best values are highlighted.

# Head PSNR SSIM Time (s) # Layer PSNR SSIM Time (s) Kernel Size PSNR SSIM Time (s)

1 23.88 0.701 71 1 24.34 0.730 73 1× 1× 1 21.37 0.478 67
2 24.34 0.730 73 2 23.48 0.736 96 3× 3× 1 24.34 0.730 73
4 21.33 0.555 74 3 24.14 0.767 120 5× 5× 1 24.45 0.735 76
5 24.27 0.724 77 4 23.72 0.723 142 3× 3× 3 23.91 0.701 75
10 23.96 0.700 79 5 23.67 0.757 165 3× 3× 5 23.90 0.712 106
20 24.00 0.706 91 10 19.05 0.504 262 5× 5× 5 22.07 0.525 170

For each of these configurations, we maintain the other
hyperparameters consistent with those used in the default
implementation. To deeply investigate the layers and the
number of heads within our nonlinear transforms, we ablate
without convolution and vary i) the number of heads in
the multi-head attention and ii) the number of layers in the
1D transform. Subsequently, we examine the convolution
operation by varying the kernel size.

Table 11 reports the results. We can observe that in-
creasing the number of layers yields better SSIM values,
while the performance degrades when the transforms are
too deep. This is because, when the training data is limited
to the observed data, a deeper network is more prone to
the vanishing gradient problem. This issue slows down
the training process by causing the gradients of the loss
function for the weights to become very small. Additionally,
while increasing the size of the convolution kernel focuses
on more localized information, it may lead to information
disturbance when the kernel size is too large, resulting
in decreased performance. Moreover, a larger convolution
kernel size requires more computations.

4.4.5 Sensitivity to Regularization Parameters
We analyze the sensitivity of DELTA to the main regular-
ization parameters, λ and γ, in (20). To test the effects of
different values of them, we conduct experiments on MSI
data balloons with the random sampling rate of 0.1. When
testing one parameter, the other is fixed to its default value.
We illustrate the PSNR and SSIM values with respect to
different values of those parameters in Fig. 11. The analysis
reveals that our model is robust and not overly sensitive
to the precise setting of these hyperparameters. For the
parameter λ, which balances the fidelity and regularization
terms, the model achieves consistently high performance for
values in [10−1, 101], with performance peaking near λ = 1.
Similarly, for the self-representation parameter γ, the model
is stable across a wide range of small values, maintaining
near-optimal performance for any γ ∈ [10−3, 10−1]. Perfor-
mance gracefully degrades only when γ becomes larger. The
existence of these wide, stable windows for both parameters
confirms the model’s robustness and simplifies the tuning
process, reducing the need for exhaustive hyperparameter
searches.

4.4.6 Scalability to Higher-Order Tensors
Next, we test the scalability of our method to higher-order
tensors and another type of multi-dimensional data. When
dealing with 4th-order tensors, we employ the same strategy
as HTNN [20], in which the transform along the third and
fourth modes are decoupled. We decouple the transforms

Fig. 11: PSNR and SSIM values with respect to different λ
and γ for TC on the MSI balloons data (SR=0.1).

TABLE 12: Results for higher-order completion on the traffic
data of the size 60× 24× 20× 30. The best and second-best
values are highlighted.

Sampling Rate 0.1 0.2 0.3 Time

Method RMSE MAPE RMSE MAPR RMSE MAPE (s)

Observed 0.780 72.66 0.719 63.57 0.656 52.14 -
HaLRTC [7] 0.225 3155.9 0.071 6.0 0.065 4.86 4
TNN [8] 0.094 64.43 0.080 24.46 0.076 7.57 13
FCTN [65] 0.086 10.26 0.088 31.42 0.079 9.23 67
HTNN [20] 0.064 4.06 0.062 3.41 0.053 2.64 9
TWTC [48] 0.061 3.95 0.058 3.35 0.050 2.62 62
DELTA 0.055 3.72 0.045 2.95 0.039 2.23 153

Observed HaLRTC [7] TNN [8] FCTN [65]

HTNN [20] TWTC [48] DELTA GT

Fig. 12: Restoration result of higher-order completion by
different methods respectively on traffic data with SR = 0.4
on the 7th day.

along the third and fourth modes of the tensor, adding
a nonlinear transform along the fourth dimension. This
approach allows us to scale without significantly increasing
the number of parameters or imposing additional computa-
tional burdens. A fourth-order traffic data Jan201910, which
is provided by Grenoble Traffic Lab (GTL), is selected. The
compared methods are listed as follows: a fully-connected
tensor network based method FCTN-TC [65], a higher order

10. https://gtl.inrialpes.fr/data/gtl data jan2019.csv
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TABLE 13: Study of the normalization function in (9) on MSI
balloons (of the size 512 × 512 × 31, SR= 0.1). The best and
the second-best values are highlighted.

Method PSNR SSIM Time (s)

Softmax 47.07 0.991 245
tanh 49.17 0.995 245

TABLE 14: The computational complexity per epoch (itera-
tion).

Method 3rd-order tensor 4th-order tensor

TNN (or HTNN) [20] O(n3(n+ log(n))) O(n4(n+ log(n)))
S2NTNN [30] O(k2n4) O(k2n5)
DELTA O(c2kn4) O(c2kn5)

t-SVD based method HTNN-FFT [20], HaLRTC [7], and
TWTC [48]. We use root mean square error (RMSE) for the
quantitative evaluation. Lower RMSE values refer to better
performance. Table 12 shows the proposed methods achieve
the lowest RMSE values.

4.4.7 Choice of Normalization Function in Attention

We then investigate the effect of the normalization function
used in Equation (9). Specifically, we replace the standard
softmax with tanh to examine its influence. The experiment
is conducted on the MSI balloons dataset with a sampling
rate (SR) of 0.1 for the tensor completion task. The corre-
sponding results are reported in Table 13. As shown, the
use of tanh leads to a clear improvement over Softmax in
recovery performance, which can be attributed to the fact
that tanh helps preserving critical high-frequency details
without over-sparsity.

4.4.8 Computational Costs

For simplicity, we only consider one layer of the transform.
Given a 3rd-order tensor X ∈ Rn×n×n (or a 4th-order of
the size n × n × n × n), denoting k as the multiple of the
length on specific dimension of the output enlarged by the
3D-CNN in DELTA, h as the head number in the multi-head
attention layer, and (1, c, c) as the kernel size of 3D-CNN,
the computational complexities of TNN based methods are
summarized in Table 14.

5 CONCLUSION

We introduce a deep low-rank tensor representation for
the recovery of real-world multi-dimensional data. First,
the nonlinearity inherent in real-world tensor data is ef-
fectively captured using newly designed deep transforms.
Then, within the transform-based t-SVD framework, we
construct the self-representation tensor and minimize its
nuclear norm, in the transform domain, to exploit the multi-
subspace nature of real-world data. Experiments across var-
ious types of multi-dimensional tensor data and recovery
tasks show that our method outperforms state-of-the-art
approaches. Moreover, our method can be readily extended
for higher-order tensors.
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